byliu commited on
Commit
da341b6
·
1 Parent(s): e2b3006

add README and dataloader

Browse files
Files changed (3) hide show
  1. README.md +167 -3
  2. deepfurniture.py +115 -0
  3. uncompress_dataset.sh +129 -0
README.md CHANGED
@@ -1,3 +1,167 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # DeepFurniture Dataset
2
+
3
+ A large-scale dataset for furniture understanding, featuring **photo-realistic rendered indoor scenes** with **high-quality 3D furniture models**. The dataset contains about 24k indoor images, 170k furniture instances, and 20k unique furniture identities, all rendered by the leading industry-level rendering engines in [Kujiale](https://coohom.com).
4
+
5
+ ## Key Features
6
+
7
+ - **Photo-Realistic Rendering**: All indoor scenes are rendered using professional rendering engines, providing realistic lighting, shadows, and textures
8
+ - **High-Quality 3D Models**: Each furniture identity is derived from a professional 3D model, ensuring accurate geometry and material representation
9
+ - **Rich Annotations**: Hierarchical annotations at image, instance, and identity levels
10
+
11
+
12
+ ## Dataset Overview
13
+
14
+ DeepFurniture provides hierarchical annotations at three levels:
15
+ - **Image Level**: Professional rendered indoor scenes with scene category and depth map
16
+ - **Instance Level**: Bounding boxes and per-pixel masks for furniture instances in scenes
17
+ - **Identity Level**: High-quality rendered previews of 3D furniture models.
18
+
19
+ ### Statistics
20
+ - Total scenes: ~24,000 photo-realistic rendered images
21
+ - Total furniture instances: ~170,000 annotated instances in scenes
22
+ - Unique furniture identities: ~20,000 3D models with preview renderings
23
+ - Categories: 11 furniture types
24
+ - Style tags: 11 different styles
25
+
26
+ ### Categories
27
+ 1. Cabinet/Shelf
28
+ 2. Table
29
+ 3. Chair/Stool
30
+ 4. Lamp
31
+ 5. Door
32
+ 6. Bed
33
+ 7. Sofa
34
+ 8. Plant
35
+ 9. Decoration
36
+ 10. Curtain
37
+ 11. Home Appliance
38
+
39
+ ### Style Tags
40
+ 1. Modern
41
+ 2. Country
42
+ 3. European/American
43
+ 4. Chinese
44
+ 5. Japanese
45
+ 6. Mediterranean
46
+ 7. Southeast-Asian
47
+ 8. Nordic
48
+ 9. Industrial
49
+ 10. Eclectic
50
+ 11. Other
51
+
52
+ ## Dataset Structure
53
+
54
+ The dataset is organized in chunks for efficient distribution:
55
+
56
+ ```
57
+ data/
58
+ ├── scenes/ # Photo-realistic rendered indoor scenes
59
+ ├── furnitures/ # High-quality 3D model preview renders
60
+ ├── queries/ # Query instance images from scenes
61
+ └── metadata/ # Dataset information and indices
62
+ ├── categories.json # Furniture category definitions
63
+ ├── styles.json # Style tag definitions
64
+ ├── dataset_info.json # Dataset statistics and information
65
+ ├── furnitures.jsonl # Furniture metadata
66
+ └── *_index.json # Chunk index files
67
+ ```
68
+
69
+ ## Using the Dataset
70
+
71
+ ### 1. Download and Extraction
72
+
73
+ ```bash
74
+ # Clone the repository
75
+ git lfs install # Make sure Git LFS is installed
76
+ git clone https://huggingface.co/datasets/byliu/DeepFurniture
77
+
78
+ # [optional] Extract the dataset (or load the dataset using the compressed files, TBD)
79
+ ./uncompress_dataset.sh -s ./DeepFurniture/data -t ./regular_dataset
80
+ ```
81
+
82
+ ### 2. Data Format
83
+
84
+ #### Scene Data
85
+ - **Image**: RGB images in JPG format
86
+ - **Depth**: Depth maps in PNG format
87
+ - **Annotation**: JSON files containing:
88
+ ```json
89
+ {
90
+ "instances": [
91
+ {
92
+ "numberID": 1,
93
+ "boundingBox": {
94
+ "xMin": int,
95
+ "xMax": int,
96
+ "yMin": int,
97
+ "yMax": int
98
+ },
99
+ "styleIDs": [int],
100
+ "styleNames": [str],
101
+ "segmentation": [int], # COCO format RLE encoding
102
+ "identityID": int,
103
+ "categoryID": int,
104
+ "categoryName": str
105
+ }
106
+ ]
107
+ }
108
+ ```
109
+
110
+ #### Furniture Data
111
+ - Preview images of 3D models in JPG format
112
+ - Metadata in JSONL format containing category and style information
113
+
114
+ #### Query Data
115
+ - Cropped furniture instances from scenes
116
+ - Filename format: `[furnitureID]_[instanceIndex]_[sceneID].jpg`
117
+
118
+ ### 3. Loading the Dataset
119
+
120
+ ```python
121
+ from deepfurniture import DeepFurnitureDataset
122
+
123
+ # Initialize dataset
124
+ dataset = DeepFurnitureDataset("path/to/regular_dataset")
125
+
126
+ # Access a scene
127
+ scene = dataset[0]
128
+ print(f"Scene ID: {scene['scene_id']}")
129
+ print(f"Number of instances: {len(scene['instances'])}")
130
+
131
+ # Access furniture instances
132
+ for instance in scene['instances']:
133
+ print(f"Category: {instance['category_name']}")
134
+ print(f"Style(s): {instance['style_names']}")
135
+ ```
136
+
137
+ ## Benchmarks
138
+
139
+ This dataset supports three main benchmarks:
140
+ 1. Furniture Detection/Segmentation
141
+ 2. Furniture Instance Retrieval
142
+ 3. Furniture Retrieval
143
+
144
+ For benchmark details and baselines, please refer to our paper.
145
+
146
+ ## Paper
147
+ This dataset is introduced in our paper:
148
+ [Furnishing Your Room by What You See: An End-to-End Furniture Set Retrieval Framework with Rich Annotated Benchmark Dataset](https://arxiv.org/abs/1911.09299)
149
+
150
+ If you use this dataset, please cite:
151
+ ```bibtex
152
+ @article{liu2024deepfurniture,
153
+ title={Furnishing Your Room by What You See: An End-to-End Furniture Set Retrieval Framework with Rich Annotated Benchmark Dataset},
154
+ author={Liu, Bingyuan and Zhang, Jiantao and Zhang, Xiaoting and Zhang, Wei and Yu, Chuanhui and Zhou, Yuan},
155
+ journal={arXiv preprint arXiv:1911.09299},
156
+ year={2020}
157
+ }
158
+ ```
159
+
160
+ ## License
161
+ Apache-2.0
162
+
163
+ ## Acknowledgments
164
+
165
+ - Dataset created by [Kujiale](https://coohom.com)
166
+ - Rendered using the leading interior design platform in [Kujiale](https://coohom.com)
167
+ - Thanks to millions of designers and artists who contributed to the 3D models and designs
deepfurniture.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from pathlib import Path
3
+ from PIL import Image
4
+ from typing import Dict
5
+
6
+
7
+ class DeepFurnitureDataset:
8
+ """A simple dataset loader for DeepFurniture dataset."""
9
+
10
+ def __init__(self, data_dir: str):
11
+ """Initialize the dataset loader.
12
+
13
+ Args:
14
+ data_dir: Path to the dataset directory
15
+ """
16
+ self.data_dir = Path(data_dir)
17
+
18
+ # Load metadata
19
+ with open(self.data_dir / "metadata" / "categories.json") as f:
20
+ self.categories = json.load(f)
21
+ with open(self.data_dir / "metadata" / "styles.json") as f:
22
+ self.styles = json.load(f)
23
+
24
+ # Get scene directories
25
+ self.scene_dirs = sorted(p for p in (self.data_dir / "scenes").iterdir() if p.is_dir())
26
+
27
+ def __len__(self) -> int:
28
+ """Get number of scenes in dataset."""
29
+ return len(self.scene_dirs)
30
+
31
+ def __getitem__(self, idx: int) -> Dict:
32
+ """Get a single scene with its annotations and related data.
33
+
34
+ Returns:
35
+ Dict containing:
36
+ - scene_id (str): Scene identifier
37
+ - image (PIL.Image): Scene image
38
+ - depth (PIL.Image or None): Depth map if available
39
+ - has_depth (bool): Whether depth map is available
40
+ - instances (List[Dict]): List of furniture instances with:
41
+ - category_id: Category identifier
42
+ - category_name: Category name
43
+ - identity_id: Furniture identity identifier
44
+ - style_ids: List of style identifiers
45
+ - style_names: List of style names
46
+ - bounding_box: Dict with xmin, ymin, xmax, ymax
47
+ - segmentation: Segmentation mask
48
+ - furniture_previews (Dict[str, PIL.Image]): Mapping of furniture IDs to preview images
49
+ """
50
+ # Get scene directory
51
+ scene_dir = self.scene_dirs[idx]
52
+ scene_id = scene_dir.name
53
+
54
+ # Load image
55
+ image = Image.open(scene_dir / "image.jpg")
56
+
57
+ # Load depth if available
58
+ depth = None
59
+ has_depth = False
60
+ depth_path = scene_dir / "depth.png"
61
+ if depth_path.exists():
62
+ try:
63
+ depth = Image.open(depth_path)
64
+ has_depth = True
65
+ except Exception as e:
66
+ print(f"Warning: Failed to load depth map for scene {scene_id}: {e}")
67
+
68
+ # Load annotation
69
+ with open(scene_dir / "annotation.json") as f:
70
+ annotation = json.load(f)
71
+
72
+ # Process instances
73
+ instances = []
74
+ furniture_ids = set()
75
+ for inst in annotation["instances"]:
76
+ instance_data = {
77
+ "category_id": inst["categoryID"],
78
+ "category_name": inst["categoryName"],
79
+ "identity_id": inst["identityID"],
80
+ "style_ids": inst["styleIDs"],
81
+ "style_names": inst["styleNames"],
82
+ "bounding_box": {
83
+ "xmin": inst["boundingBox"]["xMin"],
84
+ "ymin": inst["boundingBox"]["yMin"],
85
+ "xmax": inst["boundingBox"]["xMax"],
86
+ "ymax": inst["boundingBox"]["yMax"],
87
+ },
88
+ "segmentation": inst["segmentation"] if "segmentation" in inst else None,
89
+ }
90
+ instances.append(instance_data)
91
+ furniture_ids.add(str(inst["identityID"]))
92
+
93
+ # Load furniture previews
94
+ furniture_previews = {}
95
+ for furniture_id in furniture_ids:
96
+ furniture_path = self.data_dir / "furnitures" / f"{furniture_id}.jpg"
97
+ if furniture_path.exists():
98
+ try:
99
+ furniture_previews[furniture_id] = Image.open(furniture_path)
100
+ except Exception as e:
101
+ print(f"Warning: Failed to load furniture preview {furniture_id}: {e}")
102
+
103
+ return {
104
+ "scene_id": scene_id,
105
+ "image": image,
106
+ "depth": depth,
107
+ "has_depth": has_depth,
108
+ "instances": instances,
109
+ "furniture_previews": furniture_previews
110
+ }
111
+
112
+ def __iter__(self):
113
+ """Iterate through all scenes."""
114
+ for i in range(len(self)):
115
+ yield self[i]
uncompress_dataset.sh ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # Usage function
4
+ usage() {
5
+ echo "Usage: $0 -s SOURCE_DIR -t TARGET_DIR [-c CHUNK_TYPE] [-h]"
6
+ echo "Uncompress chunked DeepFurniture dataset"
7
+ echo ""
8
+ echo "Required arguments:"
9
+ echo " -s SOURCE_DIR Source directory containing the chunked dataset"
10
+ echo " -t TARGET_DIR Target directory for the uncompressed dataset"
11
+ echo ""
12
+ echo "Optional arguments:"
13
+ echo " -c CHUNK_TYPE Specific chunk type to process (scenes, furnitures, queries)"
14
+ echo " If not specified, all chunk types will be processed"
15
+ echo " -h Show this help message"
16
+ exit 1
17
+ }
18
+
19
+ # Process command line arguments
20
+ while getopts "s:t:c:h" opt; do
21
+ case $opt in
22
+ s) SOURCE_DIR="$OPTARG";;
23
+ t) TARGET_DIR="$OPTARG";;
24
+ c) CHUNK_TYPE="$OPTARG";;
25
+ h) usage;;
26
+ ?) usage;;
27
+ esac
28
+ done
29
+
30
+ # Check required arguments
31
+ if [ -z "$SOURCE_DIR" ] || [ -z "$TARGET_DIR" ]; then
32
+ echo "Error: Source and target directories are required"
33
+ usage
34
+ fi
35
+
36
+ # Validate source directory
37
+ if [ ! -d "$SOURCE_DIR" ]; then
38
+ echo "Error: Source directory does not exist: $SOURCE_DIR"
39
+ exit 1
40
+ fi
41
+
42
+ # Create target directory structure
43
+ mkdir -p "$TARGET_DIR"/{metadata,scenes,furnitures,queries}
44
+
45
+ # Copy metadata files (excluding index files)
46
+ echo "Copying metadata files..."
47
+ for file in "$SOURCE_DIR"/metadata/*.json*; do
48
+ if [[ ! $file =~ _index.json$ ]]; then
49
+ cp "$file" "$TARGET_DIR/metadata/"
50
+ fi
51
+ done
52
+
53
+ # Function to process chunks of a specific type
54
+ process_chunks() {
55
+ local type=$1
56
+ local src_dir="$SOURCE_DIR/$type"
57
+ local target_dir="$TARGET_DIR/$type"
58
+
59
+ echo "Processing $type chunks..."
60
+
61
+ # Check if source directory exists
62
+ if [ ! -d "$src_dir" ]; then
63
+ echo "Warning: Directory not found: $src_dir"
64
+ return
65
+ }
66
+
67
+ # Count total chunks for progress
68
+ total_chunks=$(ls "$src_dir"/*.tar.gz 2>/dev/null | wc -l)
69
+ if [ "$total_chunks" -eq 0 ]; then
70
+ echo "No chunks found in $src_dir"
71
+ return
72
+ }
73
+
74
+ # Process each chunk
75
+ current=0
76
+ for chunk in "$src_dir"/*.tar.gz; do
77
+ current=$((current + 1))
78
+ chunk_name=$(basename "$chunk")
79
+ printf "Extracting %s (%d/%d)..." "$chunk_name" "$current" "$total_chunks"
80
+
81
+ if tar -xzf "$chunk" -C "$target_dir" 2>/dev/null; then
82
+ echo " done"
83
+ else
84
+ echo " failed"
85
+ echo "Warning: Failed to extract $chunk_name"
86
+ fi
87
+ done
88
+ }
89
+
90
+ # Process chunks based on input
91
+ if [ -n "$CHUNK_TYPE" ]; then
92
+ case "$CHUNK_TYPE" in
93
+ scenes|furnitures|queries)
94
+ process_chunks "$CHUNK_TYPE"
95
+ ;;
96
+ *)
97
+ echo "Error: Invalid chunk type: $CHUNK_TYPE"
98
+ echo "Valid types are: scenes, furnitures, queries"
99
+ exit 1
100
+ ;;
101
+ esac
102
+ else
103
+ # Process all chunk types
104
+ for type in scenes furnitures queries; do
105
+ process_chunks "$type"
106
+ done
107
+ fi
108
+
109
+ # Basic validation
110
+ echo -e "\nValidating extracted files..."
111
+
112
+ # Check scenes
113
+ if [ -z "$CHUNK_TYPE" ] || [ "$CHUNK_TYPE" = "scenes" ]; then
114
+ missing_files=0
115
+ for scene_dir in "$TARGET_DIR"/scenes/*; do
116
+ if [ -d "$scene_dir" ]; then
117
+ for required in "image.jpg" "annotation.json"; do
118
+ if [ ! -f "$scene_dir/$required" ]; then
119
+ echo "Warning: Missing $required in $(basename "$scene_dir")"
120
+ missing_files=$((missing_files + 1))
121
+ fi
122
+ done
123
+ fi
124
+ done
125
+ echo "Scene validation complete. Missing files: $missing_files"
126
+ fi
127
+
128
+ echo "Dataset uncompression completed!"
129
+ echo "Output directory: $TARGET_DIR"