Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
import os | |
from typing import Dict | |
def get_readme(model_name: str, | |
metric: Dict, | |
metric_span: Dict, | |
config: Dict): | |
language_model = config['model'] | |
dataset = None | |
dataset_alias = "custom" | |
if config["dataset"] is not None: | |
dataset = sorted([i for i in config["dataset"]]) | |
dataset_alias = ','.join(dataset) | |
config_text = "\n".join([f" - {k}: {v}" for k, v in config.items()]) | |
ci_micro = '\n'.join([f' - {k}%: {v}' for k, v in metric["micro/f1_ci"].items()]) | |
ci_macro = '\n'.join([f' - {k}%: {v}' for k, v in metric["micro/f1_ci"].items()]) | |
per_entity_metric = '\n'.join([f'- {k}: {v["f1"]}' for k, v in metric['per_entity_metric'].items()]) | |
if dataset is None: | |
dataset_link = 'custom' | |
else: | |
dataset = [dataset] if type(dataset) is str else dataset | |
dataset_link = ','.join([f"[{d}](https://huggingface.co/datasets/{d})" for d in dataset]) | |
return f"""--- | |
datasets: | |
- {dataset_alias} | |
metrics: | |
- f1 | |
- precision | |
- recall | |
model-index: | |
- name: {model_name} | |
results: | |
- task: | |
name: Token Classification | |
type: token-classification | |
dataset: | |
name: {dataset_alias} | |
type: {dataset_alias} | |
args: {dataset_alias} | |
metrics: | |
- name: F1 | |
type: f1 | |
value: {metric['micro/f1']} | |
- name: Precision | |
type: precision | |
value: {metric['micro/precision']} | |
- name: Recall | |
type: recall | |
value: {metric['micro/recall']} | |
- name: F1 (macro) | |
type: f1_macro | |
value: {metric['macro/f1']} | |
- name: Precision (macro) | |
type: precision_macro | |
value: {metric['macro/precision']} | |
- name: Recall (macro) | |
type: recall_macro | |
value: {metric['macro/recall']} | |
- name: F1 (entity span) | |
type: f1_entity_span | |
value: {metric_span['micro/f1']} | |
- name: Precision (entity span) | |
type: precision_entity_span | |
value: {metric_span['micro/precision']} | |
- name: Recall (entity span) | |
type: recall_entity_span | |
value: {metric_span['micro/recall']} | |
pipeline_tag: token-classification | |
widget: | |
- text: "Jacob Collier is a Grammy awarded artist from England." | |
example_title: "NER Example 1" | |
--- | |
# {model_name} | |
This model is a fine-tuned version of [{language_model}](https://huggingface.co/{language_model}) on the | |
{dataset_link} dataset. | |
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository | |
for more detail). It achieves the following results on the test set: | |
- F1 (micro): {metric['micro/f1']} | |
- Precision (micro): {metric['micro/precision']} | |
- Recall (micro): {metric['micro/recall']} | |
- F1 (macro): {metric['macro/f1']} | |
- Precision (macro): {metric['macro/precision']} | |
- Recall (macro): {metric['macro/recall']} | |
The per-entity breakdown of the F1 score on the test set are below: | |
{per_entity_metric} | |
For F1 scores, the confidence interval is obtained by bootstrap as below: | |
- F1 (micro): | |
{ci_micro} | |
- F1 (macro): | |
{ci_macro} | |
Full evaluation can be found at [metric file of NER](https://huggingface.co/{model_name}/raw/main/eval/metric.json) | |
and [metric file of entity span](https://huggingface.co/{model_name}/raw/main/eval/metric_span.json). | |
### Usage | |
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip | |
```shell | |
pip install tner | |
``` | |
and activate model as below. | |
```python | |
from tner import TransformersNER | |
model = TransformersNER("{model_name}") | |
model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) | |
``` | |
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
{config_text} | |
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/{model_name}/raw/main/trainer_config.json). | |
### Reference | |
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). | |
``` | |
{bib} | |
``` | |
""" | |