""" CoADoc | Parse Connecticut COAs Copyright (c) 2023 Cannlytics Authors: Keegan Skeate Candace O'Sullivan-Sutherland Created: 12/11/2023 Updated: 12/16/2023 License: MIT License Description: Extract data from NE Labs COAs and merge the COA data with product data from the Connecticut Medical Marijuana Brand Registry. Data Points: ✓ id ✓ lab_id ✓ product_id ✓ product_name ✓ product_type ✓ brand ✓ image_url ✓ lab_results_url ✓ date_reported ✓ date_received ✓ date_tested ✓ total_terpenes ✓ cannabinoids_method ✓ total_cannabinoids ✓ sample_weight ✓ label_url ✓ lab ✓ lab_website ✓ lab_license_number ✓ lab_image_url ✓ lab_address ✓ lab_street ✓ lab_city ✓ lab_county ✓ lab_state ✓ lab_zipcode ✓ lab_latitude ✓ lab_longitude ✓ lab_phone ✓ producer ✓ producer_address ✓ producer_street ✓ producer_city ✓ producer_county ✓ producer_state ✓ producer_zipcode ✓ analyses ✓ reported_results ✓ results """ # Standard imports: from datetime import datetime import json import os from typing import Any, Optional # External imports: from cannlytics import __version__ from cannlytics.data.data import create_hash, create_sample_id from cannlytics.utils import convert_to_numeric, snake_case from cannlytics.utils.constants import ANALYTES import pandas as pd import pdfplumber NE_LABS = { 'coa_algorithm': 'ne_labs.py', 'coa_algorithm_entry_point': 'parse_ne_labs_coa', 'lims': 'Northeast Laboratories', 'url': 'www.nelabsct.com', 'lab': 'Northeast Laboratories', 'lab_website': 'www.nelabsct.com', 'lab_license_number': '#PH-0404', 'lab_image_url': 'https://www.nelabsct.com/images/Northeast-Laboratories.svg', 'lab_address': '129 Mill Street, Berlin, CT 06037', 'lab_street': '129 Mill Street', 'lab_city': 'Berlin', 'lab_county': 'Hartford', 'lab_state': 'CT', 'lab_zipcode': '06037', 'lab_latitude': 41.626190, 'lab_longitude': -72.748250, 'lab_phone': '860-828-9787', # 'lab_email': '', } NE_LABS_ANALYTES = [ { 'analysis': 'microbes', 'name': 'Total Aerobic Microbial Count', 'key': 'total_aerobic_microbial_count', 'units': 'CFU/g', }, { 'analysis': 'microbes', 'name': 'Total Yeast & Mold Count', 'key': 'total_yeast_and_mold', 'units': 'CFU/g', }, { 'analysis': 'microbes', 'name': 'Bile Tolerant Gram Negative Bacteria', 'key': 'gram_negative_bacteria', 'units': 'CFU/g', }, { 'analysis': 'microbes', 'name': 'Coliform', 'key': 'coliform', 'units': 'CFU/g', }, { 'analysis': 'microbes', 'name': 'Enteropathogenic E.coli', 'key': 'e_coli', 'units': 'CFU/g', }, { 'analysis': 'microbes', 'name': 'Salmonella species', 'key': 'salmonella', 'units': 'CFU/g', }, ] ALTA_SCI = { 'coa_algorithm': 'altasci.py', 'coa_algorithm_entry_point': 'parse_altasci_coa', 'lims': 'AltaSci Laboratories', 'url': 'www.altascilabs.com', 'lab': 'AltaSci Laboratories', 'lab_website': 'www.altascilabs.com', 'lab_license_number': 'CTM0000002', 'lab_image_url': '', 'lab_address': '1 Hartford Square, New Britain, CT 06052', 'lab_street': '1 Hartford Square', 'lab_city': 'New Britain', 'lab_county': 'Hartford', 'lab_state': 'CT', 'lab_zipcode': '06052', 'lab_latitude': 41.665670, 'lab_longitude': -72.811370, 'lab_phone': '(860) 224-6668', } ALTA_SCI_ANALYTES = [ { 'analysis': 'microbes', 'name': 'Total Aerobic Microbial Count', 'key': 'total_aerobic_microbial_count', 'units': 'CFU/g', }, { 'analysis': 'microbes', 'name': 'Total Yeast and Mold Count', 'key': 'total_yeast_and_mold', 'units': 'CFU/g', }, { 'analysis': 'microbes', 'name': 'Gram-negative Bacteria', 'key': 'gram_negative_bacteria', 'units': 'CFU/g', }, { 'analysis': 'microbes', 'name': 'E. coli (pathogenic strains)', 'key': 'e_coli', 'units': 'Detected in 1 gram', }, { 'analysis': 'microbes', 'name': 'Salmonella', 'key': 'salmonella', 'units': 'Detected in 1 gram', }, { 'analysis': 'mycotoxins', 'name': 'Aflatoxin B1', 'key': 'aflatoxin_b1', 'units': 'ug/Kg', }, { 'analysis': 'mycotoxins', 'name': 'Aflatoxin B2', 'key': 'aflatoxin_b2', 'units': 'ug/Kg', }, { 'analysis': 'mycotoxins', 'name': 'Aflatoxin G1', 'key': 'aflatoxin_g1', 'units': 'ug/Kg', }, { 'analysis': 'mycotoxins', 'name': 'Aflatoxin G2', 'key': 'aflatoxin_g2', 'units': 'ug/Kg', }, { 'analysis': 'mycotoxins', 'name': 'Ochratoxin A', 'key': 'ochratoxin_a', 'units': 'ug/Kg', }, { 'analysis': 'heavy_metals', 'name': 'Arsenic', 'key': 'arsenic', 'units': 'ug/g', }, { 'analysis': 'heavy_metals', 'name': 'Cadmium', 'key': 'cadmium', 'units': 'ug/g', }, { 'analysis': 'heavy_metals', 'name': 'Mercury', 'key': 'mercury', 'units': 'ug/g', }, { 'analysis': 'heavy_metals', 'name': 'Lead', 'key': 'lead', 'units': 'ug/g', }, { 'analysis': 'cannabinoids', 'name': 'Δ9-Tetrahydrocannabinol Acid (Δ9-THC-A)', 'key': 'thca', 'units': 'percent', }, { 'analysis': 'cannabinoids', 'name': 'Tetrahydrocannabinol (THC)', 'key': 'delta_9_thc', 'units': 'percent', }, { 'analysis': 'cannabinoids', 'name': 'Cannabidiol Acid (CBD-A)', 'key': 'cbda', 'units': 'percent', }, { 'analysis': 'cannabinoids', 'name': 'Cannabidiol (CBD)', 'key': 'cbd', 'units': 'percent', }, { 'analysis': 'cannabinoids', 'name': 'Cannabigerol Acid (CBG-A)', 'key': 'cbga', 'units': 'percent', }, { 'analysis': 'cannabinoids', 'name': 'Cannabigerol (CBG)', 'key': 'cbg', 'units': 'percent', }, { 'analysis': 'cannabinoids', 'name': 'Cannabinol (CBN)', 'key': 'cbn', 'units': 'percent', }, { 'analysis': 'cannabinoids', 'name': 'Cannabichromene (CBC)', 'key': 'cbc', 'units': 'percent', }, { 'analysis': 'terpenes', 'name': 'α-Pinene', 'key': 'alpha_pinene', 'units': 'percent', }, { 'analysis': 'terpenes', 'name': 'β-Pinene', 'key': 'beta_pinene', 'units': 'percent', }, { 'analysis': 'terpenes', 'name': 'β-Myrcene', 'key': 'beta_myrcene', 'units': 'percent', }, { 'analysis': 'terpenes', 'name': 'Limonene', 'key': 'd_limonene', 'units': 'percent', }, { 'analysis': 'terpenes', 'name': 'Ocimene', 'key': 'ocimene', 'units': 'percent', }, { 'analysis': 'terpenes', 'name': 'Linalool', 'key': 'linalool', 'units': 'percent', }, { 'analysis': 'terpenes', 'name': 'β-Caryophyllene', 'key': 'beta_caryophyllene', 'units': 'percent', }, { 'analysis': 'terpenes', 'name': 'Humulene', 'key': 'humulene', 'units': 'percent', }, { 'analysis': 'pesticides', 'name': 'Avermectin (abamectin)', 'key': 'avermectin', 'units': 'ppb', }, { 'analysis': 'pesticides', 'name': 'Acequinocyl', 'key': 'acequinocyl', 'units': 'ppb', }, { 'analysis': 'pesticides', 'name': 'Bifenazate', 'key': 'bifenazate', 'units': 'ppb', }, { 'analysis': 'pesticides', 'name': 'Bifenthrin (synthetic pyrethroid)', 'key': 'bifenthrin', 'units': 'ppb', }, { 'analysis': 'pesticides', 'name': 'Cyfluthrin (synthetic pyrethroid)', 'key': 'cyfluthrin', 'units': 'ppb', }, { 'analysis': 'pesticides', 'name': 'Etoxazole', 'key': 'etoxazole', 'units': 'ppb', }, { 'analysis': 'pesticides', 'name': 'Imazalil', 'key': 'imazalil', 'units': 'ppb', }, { 'analysis': 'pesticides', 'name': 'Imidacloprid', 'key': 'imidacloprid', 'units': 'ppb', }, { 'analysis': 'pesticides', 'name': 'Myclobutanil', 'key': 'myclobutanil', 'units': 'ppb', }, { 'analysis': 'pesticides', 'name': 'Paclobutrazol', 'key': 'paclobutrazol', 'units': 'ppb', }, { 'analysis': 'pesticides', 'name': 'Pyrethrins (synthetic)', 'key': 'pyrethrins', 'units': 'ppb', }, { 'analysis': 'pesticides', 'name': 'Spinosad', 'key': 'spinosad', 'units': 'ppb', }, { 'analysis': 'pesticides', 'name': 'Spiromesifen', 'key': 'spiromesifen', 'units': 'ppb', }, { 'analysis': 'pesticides', 'name': 'Spirotetramat', 'key': 'spirotetramat', 'units': 'ppb', }, { 'analysis': 'pesticides', 'name': 'Trifloxystrobin', 'key': 'trifloxystrobin', 'units': 'ppb', }, # TODO: Add residual solvents? ] def parse_ne_labs_historic_coa( parser, doc: Any, public_key: Optional[str] = 'product_id', verbose: Optional[bool] = False, **kwargs, ) -> dict: """Parse a historic Northeast Labs COA PDF. Args: doc (str or PDF): A PDF file path or pdfplumber PDF. Returns: (dict): The sample data. """ # Initialize. obs = {} # Read the PDF. if isinstance(doc, str): report = pdfplumber.open(doc) else: report = doc obs['coa_pdf'] = report.stream.name.replace('\\', '/').split('/')[-1] # Extract producer details. page = report.pages[0] # Get the producer and the producer's address. tables = page.extract_tables() values = tables[0][0][0].split('\n') parts = values[-1].replace('•', '').strip().split(', ') obs['producer'] = values[0] obs['producer_street'] = parts[0] obs['producer_city'] = parts[1].replace(' CT', '') obs['producer_state'] = 'CT' # Get the product ID. obs['product_id'] = tables[0][-1][0].split(':')[-1].strip() # Get the lab ID and date tested. lines = page.extract_text().split('\n') for line in lines: if 'Report#' in line: obs['lab_id'] = line.split(': ')[-1] elif 'Report Date' in line: obs['date_tested'] = line.split(': ')[-1] break # Collect results and analyses. analyses, results = [], [] # Get the microbes. for line in lines: for analyte in NE_LABS_ANALYTES: if analyte['name'] in line: if 'microbes' not in analyses: analyses.append('microbes') result = {} value = line.split(analyte['name'])[-1].strip() if 'PASS' in value: result['status'] = 'Pass' value = value.replace(' PASS', '') elif 'FAIL' in value: result['status'] = 'Fail' value = value.replace(' FAIL', '') value = value.replace('per gram', '') value = value.replace('Not Detected', 'ND') values = value.split(' ', maxsplit=1) result['value'] = values[0] result['limit'] = values[-1] results.append({**analyte, **result}) # Get results from the front page. crop = page.crop((0, page.height * 0.25, page.width, page.height * 0.75)) tables = crop.extract_tables({ 'vertical_strategy': 'text', 'horizontal_strategy': 'text', }) clean_tables = [] for table in tables: clean_table = [] for row in table: clean_table.append([cell for cell in row if cell]) if clean_table: clean_tables.append(clean_table) # Identify the analyses. analysis = None for row in clean_tables[0]: try: table_name = row[0] except IndexError: continue # Determine the analysis. if 'Heavy Metals' in table_name: analysis = 'heavy_metals' analyses.append(analysis) continue elif 'Mycotoxins' in table_name: analysis = 'mycotoxins' analyses.append(analysis) continue elif 'Pesticides' in table_name: analysis = 'pesticides' analyses.append(analysis) continue # Extract results. analyte = row[0] key = ANALYTES.get(snake_case(analyte), snake_case(analyte)) if analysis == 'heavy_metals': results.append({ 'analysis': analysis, 'key': key, 'name': key, 'value': row[2], 'limit': row[-1], 'status': row[-2], 'units': row[3], }) elif analysis == 'mycotoxins': results.append({ 'analysis': analysis, 'key': key, 'name': analyte, 'value': row[1], 'limit': row[-1], 'status': row[-2], 'units': row[2], }) elif analysis == 'pesticides': results.append({ 'analysis': analysis, 'key': key, 'name': analyte, 'value': None, 'limit': None, 'status': row[-1], 'units': None, }) # Get additional results. tables = report.pages[1].extract_tables() for table in tables: table_name = table[0][0] # Get terpenes. if 'TERPENES' in table_name: rows = table[1][0].split('\n') for row in rows: values = row.replace(' %', '').split(' ') if 'TOTAL' in values[0]: obs['total_terpenes'] = convert_to_numeric(values[-1]) continue analyte = values[0] key = ANALYTES.get(snake_case(analyte), snake_case(analyte)) results.append({ 'analysis': 'terpenes', 'key': key, 'name': analyte, 'value': convert_to_numeric(values[-1]), 'units': 'percent', }) # Get cannabinoids. elif 'CANNABINOIDS' in table_name: rows = table[1][0].split('\n') for row in rows: values = row.replace(' % weight', '').split(' ') if 'TOTAL' in values[0]: obs['total_cannabinoids'] = convert_to_numeric(values[-1]) continue analyte = values[0] key = ANALYTES.get(snake_case(analyte), snake_case(analyte)) results.append({ 'analysis': 'cannabinoids', 'key': key, 'name': analyte, 'value': convert_to_numeric(values[-1]), 'units': 'percent', }) # Get minor analyses. # - water activity? text = report.pages[1].extract_text() if 'Residual Alcohol' in text: value = text.split('Residual Alcohol')[-1].split('\n')[0] value = value.replace('%', '').strip() results.append({ 'analysis': 'residual_solvents', 'key': 'residual_alcohol', 'name': 'Residual Alcohol', 'value': convert_to_numeric(value), 'units': 'percent', }) if 'Moisture' in text: value = text.split('Moisture')[-1].split('\n')[0] value = value.replace('%', '').strip() obs['moisture_content'] = convert_to_numeric(value) # Get the reviewer data. last_page = report.pages[-1] last_page_text = last_page.extract_text() reviewer_text = last_page_text.split('Approved By:')[-1].split('Date:')[0] reviewer_text = reviewer_text.replace('\n', '') values = reviewer_text.split('QA / QC') obs['reviewed_by'] = values[0] + 'QA / QC' obs['released_by'] = values[-1] obs['date_reviewed'] = last_page_text.split('Approved By:')[-1].split('Date:')[-1].split('\n')[0] # Close the report. report.close() # Standardize dates. # FIXME: # obs = standardize_dates(obs) # Finish data collection with a freshly minted sample ID. obs = {**NE_LABS, **obs} obs['analyses'] = json.dumps(list(set(analyses))) obs['coa_algorithm_entry_point'] = 'parse_ne_labs_historic_coa' obs['coa_algorithm_version'] = __version__ obs['coa_parsed_at'] = datetime.now().isoformat() obs['results'] = json.dumps(results) obs['results_hash'] = create_hash(results) obs['sample_id'] = create_sample_id( private_key=json.dumps(results), public_key=obs[public_key], salt=obs.get('producer', obs.get('date_tested', 'cannlytics.eth')), ) obs['sample_hash'] = create_hash(obs) return obs def parse_ne_labs_coa( parser, doc: Any, public_key: Optional[str] = 'product_id', verbose: Optional[bool] = False, **kwargs, ) -> dict: """Parse a Northeast Labs COA PDF. Args: doc (str or PDF): A PDF file path or pdfplumber PDF. Returns: (dict): The sample data. """ # Initialize. obs = {} # Read the PDF. if isinstance(doc, str): report = pdfplumber.open(doc) else: report = doc obs['coa_pdf'] = report.stream.name.replace('\\', '/').split('/')[-1] # Extract producer details. page = report.pages[0] midpoint = page.width * 0.45 left_half = (0, 0, midpoint, page.height) left_half_page = page.crop(left_half) left_text = left_half_page.extract_text() lines = left_text.split('\n') parts = lines[2].split(' ') obs['producer'] = lines[0] obs['producer_street'] = lines[1] obs['producer_city'] = ' '.join(parts[0:-2]).rstrip(',') obs['producer_state'] = parts[-2] obs['producer_zipcode'] = parts[-1] obs['producer_address'] = ', '.join([obs['producer_street'], obs['producer_city'], obs['producer_state'] + ' ' + obs['producer_zipcode']]) # Extract dates and product details. right_half = (midpoint, 0, page.width, page.height) right_half_page = page.crop(right_half) right_text = right_half_page.extract_text() lines = right_text.split('\nResults')[0].split('\n') for line in lines: if 'Date Received' in line: obs['date_received'] = line.split(': ')[-1] if 'Report Date' in line: obs['date_tested'] = line.split(': ')[-1] if 'Report ID' in line: obs['lab_id'] = line.split(': ')[-1] # Get the product ID. top_half = page.crop((0, 0, page.width, page.height * 0.5)) top_lines = top_half.extract_text().split('\n') for line in top_lines: if 'Product ID' in line: obs['product_id'] = line.split(': ')[-1] break # Get the tables. tables = [] for page in report.pages: tables.extend(page.extract_tables()) # Clean the tables. clean_tables = [] for table in tables: clean_table = [] for row in table: clean_table.append([cell for cell in row if cell]) clean_tables.append(clean_table) # Get the results from the tables. analyses, results = [], [] for table in clean_tables: table_name = table[0][0] # Hot-fix for cannabinoids: if table_name == 'C': table_name = 'Cannabinoids\nby HPLC' # Get the microbes. if table_name.startswith('Microbiology'): analyses.append('microbes') for cells in table[1:]: if 'Pass/Fail' in cells[0]: continue key = ANALYTES.get(snake_case(cells[0]), snake_case(cells[0])) results.append({ 'analysis': 'microbes', 'key': key, 'name': cells[0], 'value': cells[1], 'limit': cells[2], 'method': cells[3], 'units': 'µg/kg', }) # Get the cannabinoids, if not already collected. elif table_name.startswith('Cannabinoids') and 'cannabinoids' not in analyses: analyses.append('cannabinoids') if '\nby ' in table_name: obs['cannabinoids_method'] = table_name.split('\nby ')[-1] for cells in table[1:]: if not cells or 'dry weight' in cells[0]: continue if 'Total Cannabinoids' in cells[0]: if len(cells) == 1: obs['total_cannabinoids'] = convert_to_numeric(cells[0].split(':')[-1].strip()) else: obs['total_cannabinoids'] = convert_to_numeric(cells[1].replace(' %', '')) continue if 'Total' in cells[0] and 'THC' in cells[0]: values = cells[0].split('\n') value = values[0].split(':')[-1].replace(' %', '').strip() obs['total_thc'] = convert_to_numeric(value) continue key = ANALYTES.get(snake_case(cells[0]), snake_case(cells[0])) results.append({ 'analysis': 'cannabinoids', 'key': key, 'name': cells[0], 'value': convert_to_numeric(cells[1]), 'units': 'percent', }) # Get the terpenes. elif table_name.startswith('Terpenes'): analyses.append('terpenes') if '\nby ' in table_name: obs['terpenes_method'] = table_name.split('\nby ')[-1] for cells in table[1:]: if not cells or 'dry weight' in cells[0]: continue if 'Total Terpenes' in cells[0]: values = cells[0].split('\n') obs['total_terpenes'] = convert_to_numeric(values[0].replace(' %', '').replace('Total Terpenes: ', '')) continue key = ANALYTES.get(snake_case(cells[0]), snake_case(cells[0])) try: value = convert_to_numeric(cells[1]) except: value = 'ND' results.append({ 'analysis': 'terpenes', 'key': key, 'name': cells[0], 'value': value, 'units': 'percent', }) # Get the pesticides. elif table_name.startswith('Pesticides'): analyses.append('pesticides') if '\nby ' in table_name: obs['pesticides_method'] = table_name.split('\nby ')[-1] for cells in table[1:]: if 'Pass/Fail' in cells[0]: continue # Handle two-column tables. if len(cells) == 4: split_cells = [cells[:2], cells[2:]] for split in split_cells: key = ANALYTES.get(snake_case(split[0]), snake_case(split[0])) results.append({ 'analysis': 'pesticides', 'key': key, 'name': split[0], 'value': split[1], 'limit': None, 'units': None, }) else: key = ANALYTES.get(snake_case(cells[0]), snake_case(cells[0])) results.append({ 'analysis': 'pesticides', 'key': key, 'name': cells[0], 'value': cells[1], 'limit': cells[2], 'units': None, }) # Get the heavy metals. elif table_name.startswith('Heavy Metals'): analyses.append('heavy_metals') if '\nby ' in table_name: obs['heavy_metals_method'] = table_name.split('\nby ')[-1] for cells in table[1:]: if 'Pass/Fail' in cells[0]: continue key = ANALYTES.get(snake_case(cells[0]), snake_case(cells[0])) results.append({ 'analysis': 'heavy_metals', 'key': key, 'name': cells[0], 'value': cells[1], 'limit': cells[2], 'units': '', }) # Get the mycotoxins. elif table_name.startswith('Mycotoxins'): analyses.append('mycotoxins') if '\nby ' in table_name: obs['mycotoxins_method'] = table_name.split('\nby ')[-1] for cells in table[1:]: if 'Pass/Fail' in cells[0]: continue key = ANALYTES.get(snake_case(cells[0]), snake_case(cells[0])) results.append({ 'analysis': 'mycotoxins', 'key': key, 'name': cells[0], 'value': cells[1], 'limit': cells[2], 'units': 'µg/kg', }) # Get the moisture content and water activity. elif table_name.startswith('Moisture'): for cells in table[1:]: if 'Content' in cells[0]: obs['moisture_content'] = convert_to_numeric(cells[-1]) elif 'Activity' in cells[0]: obs['water_activity'] = convert_to_numeric(cells[-1]) # Get the residual solvents results. elif 'Residual' in table_name: analyses.append('residual_solvents') if '\nby ' in table_name: obs['residual_solvents_method'] = table_name.split('\nby ')[-1] for cells in table[1:]: if 'Pass/Fail' in cells[0]: continue if cells[0] == 'GC-MS': obs['residual_solvents_method'] = 'GC-MS' continue key = ANALYTES.get(snake_case(cells[0]), snake_case(cells[0])) results.append({ 'analysis': 'residual_solvents', 'key': key, 'name': cells[0], 'value': cells[1], 'units': 'percent', }) # Get the sample weight. elif table_name.startswith('Density'): obs['sample_weight'] = convert_to_numeric(table[1][-1]) # Get the reviewer data. last_page = report.pages[-1] last_table = last_page.extract_tables()[-1] row = last_table[1] obs['date_reviewed'] = row[0] obs['reviewed_by'] = row[1] obs['released_by'] = row[2] # Close the report. report.close() # Standardize dates. # FIXME: # obs = standardize_dates(obs) # Finish data collection with a freshly minted sample ID. obs = {**NE_LABS, **obs} obs['analyses'] = json.dumps(list(set(analyses))) obs['coa_algorithm_version'] = __version__ obs['coa_parsed_at'] = datetime.now().isoformat() obs['results'] = json.dumps(results) obs['results_hash'] = create_hash(results) obs['sample_id'] = create_sample_id( private_key=json.dumps(results), public_key=obs[public_key], salt=obs.get('producer', obs.get('date_tested', 'cannlytics.eth')), ) obs['sample_hash'] = create_hash(obs) return obs def parse_altasci_coa( parser, doc: Any, public_key: Optional[str] = 'product_id', verbose: Optional[bool] = False, **kwargs, ) -> dict: """Parse a Northeast Labs COA PDF. Args: doc (str or PDF): A PDF file path or pdfplumber PDF. Returns: (dict): The sample data. """ # Initialize. obs = {} # Get the front page text. report = pdfplumber.open(doc) front_page = report.pages[0] front_page_text = front_page.extract_text() lines = front_page_text.split('\n') for i, line in enumerate(lines): if 'Customer Name' in line: obs['producer'] = line.split(':')[1].strip() if 'Customer Address' in line: obs['producer_street'] = line.split(':')[1].strip() city_zip = lines[i + 1].split(', CT ') obs['producer_city'] = city_zip[0].strip() obs['producer_state'] = 'CT' obs['producer_zipcode'] = city_zip[1].strip() obs['producer_address'] = ', '.join([ obs['producer_street'], obs['producer_city'], obs['producer_state'] + ' ' + obs['producer_zipcode'], ]) if 'Results issued on' in line: values = line.lstrip('Results issued on: ').split(' COA No.: ') obs['date_tested'] = values[0].strip() obs['lab_id'] = values[-1].strip() # Get the tables. tables = [] for page in report.pages: tables.extend(page.extract_tables()) # Clean the tables. clean_tables = [] for table in tables: clean_table = [] for row in table: clean_table.append([cell for cell in row if cell]) clean_tables.append(clean_table) # Get the product ID. obs['product_id'] = clean_tables[0][0][0] # Extract all of the lines. all_lines = [] for page in report.pages: all_lines.extend(page.extract_text().split('\n')) # Extract all of the analytes. results = [] for line in all_lines: for analyte in ALTA_SCI_ANALYTES: if analyte['name'] in line: result = {} value = line.split(analyte['name'])[-1].strip() if 'Pass' in value: result['status'] = 'Pass' value = value.replace(' Pass', '') elif 'Fail' in value: result['status'] = 'Fail' value = value.replace(' Fail', '') if analyte['units'] in value: value = value.replace(analyte['units'], '') if analyte['analysis'] == 'cannabinoids' or analyte['analysis'] == 'terpenes': value = convert_to_numeric(value.replace('%', '')) result['value'] = value results.append({**analyte, **result}) # Calculate total THC, applying decarboxylation rate. obs['total_thc'] = sum([ x['value'] * 0.877 if x['key'].endswith('a') else x['value'] for x in results if x['analysis'] == 'cannabinoids' and 'thc' in x['key'] and isinstance(x['value'], (float, int)) ]) # Calculate total cannabinoids, applying decarboxylation rate. obs['total_cannabinoids'] = sum([ x['value'] * 0.877 if x['key'].endswith('a') else x['value'] for x in results if x['analysis'] == 'cannabinoids' and isinstance(x['value'], (float, int)) ]) # Calculate total terpenes. obs['total_terpenes'] = sum([ x['value'] for x in results if x['analysis'] == 'terpenes' and isinstance(x['value'], (float, int)) ]) # Determine all unique analyses. analyses = list(set(x['analysis'] for x in results)) # Get the reviewer data. for page in report.pages: text = page.extract_text() if 'Results Approved by:' in text: reviewer = text.split('Results Approved by:')[-1].split('\n')[0].strip() obs['reviewed_by'] = reviewer obs['released_by'] = reviewer break # Close the report. report.close() # Standardize dates. # FIXME: # obs = standardize_dates(obs) # Finish data collection with a freshly minted sample ID. obs = {**ALTA_SCI, **obs} obs['analyses'] = json.dumps(list(set(analyses))) obs['coa_algorithm_version'] = __version__ obs['coa_parsed_at'] = datetime.now().isoformat() obs['results'] = json.dumps(results) obs['results_hash'] = create_hash(results) obs['sample_id'] = create_sample_id( private_key=json.dumps(results), public_key=obs[public_key], salt=obs.get('producer', obs.get('date_tested', 'cannlytics.eth')), ) obs['sample_hash'] = create_hash(obs) return obs def standardize_dates(item: dict) -> dict: # FIXME: The dates may not be correct. """Turn dates to ISO format.""" date_columns = [x for x in item.keys() if x.startswith('date')] for date_column in date_columns: try: item[date_column] = pd.to_datetime(item[date_column]).isoformat() except: pass return item def extract_url(s): """Extract the URL from the string representation of the list.""" try: list_rep = eval(s) return list_rep[0] if list_rep else None except: return None # === Test === if __name__ == '__main__': from cannlytics.data.coas import CoADoc # === Read the data === # Specify where your data lives. DATA_DIR = 'D://data/cannabis_results/data/ct' PDF_DIR = 'D://data/connecticut/results/pdfs' stats_dir = 'D://data/connecticut/results/datasets' # Read in downloaded CT results. datafile = f'{stats_dir}/ct-lab-results-latest.csv' ct_results = pd.read_csv(datafile) # Clean URLs. ct_results['image_url'] = ct_results['image_url'].apply(extract_url) ct_results['label_url'] = ct_results['images'].apply(extract_url) ct_results['lab_results_url'] = ct_results['lab_results_url'].apply(extract_url) # Rename certain columns. ct_results.rename(columns={ 'date_tested': 'date_reported', 'producer': 'brand', 'results': 'reported_results', }, inplace=True) # Drop certain columns. ct_results.drop(columns=['images'], inplace=True) # === Parse CT COAs === # Find the COA for each sample. parser = CoADoc() missing = 0 invalid = 0 pdf_files = {} all_results = [] for index, row in ct_results.iterrows(): # Identify if the COA exists. pdf_file = os.path.join(PDF_DIR, row['id'] + '.pdf') if not os.path.exists(pdf_file): pdf_file = os.path.join(PDF_DIR, row['lab_id'] + '.pdf') if not os.path.exists(pdf_file): missing += 1 continue # Record the PDF. pdf_files[row['id']] = pdf_file # TODO: Use the parser to extract data and identify the lab. # parser = CoADoc(lims={'NE Labs': NE_LABS_CT}) # parser.identify_lims(front_page_text) # Skip invalid files. try: report = pdfplumber.open(pdf_file) front_page_text = report.pages[0].extract_text() except: print('Invalid file:', pdf_file) invalid += 1 continue # Identify the lab and extract the COA data. report.close() if NE_LABS['url'] in front_page_text: try: coa_data = parse_ne_labs_coa(parser, pdf_file) print('Parsed NE Labs COA:', pdf_file) except: try: coa_data = parse_ne_labs_historic_coa(parser, pdf_file) print('Parsed NE Labs historic COA:', pdf_file) except: print('Failed to parse NE Labs COA:', pdf_file) continue elif ALTA_SCI['url'] in front_page_text: try: coa_data = parse_altasci_coa(parser, pdf_file) print('Parsed AltaSci Labs COA:', pdf_file) except: print('Failed to parse AltaSci Labs COA:', pdf_file) continue # Otherwise, the COA is unidentified. else: print('Unidentified lab:', pdf_file) continue # Merge details with COA data. all_results.append({**row.to_dict(), **coa_data}) # Save the augmented CT lab results data. timestamp = datetime.now().strftime('%Y-%m-%d-%H-%M-%S') outfile = os.path.join(DATA_DIR, f'ct-coa-data-{timestamp}.xlsx') parser.save(pd.DataFrame(all_results), outfile) print('Saved CT lab results:', outfile)