File size: 9,101 Bytes
d1ae506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
"""
Get Results Oregon
Copyright (c) 2024 Cannlytics

Authors:
    Keegan Skeate <https://github.com/keeganskeate>
Created: 5/25/2024
Updated: 5/30/2024
License: CC-BY 4.0 <https://huggingface.co/datasets/cannlytics/cannabis_tests/blob/main/LICENSE>

Description:

    Curate Oregon lab result data obtained through public records requests.

Data Sources:
    
    - Public records request by Jamie Toth.

"""
# Standard imports:
from datetime import datetime
import os

# External imports:
from cannlytics.data import save_with_copyright
from cannlytics.utils import snake_case
from cannlytics.utils.constants import ANALYTES
import pandas as pd

# Define standard columns.
columns = {
    'LabId': 'lab_id',
    'SampleCreatedByLicenseId': 'producer_id',
    'SampleId': 'sample_id',
    'MonthOfTest': 'month',
    'YearOfTest': 'year',
    'ProductType': 'product_type',
    'TestName': 'test_name',
    'Result': 'result',
    'PassFail': 'status',
}

# Define the data types for each column.
dtype_spec = {
    'LabId': str,
    'SampleCreatedByLicenseId': str,
    'SampleId': str,
    'MonthOfTest': str,
    'YearOfTest': str,
    'ProductType': str,
    'TestName': str,
    'Result': float,
    'PassFail': str,
}

def read_and_standardize_csv(file_path, columns, dtype_spec):
    """Read a CSV file and standardize the column names."""
    try:
        df = pd.read_csv(file_path, dtype=dtype_spec, low_memory=False)
        df.rename(columns=columns, inplace=True)
        return df
    except Exception as e:
        print(f"Error reading {file_path}: {e}")
        return pd.DataFrame()

def collect_data(datafile, columns, dtype_spec):
    """Collect data from the specified CSV file."""
    df = read_and_standardize_csv(datafile, columns, dtype_spec)
    df['month'] = df['year'].astype(str) + '-' + df['month'].astype(str)
    df['date_tested'] = pd.to_datetime(df['month'], format='%Y-%m', errors='coerce')
    return df

def pivot_data(data):
    """Pivot the data to get results for each sample."""
    results = data.pivot_table(
        index=['sample_id', 'producer_id', 'lab_id', 'product_type', 'date_tested'],
        columns='test_name',
        values='result',
        aggfunc='first'
    ).reset_index()
    results['month'] = results['date_tested'].dt.to_period('M')
    results['year'] = results['date_tested'].dt.year
    return results

def augment_calculations(
        df,
        cannabinoids=None,
        terpenes=None,
        delta_9_thc='delta_9_thc',
        thca='thca',
        cbd='cbd',
        cbda='cbda',
    ):
    """Augment the DataFrame with additional calculated fields."""
    # Calculate total cannabinoids.
    if cannabinoids is not None:
        df['total_cannabinoids'] = round(df[cannabinoids].sum(axis=1), 2)

    # Calculate total terpenes.
    if terpenes is not None:
        df['total_terpenes'] = round(df[terpenes].sum(axis=1), 2)

    # Calculate the total THC to total CBD ratio.
    df['total_thc'] = round(df[delta_9_thc] + 0.877 * df[thca], 2)
    df['total_cbd'] = round(df[cbd] + 0.877 * df[cbda], 2)
    df['thc_cbd_ratio'] = round(df['total_thc'] / df['total_cbd'], 2)

    # Calculate the total cannabinoids to total terpenes ratio.
    if cannabinoids is not None and terpenes is not None:
        df['cannabinoids_terpenes_ratio'] = round(df['total_cannabinoids'] / df['total_terpenes'], 2)

    # Return the augmented data.
    return df

def standardize_analyte_names(df, analyte_mapping):
    """Standardize analyte names."""
    df.columns = [col.split('(')[0].strip() for col in df.columns]
    df.columns = [analyte_mapping.get(snake_case(col), snake_case(col)) for col in df.columns]
    return df

def combine_similar_columns(df, similar_columns):
    """Combine similar columns with different spellings or capitalization."""
    for target_col, col_variants in similar_columns.items():
        if target_col not in df.columns:
            df[target_col] = pd.NA
        for col in col_variants:
            if col in df.columns:
                df[target_col] = df[target_col].combine_first(df[col])
                df.drop(columns=[col], inplace=True)
    return df

def convert_mg_g_to_percentage(df):
    """Convert mg/g values to percentage for specified columns."""
    mg_g_columns = [col for col in df.columns if '(mg/g)' in col]
    for col in mg_g_columns:
        df[col] = df[col] / 10
        df.rename(columns={col: col.replace('(mg/g)', '').strip()}, inplace=True)
    return df

def get_results_or(data_dir: str, output_dir: str) -> pd.DataFrame:
    """Get results for Oregon."""

    # Read Oregon lab results.
    data = collect_data(data_dir, columns, dtype_spec)
    print('Number of Oregon tests:', len(data))

    # Pivot the data to get results for each sample.
    results = pivot_data(data)
    print('Number of Oregon test samples:', len(results))

    # Divide any value in a column with mg/g by 10 to get a percentage.
    results = convert_mg_g_to_percentage(results)
    print('Converted mg/g values to percentages.')

    # Combine similar columns.
    similar_columns = {
        'cbd': ['CBD (%RSD)', 'CBD (RPD)', 'Total CBD (mg/g; cannot fail)'],
        'delta_8_thc': ['Delta 8 THC', 'Delta-8 THC', 'Delta-8 THC (%RSD)', 'Delta-8 THC (RPD)', 'Delta-8 THC (mg/g)'],
        'delta_9_thc': ['Delta 9 THC', 'Delta-9 THC', 'THC (%RSD)', 'THC (RPD)', 'Delta-9 THC (mg/g)'],
        'moisture_content': ['Moisture Content (%)', 'R&D Test: Moisture Content', 'Subcontracted Test - Moisture Content'],
        'mycotoxins': ['Mycotoxins (pass/fail)', 'R&D Test: Mycotoxins', 'Subcontracted Test - Mycotoxins'],
    }
    results = combine_similar_columns(results, similar_columns)
    print('Combined similar columns.')

    # Standardize the analyte names
    results = standardize_analyte_names(results, ANALYTES)
    print('Standardized analyte names.')

    # Drop nuisance columns.
    drop = [
        'heavy_metals',
        'pesticides',
        'potency',
        'randd_test',
        'randd_test_heavy_metals',
        'randd_test_microbiological_contaminants',
        'randd_test_moisture_content',
        'randd_test_mycotoxins',
        'randd_test_pesticides',
        'randd_test_potency',
        'randd_test_solvents',
        'randd_test_water_activity',
        'solvents',
        'tentatively_identified_compounds',
        'microbiological_contaminants',
    ]
    results = results.drop(columns=drop, errors='ignore')

    # Ensure all numeric columns are numeric.
    non_numeric = [
        'sample_id',
        'producer_id',
        'lab_id',
        'product_type',
        'date_tested',
        'month',
        'year',
    ]
    numeric_cols = results.columns.difference(non_numeric)
    for col in numeric_cols:
        results[col] = pd.to_numeric(results[col], errors='coerce')
    print('Converted columns to numeric.')

    # Augment additional calculated metrics.
    cannabinoids = ['delta_8_thc', 'delta_9_thc', 'thca', 'cbd']
    results['total_cbd'] = results['cbd']
    results['total_cannabinoids'] = round(results[cannabinoids].sum(), 2)
    results['thc_cbd_ratio'] = round(results['total_thc'] / results['total_cbd'], 2)
    print('Augmented fields.')

    # Sort the columns.
    numeric_cols = results.columns.difference(non_numeric)
    numeric_cols_sorted = sorted(numeric_cols)
    results = results[non_numeric + numeric_cols_sorted]

    # # Save the results with copyright and sources sheets.
    # date = datetime.now().strftime('%Y-%m-%d')
    # if not os.path.exists(output_dir): os.makedirs(output_dir)
    # outfile = f'{output_dir}/or-results-{date}.xlsx'
    # save_with_copyright(
    #     results,
    #     outfile,
    #     dataset_name='Oregon Cannabis Lab Results',
    #     author='Jamie Toth (data acquisition), Keegan Skeate (curation)',
    #     publisher='Cannlytics',
    #     sources=['Oregon Liquor and Cannabis Commission', 'Jamie Toth'],
    #     source_urls=['https://www.oregon.gov/olcc/marijuana/pages/default.aspx', 'https://jamietoth.com'],
    # )
    # print('Saved Oregon lab results:', outfile)

    # Save the results.
    outfile = os.path.join(output_dir, 'or-results-latest.xlsx')
    outfile_csv = os.path.join(output_dir, 'or-results-latest.csv')
    outfile_json = os.path.join(output_dir, 'or-results-latest.jsonl')
    results.to_excel(outfile, index=False)
    results.to_csv(outfile_csv, index=False)
    # FIXME: This causes an OverflowError
    # results.to_json(outfile_json, orient='records', lines=True)
    print('Saved Excel:', outfile)
    print('Saved CSV:', outfile_csv)
    # print('Saved JSON:', outfile_json)

    # Return the results.
    return results

# === Test ===
# [✓] Tested: 2024-07-10 by Keegan Skeate <keegan@cannlytics>
if __name__ == '__main__':

    # Define where the data lives.
    data_dir = "D:\data\public-records\Oregon\Oregon\Oregon data 5-7-24 (rich)\Anonymized Test Data Feb 2021 to April 2024.csv"
    output_dir = 'D://data/oregon/results/datasets'

    # Curate results.
    get_results_or(data_dir=data_dir, output_dir=output_dir)