File size: 8,757 Bytes
d1ae506 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
"""
Cannabis Tests | Get Connecticut Test Result Data
Copyright (c) 2023 Cannlytics
Authors:
Keegan Skeate <https://github.com/keeganskeate>
Created: 4/8/2023
Updated: 7/3/2023
License: CC-BY 4.0 <https://huggingface.co/datasets/cannlytics/cannabis_tests/blob/main/LICENSE>
Data Source:
- Connecticut Medical Marijuana Brand Registry
URL: <https://data.ct.gov/Health-and-Human-Services/Medical-Marijuana-Brand-Registry/egd5-wb6r/data>
"""
# Standard imports:
from datetime import datetime
import os
import requests
from typing import Optional
# External imports:
import cannlytics
from cannlytics.utils import convert_to_numeric
import pandas as pd
# Connecticut lab results API URL.
CT_RESULTS_URL = 'https://data.ct.gov/api/views/egd5-wb6r/rows.json'
# Connecticut lab results fields.
CT_FIELDS = {
'sid': 'id',
'id': 'lab_id',
'position': None,
'created_at': None,
'created_meta': None,
'updated_at': 'data_refreshed_date',
'updated_meta': None,
'meta': None,
'brand_name': 'product_name',
'dosage_form': 'product_type',
'producer': 'producer',
'product_image': 'image_url',
'label_image': 'images',
'lab_analysis': 'lab_results_url',
'approval_date': 'date_tested',
'registration_number': 'traceability_id',
}
CT_CANNABINOIDS = {
'cbg': 'cbg',
'cbg_a': 'cbga',
'cannabavarin_cbdv': 'cbdv',
'cannabichromene_cbc': 'cbc',
'cannbinol_cbn': 'cbn',
'tetrahydrocannabivarin_thcv': 'thcv',
'tetrahydrocannabinol_thc': 'thc',
'tetrahydrocannabinol_acid_thca': 'thca',
'cannabidiols_cbd': 'cbd',
'cannabidiol_acid_cbda': 'cbda',
}
CT_TERPENES = {
'a_pinene': 'alpha_pinene',
'b_myrcene': 'beta_myrcene',
'b_caryophyllene': 'beta_caryophyllene',
'b_pinene': 'beta_pinene',
'limonene': 'limonene',
'ocimene': 'ocimene',
'linalool_lin': 'linalool_lin',
'humulene_hum': 'humulene_hum',
'a_bisabolol': 'alpha_bisabolol',
'a_phellandrene': 'alpha_phellandrene',
'a_terpinene': 'alpha_terpinene',
'b_eudesmol': 'beta_eudesmol',
'b_terpinene': 'beta_terpinene',
'fenchone': 'fenchone',
'pulegol': 'pulegol',
'borneol': 'borneol',
'isopulegol': 'isopulegol',
'carene': 'carene',
'camphene': 'camphene',
'camphor': 'camphor',
'caryophyllene_oxide': 'caryophyllene_oxide',
'cedrol': 'cedrol',
'eucalyptol': 'eucalyptol',
'geraniol': 'geraniol',
'guaiol': 'guaiol',
'geranyl_acetate': 'geranyl_acetate',
'isoborneol': 'isoborneol',
'menthol': 'menthol',
'l_fenchone': 'l_fenchone',
'nerol': 'nerol',
'sabinene': 'sabinene',
'terpineol': 'terpineol',
'terpinolene': 'terpinolene',
'trans_b_farnesene': 'trans_beta_farnesene',
'valencene': 'valencene',
'a_cedrene': 'alpha_cedrene',
'a_farnesene': 'alpha_farnesene',
'b_farnesene': 'beta_farnesene',
'cis_nerolidol': 'cis_nerolidol',
'fenchol': 'fenchol',
'trans_nerolidol': 'trans_nerolidol'
}
def flatten_results(x):
"""Flatten the results."""
results = []
for name, analyte in CT_CANNABINOIDS.items():
# print(analyte, x[name])
results.append({
'key': analyte,
'name': name,
'value': convert_to_numeric(x[name]),
'units': 'percent',
'analysis': 'cannabinoids',
})
for name, analyte in CT_TERPENES.items():
# print(analyte, x[name])
results.append({
'key': analyte,
'name': name,
'value': convert_to_numeric(x[name]),
'units': 'percent',
'analysis': 'terpenes',
})
return results
def get_results_ct(url: str = CT_RESULTS_URL) -> pd.DataFrame:
"""Get all of the Connecticut test results.
Args:
url (str): The URL to the CSV data.
Returns:
df (pd.DataFrame): A Pandas DataFrame of the test results.
"""
# Get the data from the OpenData API.
response = requests.get(url)
if response.status_code == 200:
json_data = response.json()
metadata = json_data['meta']
header = metadata['view']['columns']
headers = [h['name'] for h in header]
columns = [cannlytics.utils.snake_case(h) for h in headers]
rows = json_data['data']
df = pd.DataFrame(rows, columns=columns)
else:
print('Failed to fetch CT results. Status code:', response.status_code)
# FIXME: Standardize the results.
# Note: The results do not match the COAs!!!
df['results'] = df.apply(flatten_results, axis=1)
# Drop unnecessary columns.
drop_columns = ['meta', 'position', 'created_at', 'created_meta',
'updated_at', 'updated_meta']
drop_columns += list(CT_CANNABINOIDS.keys()) + list(CT_TERPENES.keys())
df.drop(columns=drop_columns, inplace=True)
# Rename the columns.
df.rename(columns=CT_FIELDS, inplace=True)
# TODO: Extract product_size, serving_size, servings_per_package, sample_weight
# from dosage_form and standardize product type.
# TODO: Format COA URLs.
# coa_urls
# Create the directory if it doesn't exist.
if not os.path.exists(data_dir): os.makedirs(data_dir)
# Save the results to Excel.
date = datetime.now().isoformat()[:10]
datafile = f'{data_dir}/ct-lab-results-{date}.xlsx'
try:
cannlytics.utils.to_excel_with_style(df, datafile)
except:
df.to_excel(datafile)
print('Connecticut lab results archived:', datafile)
return df
def download_pdfs_ct(
df: pd.DataFrame,
download_path: str,
column_name: Optional[str] = 'lab_results_url',
id_column: Optional[str] = 'id',
verbose: Optional[bool] = True,
) -> None:
"""
Downloads all PDFs from a specified column in a Pandas DataFrame.
Args:
df (pandas.DataFrame): The input DataFrame containing the URLs of the PDFs.
column_name (str): The name of the column containing the PDF URLs.
download_path (str): The path to the directory where the PDFs will be downloaded.
"""
for _, row in df.iterrows():
pdf_url = row[column_name]
if isinstance(pdf_url, list):
pdf_url = pdf_url[0]
# Create the filename from the ID.
filename = row[id_column]
if not filename.endswith('.pdf'):
filename = filename + '.pdf'
# Create the local file path for downloading the PDF.
# Continue if the PDF is already downloaded.
outfile = os.path.join(download_path, filename)
if os.path.isfile(outfile) or pdf_url is None:
continue
# Download the PDF.
try:
response = requests.get(pdf_url)
except:
print(f'Failed to download PDF: {pdf_url}')
continue
if response.status_code == 200:
with open(outfile, 'wb') as file:
file.write(response.content)
if verbose:
print(f'Downloaded PDF: {outfile}.')
else:
print(f'Failed to download PDF {filename}. Status code:', response.status_code)
# === Test ===
# [✓] Tested: 2024-04-14 by Keegan Skeate <keegan@cannlytics>
if __name__ == '__main__':
# Command line usage.
import argparse
try:
parser = argparse.ArgumentParser()
parser.add_argument('--pdf_dir', dest='pdf_dir', type=str)
parser.add_argument('--data_dir', dest='data_dir', type=str)
args = parser.parse_args()
except SystemExit:
args = {}
# Specify where your data lives.
DATA_DIR = 'D://data/connecticut/results'
PDF_DIR = 'D://data/connecticut/results/pdfs'
stats_dir = 'D://data/connecticut/results/datasets'
# Set the destination for the PDFs.
data_dir = args.get('data_dir', DATA_DIR)
pdf_dir = args.get('pdf_dir', os.path.join(data_dir, 'pdfs'))
# Get the test results.
print('Getting Connecticut test results...')
results = get_results_ct()
# Download the PDFs.
print('Downloading PDFs...')
if not os.path.exists(pdf_dir): os.makedirs(pdf_dir)
download_pdfs_ct(results, pdf_dir)
# Save the results to Excel.
date = datetime.now().isoformat()[:10]
if not os.path.exists(stats_dir): os.makedirs(stats_dir)
results.to_excel(f'{stats_dir}/ct-lab-results-{date}.xlsx', index=False)
results.to_csv(f'{stats_dir}/ct-lab-results-latest.csv', index=False)
print('Connecticut lab results archived:', stats_dir)
# TODO: Integrate with `analyte_results_ct.py`.
# FIXME: Upload results to Firestore.
# FIXME: Upload PDFs to Google Cloud Storage.
# FIXME: Upload datafiles to Google Cloud Storage.
|