|
|
|
|
|
|
|
import json |
|
import os |
|
import subprocess |
|
from typing import List |
|
import warnings |
|
|
|
|
|
import pandas as pd |
|
from cannlytics.compounds import pesticides |
|
from cannlytics.data.coas.coas import standardize_results |
|
from cannlytics.utils.utils import snake_case, kebab_case, camel_to_snake |
|
import matplotlib.pyplot as plt |
|
from matplotlib.dates import DateFormatter |
|
from cannlytics.data.ccrs import CCRS_DATASETS, get_datafiles |
|
from cannlytics.data.cache import Bogart |
|
|
|
|
|
def read_ccrs_data( |
|
datafile, |
|
dtype: dict, |
|
usecols: List[str], |
|
parse_dates: List[str], |
|
on_bad_lines: str = 'skip', |
|
sep: str = '\t', |
|
encoding: str = 'utf-16', |
|
engine: str = 'python', |
|
rename = None, |
|
) -> pd.DataFrame: |
|
"""Load supplement data from a specified data file.""" |
|
df = pd.read_csv( |
|
datafile, |
|
sep=sep, |
|
encoding=encoding, |
|
engine=engine, |
|
parse_dates=parse_dates, |
|
dtype=dtype, |
|
usecols=usecols, |
|
on_bad_lines=on_bad_lines |
|
) |
|
if rename: |
|
df = df.rename(columns=rename) |
|
return df |
|
|
|
|
|
def convert_timestamps(obj): |
|
""" |
|
Recursively convert Timestamp and NaTType objects in a dictionary to strings. |
|
""" |
|
if isinstance(obj, dict): |
|
for key, value in obj.items(): |
|
if isinstance(value, pd.Timestamp): |
|
obj[key] = value.isoformat() |
|
elif isinstance(value, pd._libs.tslibs.nattype.NaTType): |
|
obj[key] = None |
|
elif isinstance(value, dict): |
|
convert_timestamps(value) |
|
elif isinstance(value, list): |
|
obj[key] = [convert_timestamps(item) if isinstance(item, (pd.Timestamp, pd._libs.tslibs.nattype.NaTType)) else item for item in value] |
|
return obj |
|
|
|
|
|
|
|
data_dir = 'D://data/washington/stats/lab_results' |
|
datafile = os.path.join(data_dir, 'wa-lab-results-aggregate.xlsx') |
|
results = pd.read_excel(datafile) |
|
|
|
|
|
inventory_cache = Bogart('D://data/.cache/results-wa-inventory.jsonl') |
|
products_cache = Bogart('D://data/.cache/results-wa-products.jsonl') |
|
strains_cache = Bogart('D://data/.cache/results-wa-strains.jsonl') |
|
|
|
|
|
results['inventory_id'] = results['inventory_id'].astype(str) |
|
inventory_ids = list(results['inventory_id'].unique()) |
|
print('Number of inventory items:', len(inventory_ids)) |
|
matches = {} |
|
|
|
|
|
base = 'D://data/washington/' |
|
releases = [ |
|
|
|
'CCRS PRR (9-5-23)', |
|
'CCRS PRR (10-2-23)', |
|
'CCRS PRR (11-2-23)', |
|
'CCRS PRR (12-2-23)', |
|
'CCRS PRR (1-2-24)', |
|
'CCRS PRR (2-2-24)', |
|
'CCRS PRR (3-27-24)', |
|
'CCRS PRR (4-2-24)', |
|
'CCRS PRR (5-2-24)', |
|
'CCRS PRR (6-2-24)', |
|
'CCRS PRR (7-2-24)', |
|
] |
|
for release in releases: |
|
data_dir = os.path.join(base, release, release) |
|
print('Augmenting data:', data_dir) |
|
|
|
|
|
inventory_files = get_datafiles(data_dir, 'Inventory_') |
|
inventory_fields = CCRS_DATASETS['inventory']['fields'] |
|
inventory_date_fields = CCRS_DATASETS['inventory']['date_fields'] |
|
item_cols = list(inventory_fields.keys()) + inventory_date_fields |
|
item_types = {k: inventory_fields[k] for k in inventory_fields if k not in inventory_date_fields} |
|
item_types['IsDeleted'] = 'string' |
|
inventory_renames = { |
|
'CreatedBy': 'inventory_created_by', |
|
'UpdatedBy': 'inventory_updated_by', |
|
'CreatedDate': 'inventory_created_at', |
|
'updatedDate': 'inventory_updated_at', |
|
'UpdatedDate': 'inventory_updated_at', |
|
'Name': 'inventory_name', |
|
} |
|
for i, datafile in enumerate(inventory_files): |
|
if len(matches) == len(results): |
|
print('Matched all inventory items') |
|
break |
|
print('Augmenting inventory:', datafile) |
|
items = read_ccrs_data( |
|
datafile, |
|
usecols=item_cols, |
|
dtype=item_types, |
|
parse_dates=inventory_date_fields, |
|
rename=inventory_renames, |
|
) |
|
for inventory_id in inventory_ids: |
|
if inventory_cache.get(inventory_id): |
|
matches[inventory_id] = inventory_cache.get(inventory_id) |
|
continue |
|
|
|
|
|
item = items.loc[items['InventoryId'] == inventory_id] |
|
if len(item) > 0: |
|
item = item.iloc[0] |
|
item_dict = item.to_dict() |
|
item_dict = convert_timestamps(item_dict) |
|
matches[inventory_id] = item_dict |
|
print('Matched inventory:', inventory_id) |
|
inventory_cache.set(inventory_id, item_dict) |
|
print('Matched inventory items:', len(matches)) |
|
|
|
|
|
product_matches = {} |
|
product_files = get_datafiles(data_dir, 'Product_') |
|
product_fields = CCRS_DATASETS['products']['fields'] |
|
product_date_fields = CCRS_DATASETS['products']['date_fields'] |
|
product_cols = list(product_fields.keys()) + product_date_fields |
|
product_types = {k: product_fields[k] for k in product_fields if k not in product_date_fields} |
|
product_types['IsDeleted'] = 'string' |
|
product_types['UnitWeightGrams'] = 'string' |
|
product_types['CreatedDate'] = 'string' |
|
product_types['UpdatedDate'] = 'string' |
|
product_renames = { |
|
'CreatedDate': 'product_created_at', |
|
'updatedDate': 'product_updated_at', |
|
'UpdatedDate': 'product_updated_at', |
|
'ExternalIdentifier': 'product_external_id', |
|
'LicenseeId': 'producer_licensee_id', |
|
'Name': 'product_name', |
|
'Description': 'product_description', |
|
} |
|
for i, datafile in enumerate(product_files): |
|
if len(product_matches) == len(results): |
|
print('Matched all products') |
|
break |
|
print('Augmenting products:', datafile) |
|
products = read_ccrs_data( |
|
datafile, |
|
usecols=product_cols, |
|
dtype=product_types, |
|
parse_dates=product_date_fields, |
|
rename=product_renames, |
|
) |
|
for inventory_id, values in matches.items(): |
|
if products_cache.get(inventory_id): |
|
obs = matches[inventory_id] |
|
product = products_cache.get(inventory_id) |
|
matches[inventory_id] = {**obs, **product} |
|
product_matches[inventory_id] = product |
|
continue |
|
|
|
|
|
product = products.loc[products['ProductId'] == values['ProductId']] |
|
if len(product) > 0: |
|
product = product.iloc[0] |
|
obs = matches[inventory_id] |
|
product_dict = product.to_dict() |
|
product_dict = convert_timestamps(product_dict) |
|
matches[inventory_id] = {**obs, **product_dict} |
|
print('Matched product:', inventory_id) |
|
product_matches[inventory_id] = product_dict |
|
products_cache.set(inventory_id, product_dict) |
|
|
|
|
|
strain_matches = {} |
|
strain_files = get_datafiles(data_dir, 'Strains_') |
|
strain_fields = CCRS_DATASETS['strains']['fields'] |
|
strain_date_fields = CCRS_DATASETS['strains']['date_fields'] |
|
strain_cols = list(strain_fields.keys()) + strain_date_fields |
|
strain_types = {k: strain_fields[k] for k in strain_fields if k not in strain_date_fields} |
|
strain_types['IsDeleted'] = 'string' |
|
strain_renames = { |
|
'Name': 'strain_name', |
|
'CreatedDate': 'strain_created_at', |
|
} |
|
for i, datafile in enumerate(strain_files): |
|
if len(strain_matches) == len(results): |
|
print('Matched all strains') |
|
break |
|
print('Augmenting strains:', datafile) |
|
strains = read_ccrs_data( |
|
datafile, |
|
usecols=strain_cols, |
|
dtype=strain_types, |
|
parse_dates=strain_date_fields, |
|
rename=strain_renames, |
|
) |
|
|
|
|
|
|
|
for inventory_id, values in matches.items(): |
|
|
|
|
|
if strains_cache.get(inventory_id): |
|
strain_matches[inventory_id] = strains_cache.get(inventory_id) |
|
continue |
|
strain = strains.loc[strains['StrainId'] == values['StrainId']] |
|
if len(strain) > 0: |
|
strain = strain.iloc[0] |
|
obs = matches[inventory_id] |
|
strain_dict = strain.to_dict() |
|
strain_dict = convert_timestamps(strain_dict) |
|
matches[inventory_id] = {**obs, **strain_dict} |
|
print('Matched strain:', inventory_id) |
|
strain_matches[inventory_id] = strain_dict |
|
strains_cache.set(inventory_id, strain_dict) |
|
|
|
|
|
|
|
|
|
|
|
if len(matches) == len(results): |
|
print('Matched all results') |
|
break |
|
|
|
|
|
|
|
|
|
matches_df = pd.DataFrame.from_dict(matches, orient='index') |
|
matches_df.index.name = 'inventory_id' |
|
matches_df.reset_index(inplace=True, drop=True) |
|
matches_df.columns = [camel_to_snake(col) for col in matches_df.columns] |
|
results = results.merge( |
|
matches_df, |
|
on='inventory_id', |
|
how='left', |
|
suffixes=['', '_dup'] |
|
) |
|
results.drop(columns=[x for x in results.columns if '_dup' in x], inplace=True) |
|
|
|
|
|
|
|
|