from typing import List import pandas as pd def calc_results_stats( results: pd.DataFrame, cannabinoid_keys: List[str] = None, terpene_keys: List[str] = None, cbd_key: str = 'cbd', cbda_key: str = 'cbda', thc_key: str = 'delta_9_thc', thca_key: str = 'thca', decarb: float = 0.877, ) -> pd.DataFrame: """Calculate statistics for the results.""" # Calculate total cannabinoids. if cannabinoid_keys is not None: results['total_cannabinoids'] = results[cannabinoid_keys].sum(axis=1) results['total_thc'] = results[thc_key] + decarb * results[thca_key] results['total_cbd'] = results[cbd_key] + decarb * results[cbda_key] results['thc_to_cbd_ratio'] = results['total_thc'] / results['total_cbd'] # Calculate total terpenes. if terpene_keys is not None: results['total_terpenes'] = results[terpene_keys].sum(axis=1) results['beta_pinene_to_d_limonene_ratio'] = ( results['beta_pinene'] / results['d_limonene'] ) # TODO: Add other terpene ratios. # TODO: Identify mono and sesuiterpenes. # results['monoterpene_to_sesquiterpene_ratio'] = ( # results['total_monoterpenes'] / results['total_sesquiterpenes'] # ) return results def calc_aggregate_results_stats( results: pd.DataFrame, cannabinoid_keys: List[str] = None, terpene_keys: List[str] = None, ) -> pd.DataFrame: """Calculate aggregate statistics for the results.""" def calculate_statistics(group: pd.DataFrame, name: str) -> pd.DataFrame: """Calculate mean, median, std, and percentiles for a given group.""" stats = group.describe(percentiles=[.25, .50, .75]).T stats['period'] = name stats = stats[['period', 'mean', '50%', 'std', '25%', '75%']].rename( columns={'50%': 'median', '25%': 'percentile_25', '75%': 'percentile_75'}) return stats # Create the timeseries. results['date_tested'] = pd.to_datetime(results['date_tested']) results.set_index('date_tested', inplace=True) periods = { 'daily': results.resample('D'), 'weekly': results.resample('W'), 'monthly': results.resample('M'), 'quarterly': results.resample('Q'), 'yearly': results.resample('Y') } # Calculate statistics for each period. all_stats = [] for period_name, period_group in periods.items(): if cannabinoid_keys: cannabinoid_stats = calculate_statistics(period_group[cannabinoid_keys], period_name) cannabinoid_stats['type'] = 'cannabinoid' all_stats.append(cannabinoid_stats) if terpene_keys: terpene_stats = calculate_statistics(period_group[terpene_keys], period_name) terpene_stats['type'] = 'terpene' all_stats.append(terpene_stats) # Return the statistics. stats = pd.concat(all_stats).reset_index().rename(columns={'index': 'compound'}) return stats