|
""" |
|
Analyze Results | Utah |
|
Copyright (c) 2023-2024 Cannlytics |
|
|
|
Authors: Keegan Skeate <https://github.com/keeganskeate> |
|
Created: 7/4/2024 |
|
Updated: 7/9/2024 |
|
License: MIT License <https://github.com/cannlytics/cannabis-data-science/blob/main/LICENSE> |
|
""" |
|
|
|
import os |
|
from typing import List |
|
from zipfile import ZipFile |
|
|
|
|
|
import matplotlib.pyplot as plt |
|
import pandas as pd |
|
import seaborn as sns |
|
|
|
|
|
from cannlytics import __version__ |
|
from cannlytics.data.cache import Bogart |
|
from cannlytics.data.coas.parsing import get_coa_files |
|
from cannlytics.data.coas import CoADoc |
|
from cannlytics.data.coas.algorithms.utah import parse_utah_coa |
|
from cannlytics.data.coas import standardize_results |
|
from cannlytics.data.coas.parsing import find_unique_analytes |
|
|
|
|
|
|
|
|
|
|
|
|
|
def unzip_folder(folder, destination, remove=True): |
|
"""Unzip a folder. |
|
Args: |
|
pdf_dir (str): The directory where the folder is stored. |
|
folder (str): The name of the folder to unzip. |
|
""" |
|
os.makedirs(destination, exist_ok=True) |
|
with ZipFile(folder) as zip_ref: |
|
zip_ref.extractall(destination) |
|
if remove: |
|
os.remove(folder) |
|
|
|
|
|
|
|
pdf_dir = r'D:\data\public-records\Utah' |
|
folders = [os.path.join(pdf_dir, x) for x in os.listdir(pdf_dir) if x.endswith('.zip')] |
|
for folder in folders: |
|
unzip_folder(folder, pdf_dir) |
|
print('Unzipped:', folder) |
|
|
|
|
|
pdfs = get_coa_files(pdf_dir) |
|
pdfs.sort(key=os.path.getmtime) |
|
print('Found %i PDFs.' % len(pdfs)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def parse_coa_pdfs( |
|
pdfs, |
|
algorithm=None, |
|
parser=None, |
|
cache=None, |
|
data=None, |
|
verbose=True, |
|
) -> List[dict]: |
|
"""Parse a list of COA PDFs. |
|
Args: |
|
pdfs (List[str]): A list of PDFs to parse. |
|
algorithm (function): The parsing algorithm to use. |
|
parser (object): The parser object to use. |
|
cache (object): The cache object to use. |
|
data (List[dict]): The data to append to. |
|
verbose (bool): Whether to print verbose output. |
|
Returns: |
|
List[dict]: The parsed data. |
|
""" |
|
if data is None: |
|
data = [] |
|
if parser is None: |
|
parser = CoADoc() |
|
for pdf in pdfs: |
|
if not os.path.exists(pdf): |
|
if verbose: print(f'PDF not found: {pdf}') |
|
continue |
|
if cache is not None: |
|
pdf_hash = cache.hash_file(pdf) |
|
if cache is not None: |
|
if cache.get(pdf_hash): |
|
if verbose: print('Cached:', pdf) |
|
data.append(cache.get(pdf_hash)) |
|
continue |
|
try: |
|
if algorithm is not None: |
|
coa_data = algorithm(parser, pdf) |
|
else: |
|
coa_data = parser.parse(pdf) |
|
data.append(coa_data) |
|
if cache is not None: |
|
cache.set(pdf_hash, coa_data) |
|
print('Parsed:', pdf) |
|
except: |
|
print('Error:', pdf) |
|
return data |
|
|
|
|
|
|
|
cache = Bogart('D://data/.cache/results-ut.jsonl') |
|
|
|
|
|
cache.clear() |
|
|
|
|
|
all_results = parse_coa_pdfs( |
|
pdfs, |
|
algorithm=parse_utah_coa, |
|
cache=cache, |
|
) |
|
|
|
|
|
results = cache.to_df() |
|
print('Number of results:', len(results)) |
|
|
|
|
|
results['date'] = pd.to_datetime(results['date_tested'], format='mixed') |
|
results['week'] = results['date'].dt.to_period('W').astype(str) |
|
results['month'] = results['date'].dt.to_period('M').astype(str) |
|
results = results.sort_values('date') |
|
|
|
|
|
|
|
analytes = find_unique_analytes(results) |
|
nuisance_analytes = [ |
|
'det_detected', |
|
'global_shortages_of_laboratory_suppliesto', |
|
'here_recorded_may_not_be_used_as_an_endorsement_for_a_product', |
|
'information_see', |
|
'information_see_https_totoag_utah_govto_2021_to_04_to_29_toudaf_temporarily_adjusts_medical_cannabis_testing_protocols_due_to', |
|
'nd_not_detected', |
|
'notes', |
|
'notes_sample_was_tested_as_received_the_cannabinoid_results_were_not_adjusted_for_moisture_content', |
|
'phtatpthso_togtoaegn_utetashti_nggo_vwto_2_a_0_s', |
|
'recorded_the_results_here_recorded_may_not_be_used_as_an_endorsement_for_a_product', |
|
'results_pertain_only_to_the_test_sample_listed_in_this_report', |
|
'see_https_totoag_utah_govto_2021_to_04_to_29_toudaf_temporarily_adjusts_medical_cannabis_testing_protocols_due_to_global', |
|
'shortages_of_laboratory_suppliesto', |
|
'tac_2500000', |
|
'tac_t', |
|
'this_report_may_not_be_reproduced_except_in_its_entirety', |
|
'total_cbd', |
|
'total_thc', |
|
] |
|
analytes = analytes - set(nuisance_analytes) |
|
|
|
analytes = sorted(list(analytes)) |
|
results = standardize_results(results, analytes) |
|
|
|
|
|
last_test_date = results['date'].max().strftime('%Y-%m-%d') |
|
outfile = f'D://data/utah/ut-results-{last_test_date}.xlsx' |
|
latest = f'D://data/utah/ut-results-latest.csv' |
|
results.to_excel(outfile, index=False) |
|
results.to_csv(latest, index=False) |
|
print('Saved:', outfile) |
|
print('Saved:', latest) |
|
|
|
|
|
features = {x: 'string' for x in results.columns} |
|
print('Number of features:', len(features)) |
|
print('Features:', features) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def format_date(x, pos): |
|
try: |
|
return pd.to_datetime(x).strftime('%b %#d, %Y') |
|
except ValueError: |
|
return '' |
|
|
|
|
|
assets_dir = r'C:\Users\keega\Documents\cannlytics\cannabis-data-science\season-4\165-labels\presentation\images\figures' |
|
plt.style.use('seaborn-v0_8-whitegrid') |
|
plt.rcParams.update({ |
|
'font.family': 'Times New Roman', |
|
'font.size': 24, |
|
}) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
plt.figure(figsize=(18, 8)) |
|
ax = sns.countplot(data=results.dropna(subset=['month']), x='month', color='skyblue') |
|
plt.title('Number of Tests by Date in Utah', pad=10) |
|
plt.xlabel('') |
|
plt.ylabel('Number of Tests') |
|
plt.xticks(rotation=45) |
|
ticks = ax.get_xticks() |
|
ax.set_xticks(ticks[::4]) |
|
ax.set_xticklabels([format_date(item.get_text(), None) for item in ax.get_xticklabels()]) |
|
plt.tight_layout() |
|
plt.savefig(os.path.join(assets_dir, 'ut-lab-timeseries.png')) |
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
producer_names = { |
|
'Harvest of Utah': 'Harvest', |
|
'True North of Utah': 'True North', |
|
'Tryke': 'Tryke', |
|
'Standard Wellness of Utah': 'Standard Wellness', |
|
'Tryke Companies of Utah': 'Tryke', |
|
'Tryke Companies of\nUtah': 'Tryke', |
|
'Pure Plan': 'Pure Plan', |
|
'Riverside Farm': 'Riverside Farm', |
|
'Riverside Farms': 'Riverside Farm', |
|
'Wholesome Ag': 'Wholesome Ag', |
|
'Zion Cultivars': 'Zion Cultivars', |
|
'Zion Cultivators': 'Zion Cultivars', |
|
'Dragonfly Greenhouse': 'Dragonfly', |
|
'Dragonfly Processing': 'Dragonfly', |
|
'UMC Program': 'UMC Program', |
|
'Zion Alchemy': 'Zion Alchemy', |
|
'Wasatch Extraction': 'Wasatch Extraction', |
|
'Standard Wellness of Utah Great Salt Lake 1/8': 'Standard Wellness', |
|
'Tryke Companies of Utah Who Dat Orange': 'Tryke', |
|
} |
|
results['producer_dba'] = results['producer'].map(producer_names) |
|
|
|
|
|
monthly_tests = results.groupby(['month', 'producer_dba']).size().reset_index(name='count') |
|
|
|
|
|
colors = sns.color_palette('tab20', n_colors=len(monthly_tests['producer_dba'].unique())) |
|
pivot_table = monthly_tests.pivot_table(values='count', index='month', columns='producer_dba', aggfunc='sum').fillna(0) |
|
plt.figure(figsize=(21, 9)) |
|
bottom = None |
|
for dba in pivot_table.columns: |
|
plt.bar( |
|
pivot_table.index, |
|
pivot_table[dba], |
|
bottom=bottom, |
|
label=dba, |
|
color=colors.pop(0), |
|
edgecolor='grey', |
|
alpha=0.8, |
|
) |
|
if bottom is None: |
|
bottom = pivot_table[dba] |
|
else: |
|
bottom += pivot_table[dba] |
|
plt.title('Number of Tests by Producer by Month in Utah', pad=10) |
|
plt.xlabel('') |
|
plt.ylabel('Number of Tests') |
|
plt.xticks(rotation=45) |
|
ticks = plt.gca().get_xticks() |
|
plt.gca().set_xticks(ticks[::3]) |
|
plt.legend(loc='upper left', title='Producer', ncol=2) |
|
plt.tight_layout() |
|
plt.savefig(os.path.join(assets_dir, 'ut-producer-timeseries.png')) |
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
|
|
import statsmodels.api as sm |
|
|
|
|
|
compound = 'thca' |
|
sample = results.loc[results['date'] >= pd.to_datetime('2024-01-01')] |
|
avg = sample.groupby(['month'])[compound].mean().reset_index() |
|
avg['month'] = pd.to_datetime(avg['month'], errors='coerce') |
|
avg = avg.dropna(subset=[compound, 'month']) |
|
avg['month_num'] = range(len(avg)) |
|
X = sm.add_constant(avg['month_num']) |
|
y = avg[compound] |
|
model = sm.OLS(y, X).fit() |
|
slope = model.params['month_num'] |
|
direction = '+' if slope > 0 else '-' |
|
plt.figure(figsize=(13, 8)) |
|
plt.plot(avg['month'], avg[compound], 'bo-', label='Avg. THCA by month', linewidth=2) |
|
plt.plot(avg['month'], model.predict(X), 'r-', label=f'Trend: {direction}{slope:.2f}% per month', linewidth=2) |
|
plt.scatter(sample['date'], sample[compound], color='lightblue', s=80) |
|
plt.title('Trend of THCA in Utah Cannabis Flower', pad=10) |
|
plt.xlabel('') |
|
plt.ylabel('THCA') |
|
plt.legend() |
|
plt.xticks(rotation=45) |
|
plt.tight_layout() |
|
plt.savefig(os.path.join(assets_dir, 'ut-average-thca-by-month.png')) |
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
|
|
from adjustText import adjust_text |
|
|
|
|
|
ny_cache = Bogart('D://data/.cache/results-ny.jsonl') |
|
ny_results = ny_cache.to_df() |
|
ny_flower_types = [ |
|
'Plant, Flower - Cured', |
|
'Flower', |
|
] |
|
ny_flower = ny_results.loc[ny_results['product_type'].isin(ny_flower_types)] |
|
ny_flower = standardize_results(ny_flower, analytes) |
|
ny_flower['state'] = 'NY' |
|
ny_flower['date'] = pd.to_datetime(ny_flower['date_tested'], format='mixed') |
|
ny_flower['week'] = ny_flower['date'].dt.to_period('W').astype(str) |
|
ny_flower['month'] = ny_flower['date'].dt.to_period('M').astype(str) |
|
|
|
|
|
results['state'] = 'UT' |
|
|
|
sample = results.copy() |
|
sample = pd.concat([sample, ny_flower]) |
|
|
|
|
|
|
|
def create_scatter_plot(x_col, y_col, title, x_label, y_label, filename, annotate=False): |
|
plt.figure(figsize=(18, 8)) |
|
ax = sns.scatterplot( |
|
data=sample, |
|
x=x_col, |
|
y=y_col, |
|
hue='state', |
|
s=200 |
|
) |
|
plt.title(title, pad=10) |
|
plt.xlabel(x_label) |
|
plt.ylabel(y_label) |
|
legend = ax.legend(title='Product Type', bbox_to_anchor=(1.05, 1), loc='upper left') |
|
for leg_entry in legend.legendHandles: |
|
leg_entry.set_sizes([200]) |
|
|
|
|
|
if annotate: |
|
texts = [] |
|
random_state = 420_000 |
|
high_ratio_samples = sample[sample['beta_pinene'] / sample['d_limonene'] > 0.75] \ |
|
.sample(n=5, random_state=random_state) |
|
for i, row in high_ratio_samples.iterrows(): |
|
if pd.notna(row[x_col]) and pd.notna(row[y_col]): |
|
texts.append(ax.text( |
|
row[x_col], |
|
row[y_col], |
|
row['product_name'], |
|
fontsize=24, |
|
color='crimson', |
|
)) |
|
adjust_text(texts, only_move={'points': 'xy', 'texts': 'xy'}, arrowprops=dict(arrowstyle='-', color='grey')) |
|
|
|
plt.tight_layout() |
|
plt.savefig(os.path.join(assets_dir, filename)) |
|
plt.show() |
|
|
|
|
|
|
|
create_scatter_plot( |
|
y_col='beta_pinene', |
|
x_col='d_limonene', |
|
title='Ratio of Beta-Pinene to D-Limonene in New York and Utah Cannabis Flower', |
|
y_label='Beta-Pinene', |
|
x_label='D-Limonene', |
|
filename='ut-beta-pinene-to-d-limonene.png', |
|
annotate=True |
|
) |
|
|
|
|
|
create_scatter_plot( |
|
y_col='alpha_humulene', |
|
x_col='beta_caryophyllene', |
|
title='Ratio of Alpha-Humulene to Beta-Caryophyllene in New York and Utah Cannabis Flower', |
|
y_label='Alpha-Humulene', |
|
x_label='Beta-Caryophyllene', |
|
filename='ut-alpha-humulene-to-beta-caryophyllene.png', |
|
annotate=False |
|
) |
|
|