""" Get Results | Utah Copyright (c) 2023-2024 Cannlytics Authors: Keegan Skeate Created: 7/4/2024 Updated: 7/10/2024 License: MIT License """ # Standard imports: import os from typing import List, Optional from zipfile import ZipFile # External imports: from cannlytics import __version__ from cannlytics.data.cache import Bogart from cannlytics.data.coas.parsing import get_coa_files from cannlytics.data.coas import CoADoc from cannlytics.data.coas.algorithms.utah import parse_utah_coa from cannlytics.data.coas import standardize_results from cannlytics.data.coas.parsing import find_unique_analytes import pandas as pd def unzip_folder(folder, destination, remove=True): """Unzip a folder. Args: pdf_dir (str): The directory where the folder is stored. folder (str): The name of the folder to unzip. """ os.makedirs(destination, exist_ok=True) with ZipFile(folder) as zip_ref: zip_ref.extractall(destination) if remove: os.remove(folder) def parse_coa_pdfs( pdfs, algorithm=None, parser=None, cache=None, data=None, verbose=True, ) -> List[dict]: """Parse a list of COA PDFs. Args: pdfs (List[str]): A list of PDFs to parse. algorithm (function): The parsing algorithm to use. parser (object): The parser object to use. cache (object): The cache object to use. data (List[dict]): The data to append to. verbose (bool): Whether to print verbose output. Returns: List[dict]: The parsed data. """ if data is None: data = [] if parser is None: parser = CoADoc() for pdf in pdfs: if not os.path.exists(pdf): if verbose: print(f'PDF not found: {pdf}') continue if cache is not None: pdf_hash = cache.hash_file(pdf) if cache is not None: if cache.get(pdf_hash): if verbose: print('Cached:', pdf) data.append(cache.get(pdf_hash)) continue try: if algorithm is not None: coa_data = algorithm(parser, pdf) else: coa_data = parser.parse(pdf) data.append(coa_data) if cache is not None: cache.set(pdf_hash, coa_data) print('Parsed:', pdf) except: print('Error:', pdf) return data def get_results_ut( data_dir: str, pdf_dir: str, cache_path: Optional[str] = None, clear_cache: Optional[bool] = False, ) -> pd.DataFrame: """Get lab results for Utah.""" # Unzip all of the folders. folders = [os.path.join(pdf_dir, x) for x in os.listdir(pdf_dir) if x.endswith('.zip')] for folder in folders: unzip_folder(folder, pdf_dir) print('Unzipped:', folder) # Get all of the PDFs. pdfs = get_coa_files(pdf_dir) pdfs.sort(key=os.path.getmtime) print('Found %i PDFs.' % len(pdfs)) # Initialize COA parsing. cache = Bogart(cache_path) # DEV: Clear the cache. if clear_cache: cache.clear() # Parse COAs. parse_coa_pdfs( pdfs, algorithm=parse_utah_coa, cache=cache, ) # Read results. results = cache.to_df() print('Number of results:', len(results)) # Standardize time. results['date'] = pd.to_datetime(results['date_tested'], format='mixed') results['week'] = results['date'].dt.to_period('W').astype(str) results['month'] = results['date'].dt.to_period('M').astype(str) results = results.sort_values('date') # Standardize compounds. # Note: Removes nuisance analytes. analytes = find_unique_analytes(results) nuisance_analytes = [ 'det_detected', 'global_shortages_of_laboratory_suppliesto', 'here_recorded_may_not_be_used_as_an_endorsement_for_a_product', 'information_see', 'information_see_https_totoag_utah_govto_2021_to_04_to_29_toudaf_temporarily_adjusts_medical_cannabis_testing_protocols_due_to', 'nd_not_detected', 'notes', 'notes_sample_was_tested_as_received_the_cannabinoid_results_were_not_adjusted_for_moisture_content', 'phtatpthso_togtoaegn_utetashti_nggo_vwto_2_a_0_s', 'recorded_the_results_here_recorded_may_not_be_used_as_an_endorsement_for_a_product', 'results_pertain_only_to_the_test_sample_listed_in_this_report', 'see_https_totoag_utah_govto_2021_to_04_to_29_toudaf_temporarily_adjusts_medical_cannabis_testing_protocols_due_to_global', 'shortages_of_laboratory_suppliesto', 'tac_2500000', 'tac_t', 'this_report_may_not_be_reproduced_except_in_its_entirety', 'total_cbd', 'total_thc', ] analytes = analytes - set(nuisance_analytes) analytes = sorted(list(analytes)) results = standardize_results(results, analytes) # Save the results. outfile = os.path.join(data_dir, 'ut-results-latest.xlsx') outfile_csv = os.path.join(data_dir, 'ut-results-latest.csv') outfile_json = os.path.join(data_dir, 'ut-results-latest.jsonl') results.to_excel(outfile, index=False) results.to_csv(outfile_csv, index=False) results.to_json(outfile_json, orient='records', lines=True) print('Saved Excel:', outfile) print('Saved CSV:', outfile_csv) print('Saved JSON:', outfile_json) # Print out features. features = {x: 'string' for x in results.columns} print('Number of features:', len(features)) print('Features:', features) # Return the results. return results # === Tests === # [✓] Tested: 2024-07-10 by Keegan Skeate if __name__ == '__main__': # Define where the data lives. data_dir = 'D://data/utah' pdf_dir = 'D://data/public-records/Utah' cache_path = 'D://data/.cache/results-ut.jsonl' # Curate results. results = get_results_ut( data_dir=data_dir, pdf_dir=pdf_dir, cache_path=cache_path, clear_cache=True )