remove 2d polytope construction notes
Browse files- README.md +1 -25
- pictures/ws-2d.png +2 -2
- pictures/ws-2d.tex +6 -6
README.md
CHANGED
|
@@ -229,33 +229,9 @@ There are exactly three IP weight systems that define two-dimensional polytopes
|
|
| 229 |
| (1, 1, 2) | 5 | 9 |
|
| 230 |
| (1, 2, 3) | 7 | 7 |
|
| 231 |
|
| 232 |
-
|
| 233 |
-
first two vertices of the polytopes
|
| 234 |
-
|
| 235 |
-
$$
|
| 236 |
-
\mathbf{v}_0 = (1, 0) \quad \text{and} \quad
|
| 237 |
-
\mathbf{v}_1 = (0, 1) \;,
|
| 238 |
-
$$
|
| 239 |
-
|
| 240 |
-
one can obtain the position of the third vertex by solving the weight system equation from
|
| 241 |
-
before:
|
| 242 |
-
|
| 243 |
-
$$
|
| 244 |
-
\mathbf{v}_2 = - \frac{q_0 \mathbf{v}_0 + q_1 \mathbf{v}_1}{q_2} \;.
|
| 245 |
-
$$
|
| 246 |
-
|
| 247 |
-
The resulting polytopes and their duals are depicted below. Lattice points are indicated
|
| 248 |
-
by dots.
|
| 249 |
<img src="pictures/ws-2d.png" style="display: block; margin-left: auto; margin-right: auto; width:520px;">
|
| 250 |
|
| 251 |
-
One may notice that a simpler description could be obtained by fixing \\(\mathbf{v}_2 =
|
| 252 |
-
(1, 0)\\) instead of \\(\mathbf{v}_0\\), which would avoid fractional vertex coordinates.
|
| 253 |
-
However, this approach would not illustrate the construction of the lattice. This is
|
| 254 |
-
because, in this scenario, the lattice points would invariably align with points having
|
| 255 |
-
integer coordinates. In practice, coordinates are often chosen so that lattice points
|
| 256 |
-
correspond to those with integer coordinates. In higher dimensions, this is not trivial,
|
| 257 |
-
as a weight with a value of one is not always present in a weight system.
|
| 258 |
-
|
| 259 |
### General Dimension
|
| 260 |
|
| 261 |
In higher dimensions, the situation becomes more complex. Not all IP polytopes are
|
|
|
|
| 229 |
| (1, 1, 2) | 5 | 9 |
|
| 230 |
| (1, 2, 3) | 7 | 7 |
|
| 231 |
|
| 232 |
+
The polytopes and their duals are depicted below. Lattice points are indicated by dots.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
<img src="pictures/ws-2d.png" style="display: block; margin-left: auto; margin-right: auto; width:520px;">
|
| 234 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
### General Dimension
|
| 236 |
|
| 237 |
In higher dimensions, the situation becomes more complex. Not all IP polytopes are
|
pictures/ws-2d.png
CHANGED
|
Git LFS Details
|
|
Git LFS Details
|
pictures/ws-2d.tex
CHANGED
|
@@ -21,7 +21,7 @@
|
|
| 21 |
|
| 22 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1, -1) --cycle;
|
| 23 |
|
| 24 |
-
\draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
| 25 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
| 26 |
|
| 27 |
\foreach \i in {-2,...,2}
|
|
@@ -37,7 +37,7 @@
|
|
| 37 |
\begin{scope}
|
| 38 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (-1, 2) --(2, -1) --(-1, -1) --cycle;
|
| 39 |
|
| 40 |
-
\draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
| 41 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
| 42 |
|
| 43 |
\foreach \i in {-2,...,2}
|
|
@@ -59,7 +59,7 @@
|
|
| 59 |
\begin{scope}[scale=1.4142] % sqrt(2)
|
| 60 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1/2, -1/2) --cycle;
|
| 61 |
|
| 62 |
-
\draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
| 63 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
| 64 |
|
| 65 |
\foreach \i in {-2,...,2}
|
|
@@ -76,7 +76,7 @@
|
|
| 76 |
\begin{scope}[scale=0.707]
|
| 77 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (-1, 3) --(3, -1) --(-1, -1) --cycle;
|
| 78 |
|
| 79 |
-
\draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
| 80 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
| 81 |
|
| 82 |
\foreach \i in {-2,...,2}
|
|
@@ -98,7 +98,7 @@
|
|
| 98 |
\begin{scope}[scale=1.732] % sqrt(3)
|
| 99 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1/3, -2/3) --cycle;
|
| 100 |
|
| 101 |
-
\draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
| 102 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
| 103 |
|
| 104 |
\foreach \i in {-2,...,2}
|
|
@@ -116,7 +116,7 @@
|
|
| 116 |
\begin{scope}[xshift=-2cm]
|
| 117 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (5, -1) --(-1, 2) --(-1, -1) --cycle;
|
| 118 |
|
| 119 |
-
\draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
| 120 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
| 121 |
|
| 122 |
\foreach \i in {-1,...,3}
|
|
|
|
| 21 |
|
| 22 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1, -1) --cycle;
|
| 23 |
|
| 24 |
+
% \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
| 25 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
| 26 |
|
| 27 |
\foreach \i in {-2,...,2}
|
|
|
|
| 37 |
\begin{scope}
|
| 38 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (-1, 2) --(2, -1) --(-1, -1) --cycle;
|
| 39 |
|
| 40 |
+
% \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
| 41 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
| 42 |
|
| 43 |
\foreach \i in {-2,...,2}
|
|
|
|
| 59 |
\begin{scope}[scale=1.4142] % sqrt(2)
|
| 60 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1/2, -1/2) --cycle;
|
| 61 |
|
| 62 |
+
% \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
| 63 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
| 64 |
|
| 65 |
\foreach \i in {-2,...,2}
|
|
|
|
| 76 |
\begin{scope}[scale=0.707]
|
| 77 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (-1, 3) --(3, -1) --(-1, -1) --cycle;
|
| 78 |
|
| 79 |
+
% \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
| 80 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
| 81 |
|
| 82 |
\foreach \i in {-2,...,2}
|
|
|
|
| 98 |
\begin{scope}[scale=1.732] % sqrt(3)
|
| 99 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (1, 0) --(0, 1) --(-1/3, -2/3) --cycle;
|
| 100 |
|
| 101 |
+
% \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
| 102 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
| 103 |
|
| 104 |
\foreach \i in {-2,...,2}
|
|
|
|
| 116 |
\begin{scope}[xshift=-2cm]
|
| 117 |
\path [draw, fill opacity=\opacity, fill=fillColor, line width=\polytopeLineWidth] (5, -1) --(-1, 2) --(-1, -1) --cycle;
|
| 118 |
|
| 119 |
+
% \draw[step=1, dotted, line width=\gridLineWidth] (-10, -10) grid (10, 10);
|
| 120 |
\path [draw, line width=\gridLineWidth] (-10, 0) --(10, 0) (0, -10) --(0, 10);
|
| 121 |
|
| 122 |
\foreach \i in {-1,...,3}
|