Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
asahi417 commited on
Commit
a14e893
·
1 Parent(s): 8ea930a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -0
README.md CHANGED
@@ -89,6 +89,22 @@ The label2id dictionary can be found at [here](https://huggingface.co/datasets/t
89
  | `coling2022_temporal_test` | 5536 | test set of temporal split used in COLING 2022 Tweet Topic paper |
90
  | `coling2022_temporal_train` | 5731 | training set of temporal split used in COLING 2022 Tweet Topic paper|
91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
  For the temporal-shift setting, we recommend to train models on `train` (an alias of `temporal_2020_train`) with `validation` (an alias of `temporal_2020_validation`) and evaluate on `test` (an alias of `temporal_2021_test`).
93
  For the random split, we recommend to train models on `random_train` with `random_validation` and evaluate on `test` (`temporal_2021_test`).
94
 
 
89
  | `coling2022_temporal_test` | 5536 | test set of temporal split used in COLING 2022 Tweet Topic paper |
90
  | `coling2022_temporal_train` | 5731 | training set of temporal split used in COLING 2022 Tweet Topic paper|
91
 
92
+ | split | number of texts | description |
93
+ |:------------------------|-----:|------:|
94
+ | test_2020 | 573 | test dataset from September 2019 to August 2020 |
95
+ | test_2021 | 1679 | test dataset from September 2020 to August 2021 |
96
+ | train_2020 | 4585 | training dataset from September 2019 to August 2020 |
97
+ | train_2021 | 1505 | training dataset from September 2020 to August 2021 |
98
+ | train_all | 6090 | combined training dataset of `train_2020` and `train_2021` |
99
+ | validation_2020 | 573 | validation dataset from September 2019 to August 2020 |
100
+ | validation_2021 | 188 | validation dataset from September 2020 to August 2021 |
101
+ | train_random | 4564 | randomly sampled training dataset with the same size as `train_2020` from `train_all` |
102
+ | validation_random | 573 | randomly sampled training dataset with the same size as `validation_2020` from `validation_all` |
103
+ | test_coling2022_random | 5536 | random split used in the COLING paper |
104
+ | train_coling2022_random | 5731 | random split used in the COLING paper |
105
+ | test_coling2022 | 5536 | temporal split used in the COLING paper |
106
+ | train_coling2022 | 5731 | temporal split used in the COLING paper |
107
+
108
  For the temporal-shift setting, we recommend to train models on `train` (an alias of `temporal_2020_train`) with `validation` (an alias of `temporal_2020_validation`) and evaluate on `test` (an alias of `temporal_2021_test`).
109
  For the random split, we recommend to train models on `random_train` with `random_validation` and evaluate on `test` (`temporal_2021_test`).
110