File size: 16,899 Bytes
d1ae506 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
"""
Analyze Results from MI PRR
Copyright (c) 2023 Cannlytics
Authors: Keegan Skeate <https://github.com/keeganskeate>
Created: 10/23/2023
Updated: 7/11/2024
License: MIT License <https://github.com/cannlytics/cannabis-data-science/blob/main/LICENSE>
Data Sources:
- Public records request
"""
# External imports:
from datetime import datetime
import os
import matplotlib.pyplot as plt
from matplotlib.ticker import StrMethodFormatter
from matplotlib import cm
import numpy as np
import pandas as pd
import re
import seaborn as sns
from scipy import stats
# Setup plotting style.
plt.style.use('fivethirtyeight')
plt.rcParams.update({
'figure.figsize': (12, 8),
'font.family': 'Times New Roman',
'font.size': 24,
})
def save_figure(filename, dpi=300, bbox_inches='tight'):
"""Save a figure to the figures directory."""
plt.savefig(f'figures/{filename}', bbox_inches=bbox_inches, dpi=dpi)
# === Get the data ===
# Read the results.
data_dir = r'D:\data\public-records\Michigan'
datafile = os.path.join(data_dir, 'Michigan_Metrc_Flower_Potency_Final_2.17.23.xlsx')
mi_results = pd.read_excel(datafile)
# === Clean the data ===
# Rename certain columns.
mi_results = mi_results.rename(columns={
'ProductName': 'product_name',
'ProductCategory': 'product_type',
'TestType': 'test_type',
'Quantity': 'total_thc',
'Licensee': 'lab',
'TestPerformedDate': 'date_tested',
'Comment': 'notes',
'Med AU': 'medical',
})
# Standardize state.
state = 'MI'
mi_results['lab_state'] = state
mi_results['producer_state'] = state
# Add a date column.
mi_results['date'] = pd.to_datetime(mi_results['date_tested'], format='mixed')
mi_results['week'] = mi_results['date'].dt.to_period('W').astype(str)
mi_results['month'] = mi_results['date'].dt.to_period('M').astype(str)
mi_results = mi_results.sort_values('date')
# Save the results.
outfile = 'D://data/michigan/mi-results-latest.xlsx'
outfile_csv = 'D://data/michigan/mi-results-latest.csv'
outfile_json = 'D://data/michigan/mi-results-latest.jsonl'
mi_results.to_excel(outfile, index=False)
mi_results.to_csv(outfile_csv, index=False)
mi_results.to_json(outfile_json, orient='records', lines=True)
print('Saved Excel:', outfile)
print('Saved CSV:', outfile_csv)
print('Saved JSON:', outfile_json)
# Print out features.
features = {x: 'string' for x in mi_results.columns}
print('Number of features:', len(features))
print('Features:', features)
# === Analyze tests by month. ===
# Exclude outliers.
sample = mi_results.loc[
(mi_results['total_thc'] > 0) &
(mi_results['total_thc'] < 100) &
(mi_results['product_type'] == 'Flower')
]
print('Number of samples:', len(sample))
# Visualize the frequency of tests by month/year.
test_frequency = sample['month'].value_counts().sort_index()
subsample = test_frequency[2:-1]
subsample.index = subsample.index.to_timestamp()
plt.figure(figsize=(12, 8))
sns.lineplot(
x=subsample.index,
y=subsample.values,
marker="o",
color="mediumblue"
)
plt.title('Monthly Number of Lab Tests in MI')
plt.ylabel('Number of Tests')
plt.xlabel('')
plt.xticks(rotation=45, ha='right')
plt.grid(True, which='both', linestyle='--', linewidth=0.5)
plt.tight_layout()
save_figure('mi-tests-by-month.png')
plt.show()
# === Analyze medical vs. adult-use testing. ===
# Visualize adult-use vs. medical tests over time.
grouped = sample.groupby(['month', 'medical']).size().reset_index(name='counts')
pivot_grouped = grouped.pivot(index='month', columns='medical', values='counts').fillna(0)
pivot_grouped = pivot_grouped.apply(pd.to_numeric, errors='coerce')
pivot_grouped.index = pivot_grouped.index.to_timestamp()
pivot_grouped = pivot_grouped[2:-1]
plt.figure(figsize=(15, 10))
for column in pivot_grouped.columns:
sns.lineplot(data=pivot_grouped, x=pivot_grouped.index, y=column, marker='o', label=column)
plt.title('Number of Adult Use vs Medical Tests by Month in MI')
plt.ylabel('Number of Lab Tests')
plt.xlabel('')
plt.xticks(rotation=45, ha='right')
plt.legend(title='Adult Use / Medical')
plt.grid(True, which='both', linestyle='--', linewidth=0.5)
plt.tight_layout()
save_figure('mi-med-au-tests-by-month.png')
plt.show()
# Visualize the frequency distribution for medical.
subsample = sample[(sample['date'] >= datetime(2022, 1, 1)) &
(sample['date'] < datetime(2023, 1, 1))]
med_au_distribution = subsample['medical'].value_counts()
plt.figure(figsize=(5, 8))
bar_plot = sns.barplot(x=med_au_distribution.index, y=med_au_distribution.values, palette='tab10')
plt.title('Adult-Use to Medical Lab Tests in MI in 2022', fontsize=21)
plt.ylabel('Number of Lab Tests')
plt.xlabel('')
for index, value in enumerate(med_au_distribution.values):
bar_plot.text(index, value + 0.1, str(value), color='black', ha='center')
plt.tight_layout()
save_figure('mi-med-au-frequency.png')
plt.show()
# === Analyze lab market share. ===
# Count the number of labs.
labs = sample['lab'].unique()
print('Number of labs:', len(labs))
# Visualize the number of tests by lab.
subsample = sample[(sample['date'] >= datetime(2021, 1, 1)) &
(sample['date'] < datetime(2022, 1, 1))]
lab_results = subsample.groupby('lab')
tests_by_lab = lab_results['total_thc'].count().sort_values(ascending=False)
sns.barplot(x=tests_by_lab.index, y=tests_by_lab.values, palette='tab20')
plt.xticks(rotation=45, ha='right')
plt.title('Lab Tests in MI in 2022')
plt.ylabel('Number of Lab Tests')
plt.xlabel('')
plt.tight_layout()
save_figure('mi-tests-by-lab.png')
plt.show()
# Visualize market share by lab in 2021.
subsample = sample[(sample['date'] >= datetime(2021, 1, 1)) &
(sample['date'] < datetime(2022, 1, 1))]
lab_results = subsample.groupby('lab')
tests_by_lab = lab_results['total_thc'].count().sort_values(ascending=False)
market_share = tests_by_lab.div(tests_by_lab.sum()).mul(100).round(2)
sns.barplot(x=market_share.index, y=market_share.values, palette='tab20')
plt.title('Lab Market Share in MI in 2021')
plt.ylabel('Market Share (%)')
plt.xlabel('')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
save_figure('mi-market-share-by-lab-2021.png')
plt.show()
# Visualize market share by lab in 2022.
subsample = sample[(sample['date'] >= datetime(2022, 1, 1)) &
(sample['date'] < datetime(2023, 1, 1))]
lab_results = subsample.groupby('lab')
tests_by_lab = lab_results['total_thc'].count().sort_values(ascending=False)
market_share = tests_by_lab.div(tests_by_lab.sum()).mul(100).round(2)
sns.barplot(x=market_share.index, y=market_share.values, palette='tab20')
plt.title('Lab Market Share in MI in 2022')
plt.ylabel('Market Share (%)')
plt.xlabel('')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
save_figure('mi-market-share-by-lab-2022.png')
plt.show()
# === Analyze total THC. ===
# Get a sub-sample.
subsample = sample[(sample['date'] >= datetime(2022, 1, 1)) &
(sample['date'] < datetime(2023, 1, 1))]
# Visualize the distribution of THC.
mean_value = subsample['total_thc'].mean()
quantile_1 = subsample['total_thc'].quantile(0.01)
quantile_25 = subsample['total_thc'].quantile(0.25)
quantile_75 = subsample['total_thc'].quantile(0.75)
quantile_99 = subsample['total_thc'].quantile(0.99)
plt.figure(figsize=(12, 7))
sns.histplot(subsample['total_thc'], bins=100, color='lightblue', kde=True)
plt.axvline(quantile_1, color='blue', linestyle='dashed', linewidth=2, label=f'1st percentile: {quantile_1:.2f}%')
plt.axvline(quantile_25, color='green', linestyle='dashed', linewidth=2, label=f'25th percentile: {quantile_25:.2f}%')
plt.axvline(mean_value, color='red', linestyle='dashed', linewidth=2, label=f'Mean: {mean_value:.2f}%')
plt.axvline(quantile_75, color='darkgreen', linestyle='dashed', linewidth=2, label=f'75th percentile: {quantile_75:.2f}%')
plt.axvline(quantile_99, color='blue', linestyle='dashed', linewidth=2, label=f'99th percentile: {quantile_99:.2f}%')
plt.title('Total THC in MI Cannabis Flower in 2022', pad=15)
plt.xlabel('Total THC (%)')
plt.ylabel('Number of Tests')
plt.legend()
plt.tight_layout()
save_figure('mi-total-thc-distribution.png')
plt.show()
# Visualize the difference between medical and adult-use THC.
plt.figure(figsize=(12, 7))
sns.histplot(
data=subsample,
x='total_thc',
hue='medical',
bins=100,
kde=True,
palette={'Med': 'blue', 'AU': 'green'},
stat='density',
)
median_med = subsample[subsample['medical'] == 'Med']['total_thc'].median()
median_au = subsample[subsample['medical'] == 'AU']['total_thc'].median()
plt.axvline(median_med, color='blue', linestyle='--', linewidth=1.5, label=f'Medical Median: {median_med:.2f}%')
plt.axvline(median_au, color='green', linestyle='--', linewidth=1.5, label=f'Adult-Use Median: {median_au:.2f}%')
plt.title('Total THC for Medical and Adult-Use in MI in 2022', pad=15)
plt.xlabel('Total THC (%)')
plt.ylabel('Frequency (%)')
plt.legend(loc='upper right', bbox_to_anchor=(1.3, 1))
plt.tight_layout()
save_figure('mi-med-au-total-thc-distribution.png')
plt.show()
# Perform a t-test to determine if the difference between medical and adult-use THC is significant.
med_thc = subsample[subsample['medical'] == 'Med']['total_thc']
au_thc = subsample[subsample['medical'] == 'AU']['total_thc']
t_stat, p_val = stats.ttest_ind(med_thc, au_thc, equal_var=True) # You can set equal_var to False for Welch's t-test
print(f'T-statistic: {t_stat}')
print(f'P-value: {p_val}')
alpha = 0.05
if p_val < alpha:
print('The difference between medical and adult-use THC is statistically significant.')
else:
print('The difference between medical and adult-use THC is not statistically significant.')
# === Analyze THC by lab. ===
# Visualize average THC percentage for each licensee.
average_thc_by_licensee = subsample.groupby('lab')['total_thc'].mean()
average_thc_by_licensee = average_thc_by_licensee.sort_values(ascending=False)
plt.figure(figsize=(25, 8))
bar_plot = sns.barplot(x=average_thc_by_licensee.index, y=average_thc_by_licensee.values, palette='tab20')
plt.title('Average Total THC by Lab in MI in 2022', pad=15)
plt.ylabel('Average Total THC (%)')
plt.xlabel('Lab')
plt.xticks(rotation=45, ha='right')
for index, value in enumerate(average_thc_by_licensee.values):
bar_plot.text(index, value + 0.2, f'{value:.0f}%', color='black', ha='center')
mean = average_thc_by_licensee.mean()
plt.axhline(
y=mean,
color='red',
linestyle='--',
label=f'MI Avg Total THC: {mean:.2f}%',
)
plt.tight_layout()
save_figure('mi-total-thc-by-lab.png')
plt.show()
# === Augment strain data. ===
def extract_strain_name(product_name):
"""Extract the strain name from the product name."""
name = str(product_name)
strain_name = re.split(r' - | \| | _ | x | – | — |:|\(|\)|/', name)[0]
strain_name = strain_name.split('Buds')[0].strip()
strain_name = strain_name.split('Bulk')[0].strip()
strain_name = strain_name.split('Flower')[0].strip()
strain_name = strain_name.split('Pre-Roll')[0].strip()
return strain_name
# Augment strain names.
sample['strain_name'] = sample['product_name'].apply(extract_strain_name)
print(sample.sample(10)['strain_name'])
# === Analyze strains. ===
# Exclude samples with strain_name set to None, '' or 'Unprocessed'
sample = sample[sample['strain_name'].notna()]
sample = sample[~sample['strain_name'].isin(['', 'Unprocessed'])]
# Standardize strain names
sample['strain_name'] = sample['strain_name'].replace({
'Gorilla Glue': 'Gorilla Glue #4',
'GG4': 'Gorilla Glue #4'
})
# Restrict the timeframe to 2022.
subsample = sample[(sample['date'] >= datetime(2022, 1, 1)) &
(sample['date'] < datetime(2023, 1, 1))]
# Visualize the frequency of each strain
strain_counts = subsample['strain_name'].value_counts()
counts = strain_counts.head(20)
plt.figure(figsize=(13, 13))
bar_plot = sns.barplot(
y=counts.index,
x=counts.values,
palette='tab20',
)
plt.title('Number of Lab Tests for the Top 20 Strains in MI in 2022', pad=15)
plt.xlabel('')
plt.ylabel('')
for index, value in enumerate(counts.values):
bar_plot.text(value, index, str(value), color='black', ha='left', va='center')
plt.tight_layout()
save_figure('mi-top-strains.png')
plt.show()
# Visualize the average THC for the top strains.
avg_thc_per_strain = subsample.groupby('strain_name')['total_thc'].mean().sort_values(ascending=False)
overall_avg_thc = subsample['total_thc'].mean()
print('Overall average THC:', round(overall_avg_thc, 2))
print('99th percentile THC:', round(sample['total_thc'].quantile(0.99), 2))
top_20_strains = strain_counts.head(20).index
avg_thc_top_20_strains = avg_thc_per_strain[avg_thc_per_strain.index.isin(top_20_strains)]
avg_thc_top_20_strains = avg_thc_top_20_strains.loc[top_20_strains]
print('Average THC for top 20 strains:', round(avg_thc_top_20_strains.mean(), 2))
plt.figure(figsize=(26, 10))
bar_plot = sns.barplot(
x=avg_thc_top_20_strains.index,
y=avg_thc_top_20_strains.values,
palette='tab20'
)
plt.axhline(
y=overall_avg_thc,
color='red',
linestyle='--',
label=f'MI Avg Total THC: {overall_avg_thc:.2f}%',
)
plt.title('Average Total THC for the Top 20 Strains in MI in 2022', fontsize=36, pad=15)
plt.ylabel('Total THC (%)')
plt.xlabel('')
plt.xticks(rotation=45, ha='right')
plt.legend()
for p in bar_plot.patches:
bar_plot.annotate(format(p.get_height(), '.2f') + '%',
(p.get_x() + p.get_width() / 2., p.get_height()),
ha='center', va='center',
xytext=(0, 9),
textcoords='offset points')
plt.tight_layout()
save_figure('mi-avg-thc-by-top-20-strains.png')
plt.show()
# Look at the top adult-use strains.
adult_use = subsample.loc[subsample['medical'] == 'AU']
strain_counts = adult_use['strain_name'].value_counts()
avg_thc_per_strain = adult_use.groupby('strain_name')['total_thc'].mean().sort_values(ascending=False)
overall_avg_thc = adult_use['total_thc'].mean()
print('Adult-use average THC:', round(overall_avg_thc, 2))
print('Adult-use 99th percentile THC:', round(sample['total_thc'].quantile(0.99), 2))
top_20_strains = strain_counts.head(20).index
avg_thc_top_20_strains = avg_thc_per_strain[avg_thc_per_strain.index.isin(top_20_strains)]
avg_thc_top_20_strains = avg_thc_top_20_strains.loc[top_20_strains]
print('Average THC for top 20 adult-use strains:', round(avg_thc_top_20_strains.mean(), 2))
plt.figure(figsize=(26, 10))
bar_plot = sns.barplot(
x=avg_thc_top_20_strains.index,
y=avg_thc_top_20_strains.values,
palette='tab20'
)
plt.axhline(
y=overall_avg_thc,
color='red',
linestyle='--',
label=f'MI Adult-Use Avg Total THC: {overall_avg_thc:.2f}%',
)
plt.title('Average Total THC for the Top 20 Adult-Use Strains in MI in 2022', fontsize=36, pad=15)
plt.ylabel('Total THC (%)')
plt.xlabel('')
plt.xticks(rotation=45, ha='right')
plt.legend()
for p in bar_plot.patches:
bar_plot.annotate(format(p.get_height(), '.2f') + '%',
(p.get_x() + p.get_width() / 2., p.get_height()),
ha='center', va='center',
xytext=(0, 9),
textcoords='offset points')
plt.tight_layout()
save_figure('mi-avg-thc-by-top-20-strains-adult-use.png')
plt.show()
# Look at the top medical strains.
medical = subsample.loc[subsample['medical'] == 'Med']
strain_counts = medical['strain_name'].value_counts()
avg_thc_per_strain = medical.groupby('strain_name')['total_thc'].mean().sort_values(ascending=False)
overall_avg_thc = medical['total_thc'].mean()
print('Medical average THC:', round(overall_avg_thc, 2))
print('Medical 99th percentile THC:', round(sample['total_thc'].quantile(0.99), 2))
top_20_strains = strain_counts.head(20).index
avg_thc_top_20_strains = avg_thc_per_strain[avg_thc_per_strain.index.isin(top_20_strains)]
avg_thc_top_20_strains = avg_thc_top_20_strains.loc[top_20_strains]
print('Average THC for top 20 medical strains:', round(avg_thc_top_20_strains.mean(), 2))
plt.figure(figsize=(26, 10))
bar_plot = sns.barplot(
x=avg_thc_top_20_strains.index,
y=avg_thc_top_20_strains.values,
palette='tab20'
)
plt.axhline(
y=overall_avg_thc,
color='red',
linestyle='--',
label=f'MI Medical Avg Total THC: {overall_avg_thc:.2f}%',
)
plt.title('Average Total THC for the Top 20 Medical Strains in MI in 2022', fontsize=36, pad=15)
plt.ylabel('Total THC (%)')
plt.xlabel('')
plt.xticks(rotation=45, ha='right')
plt.legend()
for p in bar_plot.patches:
bar_plot.annotate(format(p.get_height(), '.2f') + '%',
(p.get_x() + p.get_width() / 2., p.get_height()),
ha='center', va='center',
xytext=(0, 9),
textcoords='offset points')
plt.tight_layout()
save_figure('mi-avg-thc-by-top-20-strains-med.png')
plt.show()
|