File size: 9,101 Bytes
d1ae506 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
"""
Get Results Oregon
Copyright (c) 2024 Cannlytics
Authors:
Keegan Skeate <https://github.com/keeganskeate>
Created: 5/25/2024
Updated: 5/30/2024
License: CC-BY 4.0 <https://huggingface.co/datasets/cannlytics/cannabis_tests/blob/main/LICENSE>
Description:
Curate Oregon lab result data obtained through public records requests.
Data Sources:
- Public records request by Jamie Toth.
"""
# Standard imports:
from datetime import datetime
import os
# External imports:
from cannlytics.data import save_with_copyright
from cannlytics.utils import snake_case
from cannlytics.utils.constants import ANALYTES
import pandas as pd
# Define standard columns.
columns = {
'LabId': 'lab_id',
'SampleCreatedByLicenseId': 'producer_id',
'SampleId': 'sample_id',
'MonthOfTest': 'month',
'YearOfTest': 'year',
'ProductType': 'product_type',
'TestName': 'test_name',
'Result': 'result',
'PassFail': 'status',
}
# Define the data types for each column.
dtype_spec = {
'LabId': str,
'SampleCreatedByLicenseId': str,
'SampleId': str,
'MonthOfTest': str,
'YearOfTest': str,
'ProductType': str,
'TestName': str,
'Result': float,
'PassFail': str,
}
def read_and_standardize_csv(file_path, columns, dtype_spec):
"""Read a CSV file and standardize the column names."""
try:
df = pd.read_csv(file_path, dtype=dtype_spec, low_memory=False)
df.rename(columns=columns, inplace=True)
return df
except Exception as e:
print(f"Error reading {file_path}: {e}")
return pd.DataFrame()
def collect_data(datafile, columns, dtype_spec):
"""Collect data from the specified CSV file."""
df = read_and_standardize_csv(datafile, columns, dtype_spec)
df['month'] = df['year'].astype(str) + '-' + df['month'].astype(str)
df['date_tested'] = pd.to_datetime(df['month'], format='%Y-%m', errors='coerce')
return df
def pivot_data(data):
"""Pivot the data to get results for each sample."""
results = data.pivot_table(
index=['sample_id', 'producer_id', 'lab_id', 'product_type', 'date_tested'],
columns='test_name',
values='result',
aggfunc='first'
).reset_index()
results['month'] = results['date_tested'].dt.to_period('M')
results['year'] = results['date_tested'].dt.year
return results
def augment_calculations(
df,
cannabinoids=None,
terpenes=None,
delta_9_thc='delta_9_thc',
thca='thca',
cbd='cbd',
cbda='cbda',
):
"""Augment the DataFrame with additional calculated fields."""
# Calculate total cannabinoids.
if cannabinoids is not None:
df['total_cannabinoids'] = round(df[cannabinoids].sum(axis=1), 2)
# Calculate total terpenes.
if terpenes is not None:
df['total_terpenes'] = round(df[terpenes].sum(axis=1), 2)
# Calculate the total THC to total CBD ratio.
df['total_thc'] = round(df[delta_9_thc] + 0.877 * df[thca], 2)
df['total_cbd'] = round(df[cbd] + 0.877 * df[cbda], 2)
df['thc_cbd_ratio'] = round(df['total_thc'] / df['total_cbd'], 2)
# Calculate the total cannabinoids to total terpenes ratio.
if cannabinoids is not None and terpenes is not None:
df['cannabinoids_terpenes_ratio'] = round(df['total_cannabinoids'] / df['total_terpenes'], 2)
# Return the augmented data.
return df
def standardize_analyte_names(df, analyte_mapping):
"""Standardize analyte names."""
df.columns = [col.split('(')[0].strip() for col in df.columns]
df.columns = [analyte_mapping.get(snake_case(col), snake_case(col)) for col in df.columns]
return df
def combine_similar_columns(df, similar_columns):
"""Combine similar columns with different spellings or capitalization."""
for target_col, col_variants in similar_columns.items():
if target_col not in df.columns:
df[target_col] = pd.NA
for col in col_variants:
if col in df.columns:
df[target_col] = df[target_col].combine_first(df[col])
df.drop(columns=[col], inplace=True)
return df
def convert_mg_g_to_percentage(df):
"""Convert mg/g values to percentage for specified columns."""
mg_g_columns = [col for col in df.columns if '(mg/g)' in col]
for col in mg_g_columns:
df[col] = df[col] / 10
df.rename(columns={col: col.replace('(mg/g)', '').strip()}, inplace=True)
return df
def get_results_or(data_dir: str, output_dir: str) -> pd.DataFrame:
"""Get results for Oregon."""
# Read Oregon lab results.
data = collect_data(data_dir, columns, dtype_spec)
print('Number of Oregon tests:', len(data))
# Pivot the data to get results for each sample.
results = pivot_data(data)
print('Number of Oregon test samples:', len(results))
# Divide any value in a column with mg/g by 10 to get a percentage.
results = convert_mg_g_to_percentage(results)
print('Converted mg/g values to percentages.')
# Combine similar columns.
similar_columns = {
'cbd': ['CBD (%RSD)', 'CBD (RPD)', 'Total CBD (mg/g; cannot fail)'],
'delta_8_thc': ['Delta 8 THC', 'Delta-8 THC', 'Delta-8 THC (%RSD)', 'Delta-8 THC (RPD)', 'Delta-8 THC (mg/g)'],
'delta_9_thc': ['Delta 9 THC', 'Delta-9 THC', 'THC (%RSD)', 'THC (RPD)', 'Delta-9 THC (mg/g)'],
'moisture_content': ['Moisture Content (%)', 'R&D Test: Moisture Content', 'Subcontracted Test - Moisture Content'],
'mycotoxins': ['Mycotoxins (pass/fail)', 'R&D Test: Mycotoxins', 'Subcontracted Test - Mycotoxins'],
}
results = combine_similar_columns(results, similar_columns)
print('Combined similar columns.')
# Standardize the analyte names
results = standardize_analyte_names(results, ANALYTES)
print('Standardized analyte names.')
# Drop nuisance columns.
drop = [
'heavy_metals',
'pesticides',
'potency',
'randd_test',
'randd_test_heavy_metals',
'randd_test_microbiological_contaminants',
'randd_test_moisture_content',
'randd_test_mycotoxins',
'randd_test_pesticides',
'randd_test_potency',
'randd_test_solvents',
'randd_test_water_activity',
'solvents',
'tentatively_identified_compounds',
'microbiological_contaminants',
]
results = results.drop(columns=drop, errors='ignore')
# Ensure all numeric columns are numeric.
non_numeric = [
'sample_id',
'producer_id',
'lab_id',
'product_type',
'date_tested',
'month',
'year',
]
numeric_cols = results.columns.difference(non_numeric)
for col in numeric_cols:
results[col] = pd.to_numeric(results[col], errors='coerce')
print('Converted columns to numeric.')
# Augment additional calculated metrics.
cannabinoids = ['delta_8_thc', 'delta_9_thc', 'thca', 'cbd']
results['total_cbd'] = results['cbd']
results['total_cannabinoids'] = round(results[cannabinoids].sum(), 2)
results['thc_cbd_ratio'] = round(results['total_thc'] / results['total_cbd'], 2)
print('Augmented fields.')
# Sort the columns.
numeric_cols = results.columns.difference(non_numeric)
numeric_cols_sorted = sorted(numeric_cols)
results = results[non_numeric + numeric_cols_sorted]
# # Save the results with copyright and sources sheets.
# date = datetime.now().strftime('%Y-%m-%d')
# if not os.path.exists(output_dir): os.makedirs(output_dir)
# outfile = f'{output_dir}/or-results-{date}.xlsx'
# save_with_copyright(
# results,
# outfile,
# dataset_name='Oregon Cannabis Lab Results',
# author='Jamie Toth (data acquisition), Keegan Skeate (curation)',
# publisher='Cannlytics',
# sources=['Oregon Liquor and Cannabis Commission', 'Jamie Toth'],
# source_urls=['https://www.oregon.gov/olcc/marijuana/pages/default.aspx', 'https://jamietoth.com'],
# )
# print('Saved Oregon lab results:', outfile)
# Save the results.
outfile = os.path.join(output_dir, 'or-results-latest.xlsx')
outfile_csv = os.path.join(output_dir, 'or-results-latest.csv')
outfile_json = os.path.join(output_dir, 'or-results-latest.jsonl')
results.to_excel(outfile, index=False)
results.to_csv(outfile_csv, index=False)
# FIXME: This causes an OverflowError
# results.to_json(outfile_json, orient='records', lines=True)
print('Saved Excel:', outfile)
print('Saved CSV:', outfile_csv)
# print('Saved JSON:', outfile_json)
# Return the results.
return results
# === Test ===
# [✓] Tested: 2024-07-10 by Keegan Skeate <keegan@cannlytics>
if __name__ == '__main__':
# Define where the data lives.
data_dir = "D:\data\public-records\Oregon\Oregon\Oregon data 5-7-24 (rich)\Anonymized Test Data Feb 2021 to April 2024.csv"
output_dir = 'D://data/oregon/results/datasets'
# Curate results.
get_results_or(data_dir=data_dir, output_dir=output_dir)
|