File size: 10,107 Bytes
d1ae506 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
"""
Curate CCRS Lab Results
Copyright (c) 2023-2024 Cannlytics
Authors:
Keegan Skeate <https://github.com/keeganskeate>
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
Created: 1/1/2023
Updated: 6/1/2024
License: CC-BY 4.0 <https://huggingface.co/datasets/cannlytics/cannabis_tests/blob/main/LICENSE>
Original author: Cannabis Data
Original license: MIT <https://github.com/cannabisdata/cannabisdata/blob/main/LICENSE>
Data Sources:
- [Public records request](https://portal.lcb.wa.gov/s/public-record-request-form)
"""
# Standard imports:
from datetime import datetime
import gc
import os
from typing import Optional
# External imports:
from cannlytics.data.ccrs import (
CCRS,
CCRS_ANALYTES,
CCRS_ANALYSES,
CCRS_DATASETS,
anonymize,
get_datafiles,
find_detections,
format_test_value,
save_dataset,
unzip_datafiles,
)
from cannlytics.utils import convert_to_numeric, camel_to_snake
import pandas as pd
def read_lab_results(
data_dir: str,
value_key: Optional[str] = 'TestValue',
) -> pd.DataFrame:
"""Read CCRS lab results."""
lab_results = pd.DataFrame()
lab_result_files = get_datafiles(data_dir, 'LabResult_')
fields = CCRS_DATASETS['lab_results']['fields']
parse_dates = CCRS_DATASETS['lab_results']['date_fields']
usecols = list(fields.keys()) + parse_dates
dtype = {k: v for k, v in fields.items() if v != 'datetime64'}
dtype[value_key] = 'string' # Hot-fix for `ValueError`.
for datafile in lab_result_files:
data = pd.read_csv(
datafile,
sep='\t',
encoding='utf-16',
engine='python',
parse_dates=parse_dates,
dtype=dtype,
usecols=usecols,
on_bad_lines='skip',
# DEV: Uncomment to make development quicker.
# nrows=1000,
)
lab_results = pd.concat([lab_results, data])
if 'TestValue' in lab_results.columns:
lab_results[value_key] = lab_results[value_key].apply(convert_to_numeric)
# lab_results = lab_results.assign(TestValue=values)
return lab_results
def format_result(
item_results,
manager: Optional[CCRS] = None,
drop: Optional[list] = []
) -> dict:
"""Format results for a lab sample."""
# Skip items with no lab results.
if item_results.empty:
return None
# Record item metadata and important results.
item = item_results.iloc[0].to_dict()
[item.pop(key) for key in drop]
entry = {
**item,
'delta_9_thc': format_test_value(item_results, 'delta_9_thc'),
'thca': format_test_value(item_results, 'thca'),
'total_thc': format_test_value(item_results, 'total_thc'),
'cbd': format_test_value(item_results, 'cbd'),
'cbda': format_test_value(item_results, 'cbda'),
'total_cbd': format_test_value(item_results, 'total_cbd'),
'moisture_content': format_test_value(item_results, 'moisture_content'),
'water_activity': format_test_value(item_results, 'water_activity'),
}
# Determine "Pass" or "Fail" status.
statuses = list(item_results['LabTestStatus'].unique())
if 'Fail' in statuses:
entry['status'] = 'Fail'
else:
entry['status'] = 'Pass'
# Augment the complete `results`.
entry_results = []
for _, item_result in item_results.iterrows():
test_name = item_result['TestName']
analyte = CCRS_ANALYTES[test_name]
try:
analysis = CCRS_ANALYSES[analyte['type']]
except KeyError:
if manager is not None:
manager.create_log('Unidentified analysis: ' + str(analyte['type']))
else:
print('Unidentified analysis:', analyte['type'])
analysis = analyte['type']
entry_results.append({
'analysis': analysis,
'key': analyte['key'],
'name': item_result['TestName'],
'units': analyte['units'],
'value': item_result['TestValue'],
})
entry['results'] = entry_results
# Determine detected contaminants.
entry['pesticides'] = find_detections(entry_results, 'pesticides')
entry['residual_solvents'] = find_detections(entry_results, 'residual_solvents')
entry['heavy_metals'] = find_detections(entry_results, 'heavy_metals')
# Return the entry.
return entry
def augment_lab_results(
manager: CCRS,
results: pd.DataFrame,
item_key: Optional[str] = 'InventoryId',
analysis_name: Optional[str] = 'TestName',
analysis_key: Optional[str] = 'TestValue',
verbose: Optional[str] = True,
) -> pd.DataFrame:
"""Format CCRS lab results to merge into another dataset."""
# Handle `TestName`'s that are not in known analytes.
results[analysis_name] = results[analysis_name].apply(
lambda x: x.replace('Pesticides - ', '').replace(' (ppm) (ppm)', '')
)
# Map `TestName` to `type` and `key`.
# Future work: Handle unidentified analyses. Ask ChatGPT?
test_names = list(results[analysis_name].unique())
known_analytes = list(CCRS_ANALYTES.keys())
missing = list(set(test_names) - set(known_analytes))
try:
assert len(missing) == 0
del test_names, known_analytes, missing
gc.collect()
except:
manager.create_log('Unidentified analytes: ' + ', '.join(missing))
raise ValueError(f'Unidentified analytes. Add missing analytes to `CCRS_ANALYTES`: {", ".join(missing)}')
# Augment lab results with standard analyses and analyte keys.
analyte_data = results[analysis_name].map(CCRS_ANALYTES).values.tolist()
results = results.join(pd.DataFrame(analyte_data))
results['type'] = results['type'].map(CCRS_ANALYSES)
results[item_key] = results[item_key].astype(str)
# Setup for iteration.
item_ids = list(results[item_key].unique())
drop = [analysis_name, analysis_key, 'LabTestStatus', 'key', 'type', 'units']
N = len(item_ids)
if verbose:
manager.create_log(f'Curating {N} items...')
manager.create_log('Estimated runtime: ' + str(round(N * 0.00011, 2)) + ' minutes')
# Return the curated lab results.
group = results.groupby(item_key).apply(format_result, drop=drop, manager=manager).dropna()
return pd.DataFrame(group.tolist())
def curate_ccrs_lab_results(
manager: CCRS,
data_dir: str,
stats_dir: str
) -> pd.DataFrame:
"""Curate CCRS lab results."""
# Start curating lab results.
manager.create_log('Curating lab results...')
start = datetime.now()
# Unzip all CCRS datafiles.
unzip_datafiles(data_dir)
# Read all lab results.
lab_results = read_lab_results(data_dir)
# Curate all lab results.
lab_results = augment_lab_results(manager, lab_results)
# Standardize the lab results.
# TODO: Add producer
columns = {
'ExternalIdentifier': 'lab_id',
'inventory_type': 'product_type',
'test_date': 'date_tested',
}
lab_results.rename(columns=columns, inplace=True)
# Anonymize the data.
# FIXME: This does not appear to be anonymizing `created_by`.
lab_results = anonymize(lab_results)
# Standardize the column names.
lab_results.rename(columns=lambda x: camel_to_snake(x), inplace=True)
# Save the curated lab results.
# TODO: Save a copy as `wa-lab-results-latest.csv` in the `data` directory.
timestamp = lab_results['created_date'].max().strftime('%Y-%m-%d')
lab_results_dir = os.path.join(stats_dir, 'lab_results')
outfile = save_dataset(lab_results, lab_results_dir, f'wa-lab-results-{timestamp}')
manager.create_log('Saved lab results: ' + str(outfile))
# Finish curating lab results.
end = datetime.now()
manager.create_log('✓ Finished curating lab results in ' + str(end - start))
return lab_results
# === Test ===
# [✓] Tested: 2024-07-15 by Keegan Skeate <keegan@cannlytics>
if __name__ == '__main__':
# Debug variables.
item_key = 'InventoryId'
analysis_name = 'TestName'
analysis_key = 'TestValue'
value_key = 'TestValue'
verbose = True
drop = []
# Initialize.
base = 'D://data/washington/'
stats_dir = 'D://data/washington/stats'
manager = CCRS()
# Curate lab results for each release.
releases = [
# 'CCRS PRR (8-4-23)', # Contains all prior releases.
# 'CCRS PRR (9-5-23)',
# 'CCRS PRR (10-2-23)',
# 'CCRS PRR (11-2-23)',
# 'CCRS PRR (12-2-23)',
# 'CCRS PRR (1-2-24)',
# 'CCRS PRR (2-2-24)',
# 'CCRS PRR (3-27-24)',
# 'CCRS PRR (4-2-24)',
# 'CCRS PRR (5-2-24)',
# 'CCRS PRR (6-2-24)',
'CCRS PRR (7-2-24)',
]
for release in releases:
data_dir = os.path.join(base, release, release)
try:
lab_results = curate_ccrs_lab_results(manager, data_dir, stats_dir)
manager.create_log('Curated %i WA lab results.' % len(lab_results))
except:
manager.create_log('Failed to curate WA lab results:' + data_dir)
# Aggregate lab results.
all_results = []
datafiles = os.listdir(os.path.join(stats_dir, 'lab_results'))
datafiles = [os.path.join(stats_dir, 'lab_results', x) for x in datafiles if \
not x.startswith('~') and \
not 'aggregate' in x and \
not 'latest' in x and \
not 'inventory' in x]
for datafile in datafiles:
data = pd.read_excel(datafile)
all_results.append(data)
results = pd.concat(all_results)
results.drop_duplicates(subset=['lab_result_id', 'updated_date'], inplace=True)
results.sort_values(by=['created_date'], inplace=True)
print('Total number of results:', len(results))
outfile = os.path.join(stats_dir, 'lab_results', 'wa-lab-results-aggregate.xlsx')
results.to_excel(outfile, index=False)
manager.create_log('Saved aggregate lab results to: ' + outfile)
|