Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Delete loading script
Browse files- tweet_topic_multi.py +0 -102
tweet_topic_multi.py
DELETED
@@ -1,102 +0,0 @@
|
|
1 |
-
""" TweetTopic Dataset """
|
2 |
-
import json
|
3 |
-
from itertools import chain
|
4 |
-
import datasets
|
5 |
-
|
6 |
-
logger = datasets.logging.get_logger(__name__)
|
7 |
-
_DESCRIPTION = """[TweetTopic](https://arxiv.org/abs/2209.09824)"""
|
8 |
-
|
9 |
-
_VERSION = "1.0.4"
|
10 |
-
_CITATION = """
|
11 |
-
@inproceedings{dimosthenis-etal-2022-twitter,
|
12 |
-
title = "{T}witter {T}opic {C}lassification",
|
13 |
-
author = "Antypas, Dimosthenis and
|
14 |
-
Ushio, Asahi and
|
15 |
-
Camacho-Collados, Jose and
|
16 |
-
Neves, Leonardo and
|
17 |
-
Silva, Vitor and
|
18 |
-
Barbieri, Francesco",
|
19 |
-
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
|
20 |
-
month = oct,
|
21 |
-
year = "2022",
|
22 |
-
address = "Gyeongju, Republic of Korea",
|
23 |
-
publisher = "International Committee on Computational Linguistics"
|
24 |
-
}
|
25 |
-
"""
|
26 |
-
_HOME_PAGE = "https://cardiffnlp.github.io"
|
27 |
-
_LABEL_TYPE = "multi"
|
28 |
-
_NAME = f"tweet_topic_{_LABEL_TYPE}"
|
29 |
-
_URL = f'https://huggingface.co/datasets/cardiffnlp/{_NAME}/raw/main/dataset'
|
30 |
-
_URLS = {
|
31 |
-
f"{str(datasets.Split.TEST)}_2020": [f'{_URL}/split_temporal/test_2020.{_LABEL_TYPE}.json'],
|
32 |
-
f"{str(datasets.Split.TEST)}_2021": [f'{_URL}/split_temporal/test_2021.{_LABEL_TYPE}.json'],
|
33 |
-
f"{str(datasets.Split.TRAIN)}_2020": [f'{_URL}/split_temporal/train_2020.{_LABEL_TYPE}.json'],
|
34 |
-
f"{str(datasets.Split.TRAIN)}_2021": [f'{_URL}/split_temporal/train_2021.{_LABEL_TYPE}.json'],
|
35 |
-
f"{str(datasets.Split.TRAIN)}_all": [f'{_URL}/split_temporal/train_2020.{_LABEL_TYPE}.json', f'{_URL}/split_temporal/train_2021.{_LABEL_TYPE}.json'],
|
36 |
-
f"{str(datasets.Split.VALIDATION)}_2020": [f'{_URL}/split_temporal/validation_2020.{_LABEL_TYPE}.json'],
|
37 |
-
f"{str(datasets.Split.VALIDATION)}_2021": [f'{_URL}/split_temporal/validation_2021.{_LABEL_TYPE}.json'],
|
38 |
-
f"{str(datasets.Split.TRAIN)}_random": [f'{_URL}/split_random/train_random.{_LABEL_TYPE}.json'],
|
39 |
-
f"{str(datasets.Split.VALIDATION)}_random": [f'{_URL}/split_random/validation_random.{_LABEL_TYPE}.json'],
|
40 |
-
f"{str(datasets.Split.TEST)}_coling2022_random": [f'{_URL}/split_coling2022_random/test_random.{_LABEL_TYPE}.json'],
|
41 |
-
f"{str(datasets.Split.TRAIN)}_coling2022_random": [f'{_URL}/split_coling2022_random/train_random.{_LABEL_TYPE}.json'],
|
42 |
-
f"{str(datasets.Split.TEST)}_coling2022": [f'{_URL}/split_coling2022_temporal/test_2021.{_LABEL_TYPE}.json'],
|
43 |
-
f"{str(datasets.Split.TRAIN)}_coling2022": [f'{_URL}/split_coling2022_temporal/train_2020.{_LABEL_TYPE}.json'],
|
44 |
-
}
|
45 |
-
|
46 |
-
|
47 |
-
class TweetTopicSingleConfig(datasets.BuilderConfig):
|
48 |
-
"""BuilderConfig"""
|
49 |
-
|
50 |
-
def __init__(self, **kwargs):
|
51 |
-
"""BuilderConfig.
|
52 |
-
|
53 |
-
Args:
|
54 |
-
**kwargs: keyword arguments forwarded to super.
|
55 |
-
"""
|
56 |
-
super(TweetTopicSingleConfig, self).__init__(**kwargs)
|
57 |
-
|
58 |
-
|
59 |
-
class TweetTopicSingle(datasets.GeneratorBasedBuilder):
|
60 |
-
"""Dataset."""
|
61 |
-
|
62 |
-
BUILDER_CONFIGS = [
|
63 |
-
TweetTopicSingleConfig(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION),
|
64 |
-
]
|
65 |
-
|
66 |
-
def _split_generators(self, dl_manager):
|
67 |
-
downloaded_file = dl_manager.download_and_extract(_URLS)
|
68 |
-
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[i]}) for i in _URLS.keys()]
|
69 |
-
|
70 |
-
def _generate_examples(self, filepaths):
|
71 |
-
_key = 0
|
72 |
-
for filepath in filepaths:
|
73 |
-
logger.info(f"generating examples from = {filepath}")
|
74 |
-
with open(filepath, encoding="utf-8") as f:
|
75 |
-
_list = [i for i in f.read().split('\n') if len(i) > 0]
|
76 |
-
for i in _list:
|
77 |
-
data = json.loads(i)
|
78 |
-
yield _key, data
|
79 |
-
_key += 1
|
80 |
-
|
81 |
-
def _info(self):
|
82 |
-
names = [
|
83 |
-
"arts_&_culture", "business_&_entrepreneurs", "celebrity_&_pop_culture", "diaries_&_daily_life", "family",
|
84 |
-
"fashion_&_style", "film_tv_&_video", "fitness_&_health", "food_&_dining", "gaming",
|
85 |
-
"learning_&_educational", "music", "news_&_social_concern", "other_hobbies", "relationships",
|
86 |
-
"science_&_technology", "sports", "travel_&_adventure", "youth_&_student_life"
|
87 |
-
]
|
88 |
-
return datasets.DatasetInfo(
|
89 |
-
description=_DESCRIPTION,
|
90 |
-
features=datasets.Features(
|
91 |
-
{
|
92 |
-
"text": datasets.Value("string"),
|
93 |
-
"date": datasets.Value("string"),
|
94 |
-
"label": datasets.Sequence(datasets.features.ClassLabel(names=names)),
|
95 |
-
"label_name": datasets.Sequence(datasets.Value("string")),
|
96 |
-
"id": datasets.Value("string")
|
97 |
-
}
|
98 |
-
),
|
99 |
-
supervised_keys=None,
|
100 |
-
homepage=_HOME_PAGE,
|
101 |
-
citation=_CITATION,
|
102 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|