|
""" |
|
Get Results Nevada |
|
Copyright (c) 2024 Cannlytics |
|
|
|
Authors: |
|
Keegan Skeate <https://github.com/keeganskeate> |
|
Created: 5/25/2024 |
|
Updated: 5/30/2024 |
|
License: CC-BY 4.0 <https://huggingface.co/datasets/cannlytics/cannabis_tests/blob/main/LICENSE> |
|
|
|
Description: |
|
|
|
Curate Nevada lab result data obtained through public records requests. |
|
|
|
Data Sources: |
|
|
|
- Public records request |
|
|
|
""" |
|
|
|
from glob import glob |
|
import os |
|
|
|
|
|
from cannlytics.utils import snake_case |
|
from cannlytics.utils.constants import ANALYTES |
|
import pandas as pd |
|
|
|
|
|
columns = { |
|
'Id': 'sample_id', |
|
'PackagedByFacilityName': 'producer', |
|
'PackagedByFacilityLicenseNumber': 'producer_license_number', |
|
'LabFacilityName': 'lab', |
|
'LabFacilityLicenseNumber': 'lab_license_number', |
|
'Label': 'label', |
|
'PackageType': 'package_type', |
|
'Quantity': 'quantity', |
|
'UnitOfMeasureId': 'units_id', |
|
'UnitOfMeasureName': 'unit_of_measure_name', |
|
'UnitOfMeasureAbbreviation': 'unit_of_measure_abbreviation', |
|
'ProductName': 'product_name', |
|
'ProductCategoryName': 'product_type', |
|
'InitialLabTestingState': 'initial_lab_testing_state', |
|
'LabTestingState': 'lab_testing_state', |
|
'LabTestingStateName': 'lab_testing_state_name', |
|
'LabTestingStateDate': 'date_tested', |
|
'IsTestingSample': 'is_testing_sample', |
|
'IsProcessValidationTestingSample': 'is_process_validation_testing_sample', |
|
'ProductRequiresRemediation': 'product_requires_remediation', |
|
'ContainsRemediatedProduct': 'contains_remediated_product', |
|
'RemediationDate': 'remediation_date', |
|
'RemediationRecordedDateTime': 'remediation_recorded_datetime', |
|
'PackagedDate': 'date_packaged', |
|
'LabTestDetailId': 'lab_test_detail_id', |
|
'TestPerformedDate': 'test_performed_date', |
|
'LabTestResultDocumentFileId': 'lab_test_result_document_file_id', |
|
'OverallPassed': 'overall_passed', |
|
'TestTypeName': 'test_type', |
|
'TestPassed': 'test_passed', |
|
'TestResultLevel': 'test_result', |
|
'TestComment': 'test_comment', |
|
'ArchivedDate': 'archived_date', |
|
'FinishedDate': 'date_finished', |
|
'IsOnHold': 'is_on_hold' |
|
} |
|
|
|
|
|
dtype_spec = { |
|
'Id': str, |
|
'PackagedByFacilityName': str, |
|
'PackagedByFacilityLicenseNumber': str, |
|
'LabFacilityName': str, |
|
'LabFacilityLicenseNumber': str, |
|
'Label': str, |
|
'PackageType': str, |
|
'Quantity': float, |
|
'UnitOfMeasureId': str, |
|
'UnitOfMeasureName': str, |
|
'UnitOfMeasureAbbreviation': str, |
|
'ProductName': str, |
|
'ProductCategoryName': str, |
|
'InitialLabTestingState': str, |
|
'LabTestingState': str, |
|
'LabTestingStateName': str, |
|
'LabTestingStateDate': str, |
|
'IsTestingSample': bool, |
|
'IsProcessValidationTestingSample': bool, |
|
'ProductRequiresRemediation': bool, |
|
'ContainsRemediatedProduct': bool, |
|
'RemediationDate': str, |
|
'RemediationRecordedDateTime': str, |
|
'PackagedDate': str, |
|
'LabTestDetailId': str, |
|
'TestPerformedDate': str, |
|
'LabTestResultDocumentFileId': str, |
|
'OverallPassed': bool, |
|
'TestTypeName': str, |
|
'TestPassed': bool, |
|
'TestResultLevel': str, |
|
'TestComment': str, |
|
'ArchivedDate': str, |
|
'FinishedDate': str, |
|
'IsOnHold': bool |
|
} |
|
|
|
def read_and_standardize_csv(file_path, columns, dtype_spec): |
|
"""Read a CSV file and standardize the column names.""" |
|
try: |
|
df = pd.read_csv(file_path, dtype=dtype_spec, low_memory=False) |
|
df.rename(columns=columns, inplace=True) |
|
return df |
|
except Exception as e: |
|
print(f"Error reading {file_path}: {e}") |
|
return pd.DataFrame() |
|
|
|
def collect_data(data_dir, columns, dtype_spec): |
|
"""Collect data from a directory of CSV files.""" |
|
results = [] |
|
for root, _, files in os.walk(data_dir): |
|
for file in files: |
|
if 'no data' in file.lower(): |
|
continue |
|
if file.endswith('.csv'): |
|
print('Reading:', file) |
|
file_path = os.path.join(root, file) |
|
df = read_and_standardize_csv(file_path, columns, dtype_spec) |
|
if not df.empty: |
|
results.append(df) |
|
return pd.concat(results, ignore_index=True) |
|
|
|
def standardize_analyte_names(df, analyte_mapping): |
|
"""Standardize analyte names.""" |
|
df.columns = [analyte_mapping.get(snake_case(col), snake_case(col)) for col in df.columns] |
|
return df |
|
|
|
def augment_calculations( |
|
df, |
|
cannabinoids=None, |
|
terpenes=None, |
|
delta_9_thc='delta_9_thc', |
|
thca='thca', |
|
cbd='cbd', |
|
cbda='cbda', |
|
): |
|
"""Augment the DataFrame with additional calculated fields.""" |
|
|
|
if cannabinoids is not None: |
|
df['total_cannabinoids'] = round(df[cannabinoids].sum(axis=1), 2) |
|
|
|
|
|
if terpenes is not None: |
|
df['total_terpenes'] = round(df[terpenes].sum(axis=1), 2) |
|
|
|
|
|
df['total_thc'] = round(df[delta_9_thc] + 0.877 * df[thca], 2) |
|
df['total_cbd'] = round(df[cbd] + 0.877 * df[cbda], 2) |
|
df['thc_cbd_ratio'] = round(df['total_thc'] / df['total_cbd'], 2) |
|
|
|
|
|
if cannabinoids is not None and terpenes is not None: |
|
df['cannabinoids_terpenes_ratio'] = round(df['total_cannabinoids'] / df['total_terpenes'], 2) |
|
|
|
|
|
return df |
|
|
|
def combine_redundant_columns(df, product_types=None, verbose=False): |
|
"""Combine redundant columns and extract units and product types.""" |
|
combined_results = {} |
|
for col in df.columns: |
|
matched = False |
|
if product_types is not None: |
|
for product_type in product_types: |
|
if product_type in col and '(' not in col: |
|
base_name = col.split(product_type)[0].strip() |
|
if base_name not in combined_results: |
|
combined_results[base_name] = df[col] |
|
if verbose: |
|
print('New column:', base_name) |
|
else: |
|
combined_results[base_name] = combined_results[base_name].fillna(df[col]) |
|
if verbose: |
|
print('Combined column:', base_name) |
|
matched = True |
|
if matched: |
|
continue |
|
if '(' in col and ')' in col: |
|
base_name = col.split('(')[0].strip() |
|
if base_name not in combined_results: |
|
combined_results[base_name] = df[col] |
|
if verbose: |
|
print('New column:', base_name) |
|
else: |
|
combined_results[base_name] = combined_results[base_name].fillna(df[col]) |
|
if verbose: |
|
print('Combined column:', base_name) |
|
elif col not in combined_results: |
|
if verbose: |
|
print('New column:', col) |
|
combined_results[col] = df[col] |
|
return pd.DataFrame(combined_results) |
|
|
|
def combine_similar_columns(df, similar_columns): |
|
"""Combine similar columns with different spellings or capitalization.""" |
|
for target_col, col_variants in similar_columns.items(): |
|
if target_col not in df.columns: |
|
df[target_col] = pd.NA |
|
for col in col_variants: |
|
if col in df.columns: |
|
df[target_col] = df[target_col].combine_first(df[col]) |
|
df.drop(columns=[col], inplace=True) |
|
return df |
|
|
|
def augment_metadata(results, data, sample_columns, boolean_columns,): |
|
"""Reattach missing columns from `data` to `results`.""" |
|
for col in sample_columns: |
|
if col not in results.columns: |
|
results[col] = results['label'].map(data.drop_duplicates('label').set_index('label')[col]) |
|
for col in boolean_columns: |
|
if col not in results.columns: |
|
results[col] = results['label'].map(data.groupby('label')[col].transform(lambda x: any(x) if x.name in ['overall_passed', 'test_passed'] else all(x))) |
|
return results |
|
|
|
def get_results_nv( |
|
data_dir: str, |
|
output_dir: str, |
|
licenses_dir: str, |
|
labs_dir: str, |
|
) -> pd.DataFrame: |
|
"""Get results for Oregon.""" |
|
|
|
|
|
|
|
|
|
data = collect_data(data_dir, columns, dtype_spec) |
|
|
|
|
|
|
|
|
|
results = data.pivot_table( |
|
index=['label', 'producer', 'lab', 'product_name', 'product_type', 'date_tested', 'date_packaged', 'date_finished'], |
|
columns='test_type', |
|
values='test_result', |
|
aggfunc='first' |
|
).reset_index() |
|
print('Number of Nevada test samples:', len(results)) |
|
|
|
|
|
product_types = [ |
|
'Infused Edible', |
|
'Infused Non-Edible', |
|
'Non-Solvent Concentrate', |
|
'R&D Testing', |
|
'Raw Plant Material', |
|
'Solvent Based Concentrate', |
|
'Sub-Contract', |
|
'Whole Wet Plant', |
|
] |
|
results = combine_redundant_columns(results, product_types=product_types) |
|
print('Combined redundant columns.') |
|
|
|
|
|
similar_columns = { |
|
'beta_pinene': ['Beta Pinene', 'Beta-Pinene'], |
|
'caryophyllene_oxide': ['Carophyllene Oxide', 'Caryophyllene Oxide'], |
|
'delta_8_thc': ['Delta 8 THC', 'Delta-8 THC'], |
|
'delta_9_thc': ['Delta 9 THC', 'Delta-9 THC'], |
|
'thca': ['THCA', 'THCa'], |
|
'total_yeast_and_mold': ['Total Yeast and Mold', 'Yeast and Mold'] |
|
} |
|
results = combine_similar_columns(results, similar_columns) |
|
print('Combined similar columns.') |
|
|
|
|
|
results = standardize_analyte_names(results, ANALYTES) |
|
print('Standardized analyte names.') |
|
|
|
|
|
drop = [''] |
|
results = results.drop(columns=drop, errors='ignore') |
|
|
|
|
|
non_numeric = [ |
|
'label', 'producer', 'lab', 'product_name', |
|
'product_type', 'date_tested', 'date_packaged', 'date_finished' |
|
] |
|
numeric_cols = results.columns.difference(non_numeric) |
|
for col in numeric_cols: |
|
results[col] = pd.to_numeric(results[col], errors='coerce') |
|
print('Converted columns to numeric.') |
|
|
|
|
|
sample_columns = [ |
|
'sample_id', 'package_type', 'quantity', 'units_id', 'unit_of_measure_name', |
|
'unit_of_measure_abbreviation', 'lab_testing_state', 'lab_testing_state_name', |
|
'remediation_date', 'remediation_recorded_datetime', 'lab_test_detail_id', |
|
'test_performed_date', 'lab_test_result_document_file_id', 'archived_date', |
|
'lab_license_number', 'producer_license_number' |
|
] |
|
boolean_columns = [ |
|
'contains_remediated_product', 'product_requires_remediation', 'is_on_hold', |
|
'is_process_validation_testing_sample', 'is_testing_sample', 'overall_passed', 'test_passed' |
|
] |
|
results = augment_metadata(results, data, sample_columns, boolean_columns) |
|
print('Augmented metadata.') |
|
|
|
|
|
cannabinoids = ['cbd', 'cbda', 'cbn', 'delta_8_thc', 'delta_9_thc', 'thca'] |
|
terpenes = [ |
|
'alpha_bisabolol', 'alpha_humulene', 'alpha_pinene', 'alpha_terpinene', |
|
'terpinolene', 'beta_pinene', 'beta_caryophyllene', 'beta_myrcene', |
|
'd_limonene', 'linalool', 'caryophyllene_oxide', 'other_terpenes' |
|
] |
|
results = augment_calculations(results, cannabinoids, terpenes) |
|
print('Augmented fields.') |
|
|
|
|
|
date_columns = [ |
|
'date_tested', 'test_performed_date', 'date_packaged', |
|
'date_finished', 'remediation_date', 'archived_date' |
|
] |
|
for col in date_columns: |
|
if col in results.columns: |
|
results[col] = pd.to_datetime(results[col], errors='coerce').dt.tz_localize(None) |
|
|
|
|
|
|
|
|
|
lab_columns = { |
|
'CEID': 'lab_id', |
|
'premise_county': 'lab_county', |
|
'premise_state': 'lab_state', |
|
} |
|
lab_licenses = pd.read_csv(labs_dir, low_memory=False) |
|
lab_licenses['license_number'] = lab_licenses['license_number'].astype(str) |
|
lab_licenses.set_index('license_number', inplace=True) |
|
lab_licenses.rename(columns=lab_columns, inplace=True) |
|
|
|
|
|
license_columns = { |
|
'CEID': 'producer_id', |
|
'license_type': 'producer_license_type', |
|
'premise_county': 'producer_county', |
|
'premise_state': 'producer_state', |
|
'business_legal_name': 'producer_legal_name', |
|
} |
|
license_files = sorted( |
|
glob(os.path.join(licenses_dir, '*licenses*.csv')), |
|
key=os.path.getmtime, |
|
reverse=True |
|
) |
|
all_licenses = pd.concat( |
|
(pd.read_csv(file, low_memory=False) for file in license_files), |
|
ignore_index=True |
|
) |
|
all_licenses['license_number'] = all_licenses['license_number'].astype(str) |
|
all_licenses = all_licenses.drop_duplicates(subset='license_number', keep='first') |
|
all_licenses.set_index('license_number', inplace=True) |
|
all_licenses.rename(columns=license_columns, inplace=True) |
|
|
|
|
|
labs = list(results['lab_license_number'].unique()) |
|
for lab in labs: |
|
if lab in lab_licenses.index: |
|
license_data = lab_licenses.loc[lab] |
|
for key in lab_columns.values(): |
|
if key in lab_licenses.columns: |
|
|
|
results[key] = results['lab_license_number'].map(lab_licenses[key]) |
|
|
|
|
|
|
|
producers = list(results['producer_license_number'].unique()) |
|
for producer in producers: |
|
if producer in all_licenses.index: |
|
license_data = all_licenses.loc[producer] |
|
for key in license_columns.values(): |
|
if key in all_licenses.columns: |
|
|
|
results[key] = results['producer_license_number'].map(all_licenses[key]) |
|
|
|
|
|
|
|
|
|
|
|
non_numeric_cols = non_numeric + sample_columns + boolean_columns + date_columns |
|
non_numeric_cols += list(lab_columns.values()) + list(license_columns.values()) |
|
numeric_cols = [col for col in results.columns if col not in non_numeric_cols] |
|
numeric_cols_sorted = sorted(numeric_cols) |
|
results = results[non_numeric_cols + numeric_cols_sorted] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
outfile = os.path.join(output_dir, 'nv-results-latest.xlsx') |
|
outfile_csv = os.path.join(output_dir, 'nv-results-latest.csv') |
|
outfile_json = os.path.join(output_dir, 'nv-results-latest.jsonl') |
|
results.to_excel(outfile, index=False) |
|
results.to_csv(outfile_csv, index=False) |
|
|
|
|
|
|
|
print('Saved Excel:', outfile) |
|
print('Saved CSV:', outfile_csv) |
|
|
|
|
|
|
|
return results |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
data_dir = 'D://data/public-records/Nevada-001' |
|
licenses_dir = r"C:\Users\keega\Documents\cannlytics\cannlytics\datasets\cannabis_licenses\data\nv" |
|
labs_dir = r"C:\Users\keega\Documents\cannlytics\cannlytics\datasets\cannabis_licenses\data\nv\labs-nv-2023-12-17T11-41-34.csv" |
|
output_dir = 'D://data/nevada/results/datasets' |
|
|
|
|
|
get_results_nv( |
|
data_dir=data_dir, |
|
output_dir=output_dir, |
|
licenses_dir=licenses_dir, |
|
labs_dir=labs_dir, |
|
) |
|
|