File size: 9,338 Bytes
d1ae506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
"""
Get Cannabis Results | Alaska
Copyright (c) 2024 Cannlytics

Authors:
    Keegan Skeate <https://github.com/keeganskeate>
Created: 7/10/2024
Updated: 7/10/2024
License: CC-BY 4.0 <https://huggingface.co/datasets/cannlytics/cannabis_tests/blob/main/LICENSE>

Data Source:

    - Public records request

"""
# Standard imports:
from collections import defaultdict
import glob
import os
import json

# External imports:
from cannlytics.data.coas.coas import CoADoc
from cannlytics.utils.utils import snake_case
import pandas as pd

def process_file(parser, file_path, sample_id='PackageId'):
    """Process each file and transform the data."""
    chunks = pd.read_csv(file_path, chunksize=100000, low_memory=False)
    samples = {}
    for chunk in chunks:
        for _, row in chunk.iterrows():
            sample_id_value = row[sample_id]
            if sample_id_value not in samples:
                sample = {sample_columns[key]: row[key] for key in sample_columns if key in row}
                sample['results'] = []
                samples[sample_id_value] = sample
            result = {result_columns[key]: row[key] for key in result_columns if key in row}
            name = result['name']
            result['key'] = parser.analytes.get(snake_case(name), snake_case(name))
            samples[sample_id_value]['results'].append(result)
    return samples

def aggregate_and_save_to_csv(json_dir, output_csv):
    """Aggregate and save JSON files to CSV."""
    json_files = glob.glob(os.path.join(json_dir, '*.json'))
    all_samples = []
    for json_file in json_files:
        with open(json_file, 'r') as f:
            samples = json.load(f)
            all_samples.extend(samples.values())
    df = pd.DataFrame(all_samples)
    df.to_csv(output_csv, index=False)
    return df

# === Test ===
# [✓] Tested: 2024-07-10 by Keegan Skeate <keegan@cannlytics>
if __name__ == '__main__':

    print('Curating AK results')
    data_dir = r'D:\data\public-records\Alaska\AK Lab Result Data 2016-2024\AK Lab Result Data 2016-2024'
    output_dir = r'D:\data\alaska\results\datasets'
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    # Walk the data directory and find all `.csv`'s with TestResult.
    test_datafiles = []
    for root, dirs, files in os.walk(data_dir):
        for file in files:
            if 'TestResult' in file:
                test_datafile = os.path.join(root, file)
                test_datafiles.append(test_datafile)
    
    # Get package datafiles.
    package_datafiles = [os.path.join(data_dir, x) for x in os.listdir(data_dir) if 'Package' in x and '.csv' in x]

    # Each sample has the following fields:
    sample_columns = {
        'PackageId': 'package_id',
        'PackageLabel': 'package_label',
        'LabTestResultId': 'sample_id',
        'TestingFacilityId': 'lab_id',
        'LabFacilityLicenseNumber': 'lab_license_number',
        'LabFacilityName': 'lab',
        'SourcePackageId': 'source_package_id',
        'SourcePackageLabel': 'source_package_label',
        'ProductName': 'product_name',
        'ProductCategoryName': 'product_type',
        'TestPerformedDate': 'date_tested',
        'OverallPassed': 'status',
        'IsRevoked': 'revoked',
        # 'RevokedDate': 'date_revoked',
    }
    package_columns = {
        'Id': 'id',
        'FacilityId': 'facility_id',
        'TagId': 'tag_id',
        'Label': 'label',
        'SourceHarvestNames': 'source_harvest_names',
        'SourcePackageLabels': 'source_package_labels',
        'SourceProcessingJobNumbers': 'source_processing_job_numbers',
        'SourceProcessingJobNames': 'source_processing_job_names',
        'MultiHarvest': 'multi_harvest',
        'MultiPackage': 'multi_package',
        'MultiProcessingJob': 'multi_processing_job',
        'Quantity': 'quantity',
        'UnitOfMeasureName': 'unit_of_measure_name',
        'UnitOfMeasureAbbreviation': 'unit_of_measure_abbreviation',
        'UnitOfMeasureQuantityType': 'unit_of_measure_quantity_type',
        'ItemFromFacilityId': 'item_from_facility_id',
        'ItemFromFacilityLicenseNumber': 'item_from_facility_license_number',
        'ItemFromFacilityName': 'item_from_facility_name',
        'ItemFromFacilityType': 'item_from_facility_type',
        'ItemFromFacilityIsActive': 'item_from_facility_is_active',
        'PackagedDate': 'packaged_date',
        'PackagedByFacilityId': 'packaged_by_facility_id',
        'PackagedByFacilityLicenseNumber': 'packaged_by_facility_license_number',
        'PackagedByFacilityName': 'packaged_by_facility_name',
        'PackagedByFacilityType': 'packaged_by_facility_type',
        'PackagedByFacilityIsActive': 'packaged_by_facility_is_active',
        'LabTestingStateName': 'lab_testing_state_name',
        'LabTestingStateDate': 'lab_testing_state_date',
        'IsProductionBatch': 'is_production_batch',
        'IsTradeSample': 'is_trade_sample',
        'IsProcessValidationTestingSample': 'is_process_validation_testing_sample',
        'IsProficiencyTestingSample': 'is_proficiency_testing_sample',
        'ProductRequiresRemediation': 'product_requires_remediation',
        'ContainsRemediatedProduct': 'contains_remediated_product',
        'ReceivedFromManifestNumber': 'received_from_manifest_number',
        'ReceivedFromFacilityId': 'received_from_facility_id',
        'ReceivedFromFacilityLicenseNumber': 'received_from_facility_license_number',
        'ReceivedFromFacilityName': 'received_from_facility_name',
        'ReceivedFromFacilityType': 'received_from_facility_type',
        'ReceivedFromFacilityActive': 'received_from_facility_active',
        'ReceivedDateTime': 'received_date_time',
        'IsArchived': 'is_archived',
        'IsFinished': 'is_finished',
        'FinishedDate': 'finished_date',
        'LabTestResultId': 'sample_id',
        'TestingFacilityId': 'lab_id',
        'TestingFacilityName': 'lab',
        'TestingFacilityLicenseNumber': 'lab_license_number',
        'TestingFacilityType': 'lab_facility_type',
        'TestingFacilityIsActive': 'lab_facility_is_active',
        'OverallPassed': 'status',
        'TestPerformedDate': 'date_tested',
        'ProductId': 'product_id',
        'ProductName': 'product_name',
        'ProductCategoryName': 'product_category_name',
        'ProductCategoryType': 'product_category_type',
        'ProductCategoryTypeName': 'product_category_type_name',
        'QuantityType': 'quantity_type',
        'QuantityTypeName': 'quantity_type_name',
        'ItemUnitOfMeasureName': 'item_unit_of_measure_name',
        'ItemUnitOfMeasureAbbreviation': 'item_unit_of_measure_abbreviation',
        'UnitQuantity': 'unit_quantity',
        'UnitQuantityUnitOfMeasureName': 'unit_quantity_unit_of_measure_name',
        'StrainId': 'strain_id',
        'StrainName': 'strain_name',
    }

    result_columns = {
        # 'LabTestResultDocumentFileId': 'coa_id',
        # 'ResultReleased': 'released',
        # 'ResultReleaseDateTime': 'date_released',
        # 'LabTestDetailId': 'result_id',
        # 'LabTestTypeId': 'test_id',
        'TestTypeName': 'name',
        'TestPassed': 'status',
        'TestResultLevel': 'value',
        # 'TestComment': 'comment',
        # 'TestInformationalOnly': 'r_and_d',
        # 'LabTestDetailIsRevoked': 'result_revoked',
        # 'LabTestDetailRevokedDate': 'date_result_revoked'
    }

    # Process each file and periodically save the results by year
    parser = CoADoc()
    all_samples_by_year = defaultdict(dict)
    file_counter = 0
    for file in test_datafiles:
        print(f'Processing file: {file}')
        samples = process_file(parser, file)

        # FIXME: JSON encode all results.


        # Merge samples into the all_samples_by_year dictionary
        for sample_id, sample in samples.items():
            year = sample['date_tested'][:4]
            if sample_id in all_samples_by_year[year]:
                all_samples_by_year[year][sample_id]['results'].extend(sample['results'])
            else:
                all_samples_by_year[year][sample_id] = sample
        
        # Periodically save the results to avoid memory issues
        file_counter += 1
        if file_counter % 5 == 0:
            for year, samples in all_samples_by_year.items():
                output_file = os.path.join(output_dir, f'ak-lab-results-{year}-{file_counter}.json')
                with open(output_file, 'w') as f:
                    json.dump(samples, f, indent=4)
            all_samples_by_year.clear()

    # Save any remaining samples
    if all_samples_by_year:
        for year, samples in all_samples_by_year.items():
            output_file = os.path.join(output_dir, f'ak-lab-results-{year}-final.json')
            with open(output_file, 'w') as f:
                json.dump(samples, f, indent=4)

    # TODO: Combine JSON by year.

    # FIXME: Aggregate all samples and save them to a .csv
    # output_dir = r'D:\data\alaska\results\datasets'
    # output_csv = r'D:\data\alaska\results\datasets\ak-lab-results-latest.csv'
    # results = aggregate_and_save_to_csv(output_dir, output_csv)

    # TODO: Augment package data?

    # # TODO: Augment license data.
    # datafile = os.path.join(data_dir, 'AK Facility.csv')
    # license_data = pd.read_csv(datafile)