File size: 8,704 Bytes
d1ae506 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
"""
Get Results Rhode Island
Copyright (c) 2024 Cannlytics
Authors:
Keegan Skeate <https://github.com/keeganskeate>
Created: 5/25/2024
Updated: 5/30/2024
License: CC-BY 4.0 <https://huggingface.co/datasets/cannlytics/cannabis_tests/blob/main/LICENSE>
Description:
Curate Rhode Island lab result data obtained through public records requests.
Data Sources:
- Public records request
"""
# Standard imports:
from datetime import datetime
import os
# External imports:
from cannlytics.data import save_with_copyright
from cannlytics.utils import snake_case
from cannlytics.utils.constants import ANALYTES
import numpy as np
import pandas as pd
# Define columns.
columns = {
'Id': 'sample_id',
'TestingFacilityName': 'lab',
'ItemFromFacilityLicenseNumber': 'producer_license_number',
'SourcePackageLabels': 'label',
'TestPerformedDate': 'date_tested',
'TestTypeName': 'test_type',
'TestResultLevel': 'test_result',
'OverallPassed': 'status',
}
# Define the data types for each column.
dtype_spec = {
'Id': str,
'TestingFacilityName': str,
'ItemFromFacilityLicenseNumber': str,
'SourcePackageLabels': str,
'TestPerformedDate': str,
'TestTypeName': str,
'TestResultLevel': float,
'OverallPassed': bool,
}
def collect_data(data_dir, columns, dtype_spec):
"""Collect data from a directory of CSV and Excel files."""
results = []
for root, _, files in os.walk(data_dir):
for file in files:
if 'no data' in file.lower():
continue
print('Reading:', file)
file_path = os.path.join(root, file)
if file.endswith('.csv'):
df = read_and_standardize_csv(file_path, columns, dtype_spec)
elif file.endswith('.xlsx'):
df = read_and_standardize_excel(file_path, columns)
if not df.empty:
results.append(df)
return pd.concat(results, ignore_index=True)
def read_and_standardize_csv(file_path, columns, dtype_spec):
"""Read a CSV file and standardize the column names."""
try:
df = pd.read_csv(file_path, dtype=dtype_spec, usecols=columns.keys(), encoding='latin1')
df.rename(columns=columns, inplace=True)
return df
except Exception as e:
print(f"Error reading {file_path}: {e}")
return pd.DataFrame()
def read_and_standardize_excel(file_path, columns):
"""Read an Excel file and standardize the column names."""
try:
df = pd.read_excel(file_path, usecols=columns.keys())
df.rename(columns=columns, inplace=True)
return df
except Exception as e:
print(f"Error reading {file_path}: {e}")
return pd.DataFrame()
def extract_test_details(data):
"""Extract test_name, units, and product_type from test_type."""
data[['test_name', 'units', 'product_type']] = data['test_type'].str.extract(r'(.+?) \((.+?)\) (.+)')
return data
def pivot_data(data):
"""Pivot the data to get results for each sample."""
results = data.pivot_table(
index=['sample_id', 'producer_license_number', 'lab', 'label', 'date_tested', 'product_type'],
columns='test_name',
values='test_result',
aggfunc='first'
).reset_index()
results['date_tested'] = pd.to_datetime(results['date_tested'], errors='coerce')
results['month'] = results['date_tested'].dt.to_period('M')
results['year'] = results['date_tested'].dt.year
return results
def augment_calculations(
df,
cannabinoids=None,
terpenes=None,
delta_9_thc='delta_9_thc',
thca='thca',
cbd='cbd',
cbda='cbda',
):
"""Augment the DataFrame with additional calculated fields."""
# Calculate total cannabinoids.
if cannabinoids is not None:
df['total_cannabinoids'] = round(df[cannabinoids].sum(axis=1), 2)
# Calculate total terpenes.
if terpenes is not None:
df['total_terpenes'] = round(df[terpenes].sum(axis=1), 2)
# Calculate the total THC to total CBD ratio.
df['total_thc'] = round(df[delta_9_thc] + 0.877 * df[thca], 2)
df['total_cbd'] = round(df[cbd] + 0.877 * df[cbda], 2)
df['thc_cbd_ratio'] = round(df['total_thc'] / df['total_cbd'], 2)
# Calculate the total cannabinoids to total terpenes ratio.
if cannabinoids is not None and terpenes is not None:
df['cannabinoids_terpenes_ratio'] = round(df['total_cannabinoids'] / df['total_terpenes'], 2)
# Return the augmented data.
return df
def standardize_analyte_names(df, analyte_mapping):
"""Standardize analyte names."""
df.columns = [analyte_mapping.get(snake_case(col), snake_case(col)) for col in df.columns]
return df
def combine_similar_columns(df, similar_columns):
"""Combine similar columns with different spellings or capitalization."""
for target_col, col_variants in similar_columns.items():
if target_col not in df.columns:
df[target_col] = pd.NA
for col in col_variants:
if col in df.columns:
df[target_col] = df[target_col].combine_first(df[col])
df.drop(columns=[col], inplace=True)
return df
def get_results_ri(data_dir: str, output_dir: str) -> pd.DataFrame:
# Collect Rhode Island lab results
data = collect_data(data_dir, columns, dtype_spec)
print('Number of Rhode Island tests:', len(data))
# Extract test details
data = extract_test_details(data)
# Pivot the data to get results for each sample.
results = pivot_data(data)
print('Number of Rhode Island samples:', len(results))
# Combine similar names.
similar_columns = {
'total_yeast_and_mold': ['Total Yeast and MOld', 'Total Yeast and Mold'],
'1_2_dichloroethane': ['1,2 Dichlorethane', '1,2 Dichloroethane'],
'total_cbd': ['Total CBD'],
'total_thc': ['Total THC'],
'3_methylpentane': ['3 Methylpetane', '3 Methylpentane'],
'n_methylpyrrolidone': ['N Methylpyrrolidone', 'N methylpyrrlidone'],
'n_n_dimethylacetamide': ['N,N Dimethyacetamide', 'N,N Dimethylacetamide'],
}
results = combine_similar_columns(results, similar_columns)
# Standardize the analyte names
results = standardize_analyte_names(results, ANALYTES)
print('Standardized analyte names.')
# Augment additional calculated metrics.
cannabinoids = ['cbd', 'cbda', 'delta_9_thc', 'thca']
terpenes = [
'alpha_bisabolol', 'alpha_humulene', 'alpha_pinene',
'alpha_terpinene', 'beta_caryophyllene', 'beta_myrcene',
'beta_pinene', 'caryophyllene_oxide', 'd_limonene', 'linalool',
'nerolidol', 'other_terpenes'
]
results = augment_calculations(results)
print('Augmented fields.')
# Sort the columns.
non_numeric = [
'sample_id', 'producer_license_number', 'lab', 'label',
'date_tested', 'product_type', 'month', 'year'
]
numeric_cols = results.columns.difference(non_numeric)
numeric_cols_sorted = sorted(numeric_cols)
results = results[non_numeric + numeric_cols_sorted]
# # Save the results with copyright and sources sheets.
# date = datetime.now().strftime('%Y-%m-%d')
# if not os.path.exists(output_dir): os.makedirs(output_dir)
# outfile = f'{output_dir}/ri-results-{date}.xlsx'
# save_with_copyright(
# results,
# outfile,
# dataset_name='Rhode Island Cannabis Lab Results',
# author='Keegan Skeate',
# publisher='Cannlytics',
# sources=['Rhode Island Office Of Cannabis Regulation'],
# source_urls=['https://dbr.ri.gov/office-cannabis-regulation'],
# )
# print('Saved Rhode Island lab results:', outfile)
# Save the results.
outfile = os.path.join(output_dir, 'ri-results-latest.xlsx')
outfile_csv = os.path.join(output_dir, 'ri-results-latest.csv')
outfile_json = os.path.join(output_dir, 'ri-results-latest.jsonl')
results.to_excel(outfile, index=False)
results.to_csv(outfile_csv, index=False)
# FIXME: This causes an OverflowError
# results.to_json(outfile_json, orient='records', lines=True)
print('Saved Excel:', outfile)
print('Saved CSV:', outfile_csv)
# print('Saved JSON:', outfile_json)
# Return the results.
return results
# === Test ===
# [✓] Tested: 2024-07-10 by Keegan Skeate <keegan@cannlytics>
if __name__ == '__main__':
# Define where the data lives.
data_dir = 'D://data/public-records/Rhode Island/Rhode Island'
output_dir = 'D://data/rhode-island/results/datasets'
# Curate results.
get_results_ri(data_dir=data_dir, output_dir=output_dir)
|