blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
7
109
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
3
license_type
stringclasses
2 values
repo_name
stringlengths
9
56
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
5 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
8.26M
223M
star_events_count
int64
0
25
fork_events_count
int64
0
11
gha_license_id
stringclasses
4 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
2 values
src_encoding
stringclasses
5 values
language
stringclasses
1 value
is_vendor
bool
1 class
is_generated
bool
1 class
length_bytes
int64
35
345k
extension
stringclasses
7 values
content
stringlengths
35
345k
authors
sequencelengths
1
29
author_lines
sequencelengths
1
29
819eb928fa03acd974c3e18443532022f13c2f05
711b11d08abdb3a7df2574b0b4c86af21c5c6750
/dest.h
e06af74e0264187915ab70b86b0e67aa85d2a79f
[]
no_license
nflath/MSP430Emulator
4aee9e093113cc41d9041a1728eedd742fd786b2
a97a1b97b895b3533597bcdb69bec8b75db395df
refs/heads/master
2021-01-13T01:54:55.258203
2015-08-25T05:10:04
2015-08-25T05:10:04
41,343,926
0
0
null
null
null
null
UTF-8
C++
false
false
2,382
h
#include <assert.h> #ifndef DEST_H #define DEST_H #include "error.h" // Classes representing 'Destinations' types in MSP430 - See the section // 'MSP430 addressing modes' in https://en.wikipedia.org/wiki/TI_MSP430#MSP430_CPU class State; class Dest { // Virtual base clase. public: virtual void set(short value) { notimplemented(); } // Sets the value of this destination virtual void setByte(unsigned char value) { notimplemented(); } // Sets the value of this destination (byte addressing mode) virtual short value() { notimplemented(); return 0;} // Returns the value of this destination virtual unsigned char valueByte() { notimplemented(); return 0;} // Returns the value of this destination(byte addressing mode) virtual std::string toString() = 0; // Returns a string representation of this destination virtual bool usedExtensionWord() { return false; } // Whether an extension word was used to represent this destination virtual unsigned char size() { return usedExtensionWord() ? 2 : 0; } // How many extra bytes this destination took up in the assembly }; class RegisterDest : public Dest { // Destination representing a register (r14) public: virtual std::string toString(); virtual void set(short value); virtual void setByte(unsigned char value); virtual short value(); virtual unsigned char valueByte(); RegisterDest(unsigned short reg_) : reg(reg_) {} unsigned short reg; }; class RegisterOffsetDest : public RegisterDest { // Destination representing the memory address at a register plus an offset (0x40(r14)) public: virtual std::string toString(); virtual bool usedExtensionWord() { return true; } virtual void set(short value); virtual void setByte(unsigned char value); virtual short value(); virtual unsigned char valueByte(); RegisterOffsetDest(unsigned short reg_, short offset_) : RegisterDest(reg_), offset(offset_) { } short offset; }; class AbsoluteDest : public Dest { // Destination that is just a memory address (&0x4400) public: virtual std::string toString(); virtual bool usedExtensionWord() { return true; } virtual void set(short value); virtual void setByte(unsigned char value); virtual unsigned char valueByte(); AbsoluteDest(unsigned short address_) : address(address_) { } unsigned short address; }; extern State* s; #endif
[ [ [ 1, 89 ] ] ]
06c1ab5ff8ab138987ba9ad1ed0f423d945bafe7
6817617489ef291d4d53ac844ba7a2b14cc17ae2
/11942.cpp
dcc6c32bd3395a76801df96fb6b8693215e020ec
[]
no_license
Asad51/UVA-Problem-Solving
1932f2cd73261cd702f58d4f189a4a134dbd6286
af28ae36a2074d4e2a67670dbbbd507438c56c3e
refs/heads/master
2020-03-23T14:52:49.420143
2019-10-24T17:03:37
2019-10-24T17:03:37
120,592,261
0
0
null
null
null
null
UTF-8
C++
false
false
449
cpp
#include <bits/stdc++.h> using namespace std; int main(int argc, char const *argv[]) { int t; cin>>t; cout<<"Lumberjacks:\n"; while(t--){ bool in = true; bool dec = true; int p; for(int i=0; i<10; i++){ int n; cin>>n; if(!i){ p = n; continue; } if(n<p || !in) in = false; if(n>p || !dec) dec = false; p = n; } if(!in && !dec) cout<<"Unordered\n"; else cout<<"Ordered\n"; } return 0; }
[ [ [ 1, 32 ] ] ]
cbee84c2e52dc1341528f8254aaf41ac321f936c
2869112fdc836e565f9fe68e290affc1e223c1d8
/pythran/pythonic/include/__builtin__/set/isdisjoint.hpp
10ac38270e03ff35d15b79143e6164321a7b5afb
[ "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause" ]
permissive
coyotte508/pythran
ab26e9ddb9a9e00e77b457df316aa33dc8435914
a5da78f2aebae712a2c6260ab691dab7d09e307c
refs/heads/master
2021-01-15T10:07:09.597297
2015-05-01T07:00:42
2015-05-01T07:00:42
35,020,532
0
0
null
2015-05-04T07:27:29
2015-05-04T07:27:29
null
UTF-8
C++
false
false
621
hpp
#ifndef PYTHONIC_INCLUDE_BUILTIN_SET_ISDISJOINT_HPP #define PYTHONIC_INCLUDE_BUILTIN_SET_ISDISJOINT_HPP #include "pythonic/utils/proxy.hpp" #include "pythonic/types/set.hpp" namespace pythonic { namespace __builtin__ { namespace set { template<class T, class U> bool isdisjoint(types::set<T> const& calling_set, U const& arg_set); template<class U> bool isdisjoint(types::empty_set const& calling_set, U const& arg_set); PROXY_DECL(pythonic::__builtin__::set, isdisjoint); } } } #endif
[ [ [ 1, 27 ] ] ]
36ffd69f21bf2277cef7fea364841c3a12967399
d04b3793ed3611d5bdc8e3bc990bf9eb8562cece
/CheatSheet.cpp
e00970193f00ed69d57e398e36db43427aaf83b0
[]
no_license
nebulou5/CppExamples
c7198cdc24ba1d681cc20738a3b21e2b17b98498
98044227b888a7f9faa8934ab76bb3cac443b75e
refs/heads/master
2023-09-01T18:55:44.584418
2016-01-25T17:57:40
2016-01-25T17:57:40
null
0
0
null
null
null
null
UTF-8
C++
false
false
1,222
cpp
#include <iostream> using namespace std; void printI(int &i) { cout << "Printing i: " << i << endl; } int main() { // defining a basic 10 integer array int x[10]; int xLen = sizeof(x) / sizeof(x[0]); for (int i = 0; i < xLen; i++) { cout << x[i] << endl; } // defining an array in place float v[] = {1.1, 2.2, 3.3}; int vLen = sizeof(v) / sizeof(v[0]); for (int i = 0; i < vLen; i++ ) { cout << v[i] << endl; } // multidimensional array float ab[3][3]; int abLen = sizeof(ab) / sizeof(ab[0]); for (int i = 0; i < abLen; i++) { printI(i); for (int j = 0; j < abLen; j++) { cout << "Element: " << i << ", " << j << ": " << ab[i][j] << endl; } } // array allocated at runtime int someUserDefinedSize = 3; float* rta = new float[someUserDefinedSize]; // pointer dynamically allocates memory at runtime delete[] rta; // but programmer must clean up the memory afterwards // basic pointer usage int i = 3; int *j = &i; // store address of i @ "j" int k = *j; // dereference address stored @ "j" // initializing a nullptr // valid in c++ 11 and beyond int *nullPointer = nullptr; int *nullPointerSynonymous{}; // also sets a nullptr }
[ [ [ 1, 52 ] ] ]
73bbdcfbe50a724cb152edeb3ed8f2aed3d76d69
28b90ad96790edd30edc5ba95137cc20261599b5
/nodemcu/MPU_6050_flask_json/MPU_6050_flask_json.ino
134d2fabdbfb2a13cb534495c378ee4397e38c4e
[]
no_license
anshulahuja98/Codefundo-18-IITJ
b09e1b200a5e5d9bbe23f58addc3460a1a19d732
bfae0dde99cd9133bdeabd06fdb73b512214b1f9
refs/heads/master
2020-03-30T01:52:30.166915
2019-02-10T04:34:35
2019-02-10T04:34:35
150,599,578
5
3
null
null
null
null
UTF-8
C++
false
false
5,804
ino
#include <Wire.h> #include <ESP8266HTTPClient.h> #include <ESP8266WiFi.h> #include <ArduinoJson.h> const uint8_t MPU6050SlaveAddress = 0x68; const uint8_t scl = D1; const uint8_t sda = D2; const uint16_t AccelScaleFactor = 16384; const uint16_t GyroScaleFactor = 131; const uint8_t MPU6050_REGISTER_SMPLRT_DIV = 0x19; const uint8_t MPU6050_REGISTER_USER_CTRL = 0x6A; const uint8_t MPU6050_REGISTER_PWR_MGMT_1 = 0x6B; const uint8_t MPU6050_REGISTER_PWR_MGMT_2 = 0x6C; const uint8_t MPU6050_REGISTER_CONFIG = 0x1A; const uint8_t MPU6050_REGISTER_GYRO_CONFIG = 0x1B; const uint8_t MPU6050_REGISTER_ACCEL_CONFIG = 0x1C; const uint8_t MPU6050_REGISTER_FIFO_EN = 0x23; const uint8_t MPU6050_REGISTER_INT_ENABLE = 0x38; const uint8_t MPU6050_REGISTER_ACCEL_XOUT_H = 0x3B; const uint8_t MPU6050_REGISTER_SIGNAL_PATH_RESET = 0x68; int16_t AccelX, AccelY, AccelZ, Temperature, GyroX, GyroY, GyroZ; String flag_payload = ""; int o =0; void setup() { Serial.begin(115200); Wire.begin(sda, scl); MPU6050_Init(); WiFi.begin("null", "patanahi1"); while (WiFi.status() != WL_CONNECTED) { delay(500); Serial.println("Waiting for connection"); } pinMode(10 , OUTPUT); digitalWrite(10, LOW); } void loop() { if (WiFi.status() == WL_CONNECTED) { double Ax, Ay, Az, T, Gx, Gy, Gz, dev_id; Read_RawValue(MPU6050SlaveAddress, MPU6050_REGISTER_ACCEL_XOUT_H); //divide each with their sensititvity scale factor Ax = (double)AccelX / AccelScaleFactor; Ay = (double)AccelY / AccelScaleFactor; Az = (double)AccelZ / AccelScaleFactor; T = (double)Temperature / 340 + 36.53; //temperature formula Gx = (double)GyroX / GyroScaleFactor; Gy = (double)GyroY / GyroScaleFactor; Gz = (double)GyroZ / GyroScaleFactor; dev_id = 2222; Serial.print("Ax: "); Serial.print(Ax); Serial.print(" Ay: "); Serial.print(Ay); Serial.print(" Az: "); Serial.print(Az); Serial.print(" T: "); Serial.print(T); Serial.print(" Gx: "); Serial.print(Gx); Serial.print(" Gy: "); Serial.print(Gy); Serial.print(" Gz: "); Serial.println(Gz); StaticJsonBuffer<300> JSONbuffer; //Declaring static JSON buffer JsonObject& JSONencoder = JSONbuffer.createObject(); JSONencoder["Sensor type"] = "Acceleration"; JSONencoder["deviceid"] = dev_id; JsonArray& values = JSONencoder.createNestedArray("values"); //JSON array values.add(Ax); //Add value to array values.add(Ay); //Add value to array values.add(Az); //Add value to array values.add(T); //Add value to array JsonArray& timestamps = JSONencoder.createNestedArray("direction1"); //JSON array timestamps.add("x direction"); //Add value to array timestamps.add("y direction"); //Add value to array timestamps.add("z direction"); //Add value to array timestamps.add("Temperature"); //Add vaues to array char JSONmessageBuffer[300]; JSONencoder.prettyPrintTo(JSONmessageBuffer, sizeof(JSONmessageBuffer)); Serial.println(JSONmessageBuffer); HTTPClient http; //Declare object of class HTTPClient http.begin("http://192.168.43.75:8090/post"); //Specify request destination http.addHeader("Content-Type", "application/json"); //Specify content-type header int httpCode = http.POST(JSONmessageBuffer); //Send the request String payload = http.getString(); //Get the response payload Serial.println(httpCode); //Print HTTP return code Serial.println(payload); //Print request response payload http.end(); //Close connection http.begin("http://192.168.43.75:8090/get"); int httpCode1 = http.GET(); //Send the request String payload_get = http.getString(); Serial.println(httpCode1); //Print HTTP return code Serial.println(payload_get); //Print request response payload if (payload_get == "1") { Serial.println("lasjdf liasdj fli"); o = 1; } http.end(); //Close connection if (o == 1) { digitalWrite(10, HIGH); } } else { Serial.println("Error in WiFi connection"); } delay(100); } void I2C_Write(uint8_t deviceAddress, uint8_t regAddress, uint8_t data) { Wire.beginTransmission(deviceAddress); Wire.write(regAddress); Wire.write(data); Wire.endTransmission(); } // read all 14 register void Read_RawValue(uint8_t deviceAddress, uint8_t regAddress) { Wire.beginTransmission(deviceAddress); Wire.write(regAddress); Wire.endTransmission(); Wire.requestFrom(deviceAddress, (uint8_t)14); AccelX = (((int16_t)Wire.read() << 8) | Wire.read()); AccelY = (((int16_t)Wire.read() << 8) | Wire.read()); AccelZ = (((int16_t)Wire.read() << 8) | Wire.read()); Temperature = (((int16_t)Wire.read() << 8) | Wire.read()); GyroX = (((int16_t)Wire.read() << 8) | Wire.read()); GyroY = (((int16_t)Wire.read() << 8) | Wire.read()); GyroZ = (((int16_t)Wire.read() << 8) | Wire.read()); } //configure MPU6050 void MPU6050_Init() { delay(150); I2C_Write(MPU6050SlaveAddress, MPU6050_REGISTER_SMPLRT_DIV, 0x07); I2C_Write(MPU6050SlaveAddress, MPU6050_REGISTER_PWR_MGMT_1, 0x01); I2C_Write(MPU6050SlaveAddress, MPU6050_REGISTER_PWR_MGMT_2, 0x00); I2C_Write(MPU6050SlaveAddress, MPU6050_REGISTER_CONFIG, 0x00); I2C_Write(MPU6050SlaveAddress, MPU6050_REGISTER_GYRO_CONFIG, 0x00);//set +/-250 degree/second full scale I2C_Write(MPU6050SlaveAddress, MPU6050_REGISTER_ACCEL_CONFIG, 0x00);// set +/- 2g full scale I2C_Write(MPU6050SlaveAddress, MPU6050_REGISTER_FIFO_EN, 0x00); I2C_Write(MPU6050SlaveAddress, MPU6050_REGISTER_INT_ENABLE, 0x01); I2C_Write(MPU6050SlaveAddress, MPU6050_REGISTER_SIGNAL_PATH_RESET, 0x00); I2C_Write(MPU6050SlaveAddress, MPU6050_REGISTER_USER_CTRL, 0x00); }
[ [ [ 1, 163 ] ] ]
77e95d74adb0d91068d318a9f567bd723eb4bd30
8a970882a0be9f3d85edbf6ecec0050b762e8d80
/GazEngine/gazengine/Entity.h
ded187d2149547f453fc7c141f5bfa9b3cc59aa9
[]
no_license
simplegsb/gazengine
472d1de8d300c8406ffec148844911fd21d5c1e0
b0a7300aa535b14494789fb88c16d6dda1c4e622
refs/heads/master
2016-09-05T21:02:49.531802
2013-04-29T08:33:16
2013-04-29T08:33:16
null
0
0
null
null
null
null
UTF-8
C++
false
false
1,553
h
#ifndef ENTITY_H_ #define ENTITY_H_ #include <memory> #include <string> #include <vector> class Component; class Entity { public: static const unsigned short UNCATEGORIZED = 0; Entity(unsigned short category = UNCATEGORIZED, const std::string& name = std::string()); virtual ~Entity(); /** * <p> * Adds a component. * </p> * * @param component The component to add. */ void addComponent(Component* component); unsigned short getCategory() const; /** * <p> * Retrieves the components. * </p> * * @return The components. */ template<typename ComponentType> std::vector<ComponentType*> getComponents() const; unsigned int getId() const; /** * <p> * Retrieves the name of this <code>Entity</code>. * </p> * * @return The name of this <code>Entity</code>. */ const std::string& getName() const; /** * <p> * Retrieves a single component. * </p> * * @return The single component. */ template<typename ComponentType> ComponentType* getSingleComponent() const; /** * <p> * Removes a component. * </p> * * @param component The component to remove. */ void removeComponent(const Component& component); private: unsigned short category; /** * <p> * The components. * </p> */ std::vector<Component*> components; unsigned int id; /** * <p> * The name of this <code>Entity</code>. * </p> */ std::string name; static unsigned int nextId; }; #include "Entity.tpp" #endif /* ENTITY_H_ */
[ [ [ 1, 94 ] ] ]
c1be7ed8331d413fbb32c4f4da225eabb0c94905
2d4346d0da0a4145f6bcc91a8cb2c0ab4d669d7e
/chat-up-server/src/Authentication/AuthenticationService.h
b172c8a7281e736007294715851af51947b6b669
[]
no_license
xgallom/chat-up
5570d069a495acf6398bdf1f62b1fb1d91289376
7cb664ce745cf041fb508b04165d2179563aa010
refs/heads/master
2020-04-18T05:40:58.487905
2019-01-29T22:36:04
2019-01-29T22:36:04
167,287,878
0
0
null
null
null
null
UTF-8
C++
false
false
608
h
// // Created by xgallom on 1/27/19. // #ifndef CHAT_UP_AUTHENTICATIONSERVICE_H #define CHAT_UP_AUTHENTICATIONSERVICE_H #include <Messaging/Message.h> #include <Messaging/MessageSender.h> #include <Outcome.h> #include <Authentication/User.h> class AuthenticationStorage; class AuthenticationService { AuthenticationStorage &m_storage; User m_user = User(); public: AuthenticationService() noexcept; Outcome::Enum run(MessageSender &sender, const Message &message); bool registerUser(const User &user); User user() const noexcept; }; #endif //CHAT_UP_AUTHENTICATIONSERVICE_H
[ [ [ 1, 30 ] ] ]
fdb075167409c531a8ffa63f4eb5c358ff9f4c08
8da9d3c3e769ead17f5ad4a4cba6fb3e84a9e340
/src/chila/lib/node/util.hpp
51b98169af1da8738e7ec4fea35fe3d0da6b3455
[]
no_license
blockspacer/chila
6884a540fafa73db37f2bf0117410c33044adbcf
b95290725b54696f7cefc1c430582f90542b1dec
refs/heads/master
2021-06-05T10:22:53.536352
2016-08-24T15:07:49
2016-08-24T15:07:49
null
0
0
null
null
null
null
UTF-8
C++
false
false
3,721
hpp
/* Copyright 2011-2015 Roberto Daniel Gimenez Gamarra ([email protected]) * (C.I.: 1.439.390 - Paraguay) */ #ifndef CHILA_LIB_NODE__UTIL_HPP #define CHILA_LIB_NODE__UTIL_HPP #include <chila/lib/misc/util.hpp> #include "exceptions.hpp" #define my_assert CHILA_LIB_MISC__ASSERT #define CHILA_META_NODE__DEF_CHECK_BASES_ELEM(n, data, elem) \ chila::lib::node::checkAndAdd(list, [&]{ elem::check(newData.get()); }); #define CHILA_META_NODE__DEF_CHECK_BASES(Bases, defMyCheck) \ BOOST_PP_IF(defMyCheck, chila::lib::node::CheckDataUPtr createCheckData(chila::lib::node::CheckData *data) const;, ); \ BOOST_PP_IF(defMyCheck, void myCheck(chila::lib::node::CheckData *data = nullptr) const;, ); \ void check(chila::lib::node::CheckData *data = nullptr) const override \ { \ chila::lib::node::CheckExceptionList list; \ auto newData = BOOST_PP_IF(defMyCheck, createCheckData(data), chila::lib::node::CheckDataUPtr()); \ BOOST_PP_SEQ_FOR_EACH(CHILA_META_NODE__DEF_CHECK_BASES_ELEM,,Bases) \ BOOST_PP_IF(defMyCheck, BOOST_PP_IDENTITY(\ chila::lib::node::checkAndAdd(list, [&]{ myCheck(newData.get()); }); \ ), BOOST_PP_EMPTY)(); \ if (!list.exceptions.empty()) throw list; \ } #define CHILA_META_NODE__DEF_CHECK \ void check(chila::lib::node::CheckData *data = nullptr) const override; #include "nspDef.hpp" MY_NSP_START { template <typename CheckFun> void checkAndAdd(chila::lib::node::CheckExceptionList &list, const CheckFun &checkFun) try { checkFun(); } catch (ExceptionWrapper &ex) { list.add(ex.ex); } catch (CheckExceptionList &ex) { list.add(ex); } catch (Exception &ex) { list.add(ex); } chila::lib::misc::Path getNodePath(const Node &node); // to avoid cyclical dependency template <typename Fun> inline auto catchThrow(const Node &node, const Fun &fun) -> decltype(fun()) try { return fun(); } catch (const boost::exception &ex) { ex << chila::lib::misc::ExceptionInfo::Path(getNodePath(node)); throw; } template <typename ToType, typename Node> inline const ToType &castNode(const Node &node) try { return catchThrow(node, [&]() -> const ToType& { return chila::lib::misc::dynamicCast<ToType>(node); }); } catch (const boost::exception &ex) { InvalidNode exx; insert_error_info(chila::lib::misc::ExceptionInfo::TypeFrom) insert_error_info(chila::lib::misc::ExceptionInfo::TypeTo) insert_error_info(chila::lib::misc::ExceptionInfo::ActualType) insert_error_info(chila::lib::misc::ExceptionInfo::Path) BOOST_THROW_EXCEPTION(exx); } template <typename ToType, typename Node> inline ToType &castNode(Node &node) try { return catchThrow(node, [&]() -> ToType& { return chila::lib::misc::dynamicCast<ToType>(node); }); } catch (const boost::exception &ex) { InvalidNode exx; insert_error_info(chila::lib::misc::ExceptionInfo::TypeFrom) insert_error_info(chila::lib::misc::ExceptionInfo::TypeTo) insert_error_info(chila::lib::misc::ExceptionInfo::ActualType) insert_error_info(chila::lib::misc::ExceptionInfo::Path) BOOST_THROW_EXCEPTION(exx); } NodeWithChildren &mainParent(NodeWithChildren &node); PathVec getReferences( NodeWithChildren &node, const chila::lib::misc::Path &path); void replaceReferences(NodeWithChildren &node, const PathVec &paths, const Node &newRefNode); } MY_NSP_END #include "nspUndef.hpp" #endif
[ [ [ 1, 114 ] ] ]
f387d41d0e3251ca4e290372f77e819aa8f41c08
8c8ea797b0821400c3176add36dd59f866b8ac3d
/AOJ/aoj0578.cpp
9b35642e4fd0541224a11ccbbf275376f137bc2c
[]
no_license
fushime2/competitive
d3d6d8e095842a97d4cad9ca1246ee120d21789f
b2a0f5957d8ae758330f5450306b629006651ad5
refs/heads/master
2021-01-21T16:00:57.337828
2017-05-20T06:45:46
2017-05-20T06:45:46
78,257,409
0
0
null
null
null
null
UTF-8
C++
false
false
682
cpp
#include <iostream> #include <cstdio> #include <algorithm> #include <string> using namespace std; int N; bool isName(string shop, string board) { int m = board.length(); for(int step=1; step<=m; step++) { for(int i=0; i<m; i++) { string s = ""; for(int j=i; j<m; j+=step) { s += board[j]; } if(s.find(shop) != string::npos) return true; } } return false; } int main(void) { cin >> N; string shop, board; cin >> shop; int ans = 0; for(int i=0; i<N; i++) { cin >> board; if(isName(shop, board)) ans++; } cout << ans << endl; return 0; }
[ [ [ 1, 34 ] ] ]
6121382505592535a09b239e90ed50ff680fc2e6
91fcb836ee5af301a2125624ddb96cf49b19494d
/queue/restoreQueue.cpp
2e49fc23784e34f26b2deade801fe414d1b21cb1
[]
no_license
hellozxs/C
fe11911222595ffcdc425218407711bbe59a3b10
1f3815966a8d5668f149ff9957672819a2d2b57d
refs/heads/master
2020-04-06T07:03:14.596747
2016-09-18T10:25:27
2016-09-18T10:25:27
65,121,708
0
0
null
null
null
null
UTF-8
C++
false
false
1,272
cpp
//对一个队列执行以下操作后,发现输出为 1,2,3,4,……,n // 操作:(如果队列不为空) // 1:取队头元素,放入队尾,将队头pop // 2;输出队头,将队头pop // 输入n,求原始队列? // //输入:z -> 表示将要输入的数据的个数 //输入z个n的具体值 #include <iostream> #include <vector> using namespace std; typedef struct MyData { int _data; bool _flag; }MyData; int main() { int z; cin >> z; vector<int> arr(z); for (int i = 0; i < z; i++) { cin >> arr[i]; } int i = 0; for (i = 0; i< z; i++) { if (arr[i] == 1) cout << 1 << endl; else { vector<MyData> a(arr[i]); int j = 0; int count = arr[i]; int tmp = 1; for (; count--; j ++) { int flag = 1; while (flag) { if (j == arr[i]) j = 0; if (a[j]._flag == false) flag--; j++; } if (j == arr[i]) j = 0; while (a[j]._flag == true) { j++; if (j == arr[i]) j = 0; } a[j]._data =tmp++; a[j]._flag = true; } int k = 0; for (; k < arr[i]; k++) cout << a[k]._data << " "; cout << endl; } } return 0; }
[ [ [ 1, 81 ] ] ]
19203a417004197a3b51e22fe5a3dc21d6bcd8c4
57f87cd5fb9448bc6cdbf10769365393efae3a00
/firmware_v5/telelogger/teleclient.h
a6433b87bd84452fb52cfd90b903677e97fb909f
[]
no_license
NatroNx/Freematics
6a366805aef406d6f4deae050414f9611bbe710e
011ae3212f57fdee7648eb34171e141c55a413ed
refs/heads/master
2020-03-25T02:15:51.919396
2018-07-31T13:14:23
2018-07-31T13:14:23
null
0
0
null
null
null
null
UTF-8
C++
false
false
1,569
h
class TeleClient { public: virtual void reset() { txCount = 0; txBytes = 0; rxBytes = 0; } virtual bool notify(byte event, const char* serverKey, const char* payload = 0) { return true; } virtual bool connect() { return true; } virtual bool transmit(const char* packetBuffer, unsigned int packetSize) { return true; } virtual void inbound() {} virtual bool begin() { return true; } virtual void end() {} uint32_t txCount = 0; uint32_t txBytes = 0; uint32_t rxBytes = 0; uint32_t lastSyncTime = 0; uint32_t lastSentTime = 0; uint16_t feedid = 0; }; class TeleClientUDP : public TeleClient { public: bool notify(byte event, const char* serverKey, const char* payload = 0); bool connect(); bool transmit(const char* packetBuffer, unsigned int packetSize); void inbound(); bool verifyChecksum(char* data); #if NET_DEVICE == NET_WIFI UDPClientWIFI net; #elif NET_DEVICE == NET_SIM800 UDPClientSIM800 net; #elif NET_DEVICE == NET_SIM5360 UDPClientSIM5360 net; #elif NET_DEVICE == NET_SIM7600 UDPClientSIM7600 net; #else NullClient net; #endif }; class TeleClientHTTP : public TeleClient { public: bool connect(); bool transmit(const char* packetBuffer, unsigned int packetSize); #if NET_DEVICE == NET_WIFI HTTPClientWIFI net; #elif NET_DEVICE == NET_SIM800 HTTPClientSIM800 net; #elif NET_DEVICE == NET_SIM5360 HTTPClientSIM5360 net; #elif NET_DEVICE == NET_SIM7600 HTTPClientSIM7600 net; #else NullClient net; #endif };
[ [ [ 1, 61 ] ] ]
7ade5627a226f91a37d1e00ba158ba1f1eace614
6a56f4e8bfa2da98cfc51a883b7cae01736c3046
/ovaldi-code-r1804-trunk/src/probes/unix/PasswordProbe.h
03062e89f9d72a9942bd7a1aac071a565a9a4ae6
[]
no_license
tmcclain-taptech/Ovaldi-Win10
6b11e495c8d37fd73aae6c0281287cadbc491e59
7214d742c66f3df808d70e880ba9dad69cea403d
refs/heads/master
2021-07-07T09:36:30.776260
2019-03-28T19:11:29
2019-03-28T19:11:29
164,451,763
2
1
null
null
null
null
UTF-8
C++
false
false
2,857
h
// // //****************************************************************************************// // Copyright (c) 2002-2014, The MITRE Corporation // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, this list // of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, this // list of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // * Neither the name of The MITRE Corporation nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT // SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT // OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR // TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, // EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // //****************************************************************************************// #ifndef PASSWORDPROBE_H #define PASSWORDPROBE_H #include "AbsProbe.h" #include "Item.h" #include "Object.h" #include <pwd.h> #include <string> /** This class is responsible for collecting information about unix password_objects. */ class PasswordProbe : public AbsProbe { public: virtual ~PasswordProbe(); /** Get all the files on the system that match the pattern and collect their attributes. */ virtual ItemVector* CollectItems(Object* object); /** Return a new Item created for storing file information */ virtual Item* CreateItem(); /** Ensure that the PasswordProbe is a singleton. */ static AbsProbe* Instance(); private: PasswordProbe(); /** Creates an item from a passwd struct */ Item *CreateItemFromPasswd(struct passwd const *pwInfo); /** Finds a single item by name. */ Item *GetSingleItem(const std::string& username); /** Finds multiple items according to the given object entity. */ ItemVector *GetMultipleItems(Object *passwordObject); /** Singleton instance */ static PasswordProbe* instance; }; #endif
[ [ [ 1, 75 ] ] ]
8b494503d9bf74ff5d28e840affc467e8a440a51
34a3165ded55c6ac5ffe2ff17c9996c66e0e80b5
/cpp/ETProtect.cpp
989ebb94e3100accc0e0e0fd02bff4f34144df29
[]
no_license
monkeyde17/et-protect-package
d806a3196c28c4176374bc21e7ec5769faa72347
77e04d1834d0723c2de7f424a1cbc1efd2321991
refs/heads/master
2016-09-06T05:53:58.824045
2014-12-07T02:29:37
2014-12-07T02:29:37
27,655,865
0
1
null
null
null
null
UTF-8
C++
false
false
1,888
cpp
// // ETProtect.cpp // testcpp // // Created by etond on 14/12/3. // // #include "ETProtect.h" bool ETProtect::isOriginPackage() { unsigned int uHashValue = calculateValueFromFile(); unsigned int uReadValue = readValueFromFile(); #if (ETPROTECTDEBUG) CCLOG("[log] -- hash %u", uHashValue); CCLOG("[log] -- read %u", uReadValue); #endif if (uReadValue == 0 || uHashValue == 0) { return false; } return uReadValue == uHashValue; } unsigned int ETProtect::readValueFromFile(std::string filename /* default = config.et */) { unsigned int uValue = 0; Data data = FileUtils::getInstance()->getDataFromFile(filename); if (data.getSize() > 0) { uValue = ((ETProtectData *)data.getBytes())->getHashValue(); } return uValue; } unsigned int ETProtect::calculateValueFromFile(unsigned int seed /* default = 0x12345678 */) { std::string path = ""; #if (CC_TARGET_PLATFORM == CC_PLATFORM_ANDROID) JniMethodInfo minfo; bool isHave = JniHelper::getStaticMethodInfo(minfo, "org/cocos2dx/cpp/AppActivity", "getPath", "()Ljava/lang/String;"); if (isHave) { jobject jobj = minfo.env->CallStaticObjectMethod(minfo.classID, minfo.methodID); /* get the return value */ path = JniHelper::jstring2string((jstring)jobj).c_str(); CCLOG("JNI SUCCESS!"); } #endif unsigned int value = 0; if (path.length() > 0) { ssize_t len = 0; unsigned char *buf = FileUtils::getInstance()->getFileDataFromZip(path, "classes.dex", &len); if (buf) { value = XXH32(buf, len, seed); } delete[] buf; } return value; }
[ [ [ 1, 77 ] ] ]
b13420aa4004b14e74a53305e3368b5f4ee9dc92
72d1b579366934a24af7aff13ebf9b8cdaf58d8c
/ReadImages.cpp
a8f247f3d5b7fd89ce0c49662b42f6ef479207a1
[]
no_license
hgpvision/Keypoint-Matcher
48496a59dbaffefe6e89e8e14efabdb9883848bb
bf265aba62b325fab300aba2bad357ff7321ba4a
refs/heads/master
2021-01-15T15:05:50.913505
2017-08-08T14:45:53
2017-08-08T14:45:53
99,702,359
0
1
null
null
null
null
GB18030
C++
false
false
1,454
cpp
/* * 文件名称:ReadImages.cpp * 摘 要:读取图片类,图片序列放入到一个文件夹中,如"C:\\imgFile",按一定格式命名,比如"0001.jpg","00010.jpg","1.jpg" * 使用实例: * 包含头文件: #include "ReadImages.h" * 先声明要给读入图片类:ReadImages imageReader("C:\\imgFile", "", ".jpg"); * 读入图片: Mat prev = imageReader.loadImage(1,0); //将读入"1.jpg"图片,灰度格式 * 2016.05.23 */ #include "ReadImages.h" #pragma once ReadImages::ReadImages(std::string basepath, const std::string imagename, const std::string suffix) { //将路径中的文件夹分隔符统一为'/'(可以不需要这个for循环,会自动统一,该语句使用的命令参考C++ Primer) for (auto &c : basepath) { if (c == '\\') { c = '/'; } } _imgSource._basepath = basepath + "/"; //这里采用'/',而不是'\\' _imgSource._imagename = imagename; //图片名(不含编号) _imgSource._suffix = suffix; //图像扩展名 } //读入单张图片 //输入:imgId,一般要读入序列图片,图片都有个编号 cv::Mat ReadImages::loadImage(int imgId, int imgType) { //将图片编号转好字符串 std::stringstream ss; std::string imgNum; ss << imgId; ss >> imgNum; //得到图片的完整绝对路径 std::string path = _imgSource._basepath + _imgSource._imagename + imgNum + _imgSource._suffix; cv::Mat img = cv::imread(path,imgType); return img; }
[ [ [ 1, 47 ] ] ]
82be31fc3524835f627befe774786637aae24645
469370ad9a81ec746270f54a6433853e517bafde
/input.h
fa59213d1dc084e2a98556a154757033ecde6c1c
[]
no_license
masaedw/landscaper
42431ee6ea952a2476583b838b7ae31e687e6421
7b84f39d16a37de12d20be15e17f199737e1d6a8
refs/heads/master
2016-09-06T00:23:36.120087
2010-02-01T14:52:41
2010-02-01T14:52:41
null
0
0
null
null
null
null
SHIFT_JIS
C++
false
false
3,666
h
#ifndef _INPUT_H_ #define _INPUT_H_ #include <map> #include "collision.h" namespace space{ //キーボード情報 //キーボードの値は整数に変換される。どういう変換かは使う人が考えること。 class Keyboard { public: typedef std::map<unsigned short,unsigned short> KeyMap; protected: KeyMap keys; public: void clear(){keys.clear();} Keyboard(){clear();} ~Keyboard(){} //セット void pushkey(unsigned short _k) { keys[_k] = _k; } //アンセット void pullkey(unsigned short _k) { KeyMap::iterator it = keys.find(_k); if( it != keys.end() ) keys.erase(it); } //情報をもらう bool ispush(unsigned short _k) const{ if( keys.find(_k) == keys.end() ) return false; return true; } //キーを全部丸ごとプレゼントする const KeyMap& getkeys() const{ return keys;} }; //ジョイスティック情報 //ボタン数は13と仮定。 class Joystick { bool button[13]; int x,y,z; public: void clear(){ x=0;y=0;z=0; for(int i=0;i<16;i++) button[i]=false; } Joystick(){clear();} ~Joystick(){} //セット(unsetの必要なし) void setx(int _k) { x=_k; } void sety(int _k) { y=_k; } void setz(int _k) { z=_k; } //ボタン系セット void pushbutton(unsigned int _b){ if(_b>=13)return; button[_b]=true; } //ボタン系アンセット void pullbutton(unsigned int _b){ if(_b>=13)return; button[_b]=false; } //情報をもらう int getx() const { return x; } int gety() const { return y; } int getz() const { return z; } bool ispush(unsigned int _b) const { if(_b>=13)return false; return button[_b]; } }; //マウス //4ボタン以上とか知らん。 class Mouse { public: struct Button { private: bool ispush; Matrix21<int> pushpos; Matrix21<int> pullpos; public: void clear(){ ispush=false; pushpos = Matrix21<int>(0,0); pullpos = Matrix21<int>(0,0); } Button(){ clear(); } void push(const Matrix21<int>& _pos){ispush=true; pushpos=_pos;} void pull(const Matrix21<int>& _pos){ispush=false;pullpos=_pos;} const Matrix21<int>& getPushpos() const {return pushpos;} const Matrix21<int>& getPullpos() const {return pullpos;} bool isPush() const {return ispush;} std::string output() const{ std::stringstream ss(""); ss << "::" << ispush << ":ps(" << pushpos.x << "," << pushpos.y << "):pl(" << pullpos.x << "," << pullpos.y << ")"; return ss.str(); } }; protected: Button left,right,middle; Matrix21<int> nowpos; public: void clear(){ left.clear(); right.clear(); middle.clear(); nowpos = Matrix21<int>(0,0); } Mouse(){clear();} //セット(アンセット必要なし) void setpos(const Matrix21<int> &_pos){ nowpos=_pos; } //ゲット const Matrix21<int>& getpos() const { return nowpos; } //返すだけ const Button &getleft() const {return left;} const Button &getmiddle() const {return middle;} const Button &getright()const {return right;} Button &setleft() {return left;} Button &setmiddle() {return middle;} Button &setright() { return right;} std::string output() const{ std::stringstream ss(""); ss << "*l" << left.output() << "::m" << middle.output() << "::r" << right.output() << "::p(" << nowpos.x << "," << nowpos.y << ")"; return ss.str(); } }; struct Input { Keyboard keyboard; Mouse mouse; Joystick joystick; void clear(){ keyboard.clear(); mouse.clear(); joystick.clear(); } std::string output() const{ std::stringstream ss(""); ss << "**ms" << mouse.output(); return ss.str(); } }; } #endif
[ [ [ 1, 161 ] ] ]
bba7327fa47b292b7a2a12379dbea888640a0e70
58790459d953a3e4b6722ed3ee939f82d9de8c3e
/my/PDF插件/sdkDC_v1_win/Adobe/Acrobat DC SDK/Version 1/PluginSupport/PIBrokerSDK/simple-ipc-lib/src/pipe_win.h
4625bef0dc76752fdcc7b3a4966d087839cbd12f
[]
no_license
tisn05/VS
bb84deb993eb18d43d8edaf81afb753afa3d3188
da56d392a518ba21edcb1a367b4b4378d65506f0
refs/heads/master
2020-09-25T05:49:31.713773
2016-08-22T01:22:16
2016-08-22T01:22:16
66,229,337
0
1
null
null
null
null
UTF-8
C++
false
false
1,659
h
// Copyright (c) 2010 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef SIMPLE_IPC_PIPE_WIN_H_ #define SIMPLE_IPC_PIPE_WIN_H_ #include "os_includes.h" #include "ipc_constants.h" class PipePair { public: PipePair(bool inherit_fd2 = false); HANDLE fd1() const { return srv_; } HANDLE fd2() const { return cln_; } static HANDLE OpenPipeServer(const wchar_t* name, bool low_integrity = false); static HANDLE OpenPipeClient(const wchar_t* name, bool inherit, bool impersonate); private: HANDLE srv_; HANDLE cln_; }; class PipeWin { public: PipeWin(); ~PipeWin(); bool OpenClient(HANDLE pipe); bool OpenServer(HANDLE pipe, bool connect = false); bool Write(const void* buf, size_t sz); bool Read(void* buf, size_t* sz); bool IsConnected() const { return INVALID_HANDLE_VALUE != pipe_; } private: HANDLE pipe_; }; class PipeTransport : public PipeWin { public: static const size_t kBufferSz = 4096; size_t Send(const void* buf, size_t sz) { return Write(buf, sz) ? ipc::RcOK : ipc::RcErrTransportWrite; } char* Receive(size_t* size); private: IPCCharVector buf_; }; #endif // SIMPLE_IPC_PIPE_WIN_H_
[ [ [ 1, 67 ] ] ]
6290623071614e1a5caf46e39ddc6e959b56f6cb
256767f888195384e8a91bff0864d0afc3f7e4e9
/AIS_TrackingAndDetection/tests/moc_euclideanDistance.cpp
8e8d5da02912f8bd3b87c8b1bc3d57a65875d708
[]
no_license
HelenHarman/AIS_Object_Tracking
a71b9c2df78c02180b7bb1ac2561a03a570ef935
3ec7128a739387299ac3e4a648e8c8f30274af97
refs/heads/master
2021-01-15T08:28:06.415775
2016-01-23T13:01:20
2016-01-23T13:01:20
43,375,968
1
0
null
null
null
null
UTF-8
C++
false
false
35
cpp
#include "moc_euclideanDistance.h"
[ [ [ 1, 1 ] ] ]
aad85aa770183929d8ccd9df0aacf59df35f147f
465a87bdead9aee133a7b36b0c2e826ece517cbb
/ARStudy(Image processing)/ARStudy/main.cpp
5ebb0f7ee747397046be8ca1b609d9d04b460e5c
[]
no_license
kshy9598/ARStudy
a5b55f3808d1e64cc96ee3e9266e4f4c23c3d611
c55ce51cb595f677eb07549203d0032430a90aef
refs/heads/master
2020-06-29T05:20:21.879048
2016-12-08T16:22:03
2016-12-08T16:22:03
74,446,922
0
1
null
null
null
null
UHC
C++
false
false
4,927
cpp
#include <iostream> #include <fstream> #include <cmath> #include "opencv2\highgui\highgui.hpp" #include "opencv2\opencv.hpp" #pragma comment(lib, "opencv_world300d.lib") const double PI = 3.14159265; using namespace std; using namespace cv; bool bLBDown = false; // 마우스 버튼 눌렀는지 체크 bool checkDrag; // 드래그가 이루어졌는지 체크 CvRect box; // 드래그로 그린 박스 // 사각형 그리기 void draw_box(IplImage* img, CvRect rect) { cvRectangle(img, cvPoint(rect.x, rect.y), cvPoint(rect.x + rect.width, rect.y + rect.height), cvScalar(0xff, 0x00, 0x00)); } // 마우스 드래그 void on_mouse(int event, int x, int y, int flag, void* params) { IplImage* image = (IplImage*)params; if (event == CV_EVENT_LBUTTONDOWN){ // 왼쪽 버튼 눌렀을 시, 박스 초기화 bLBDown = true; box = cvRect(x, y, 0, 0); } else if (event == CV_EVENT_LBUTTONUP){ // 왼쪽 버튼 눌렀다가 뗐을 때, 박스의 넓이, 높이를 설정한다. bLBDown = false; checkDrag = true; if (box.width < 0) { box.x += box.width; box.width *= -1; } if (box.height < 0) { box.y += box.height; box.height *= -1; } draw_box(image, box); } else if (event == CV_EVENT_MOUSEMOVE && bLBDown){ // 드래그 중에는 박스의 넓이, 높이를 갱신한다. box.width = x - box.x; box.height = y - box.y; } } // 이미지 복사 Mat copyMat(Mat source) { // source의 Mat을 result로 복사하는 작업 // opencv에 이미 구현이 되어있는 작업이다. // source.copyTo(result); Mat result = Mat::zeros(source.size(), source.type()); for (int i = 0; i < source.cols; i++){ for (int j = 0; j < source.rows; j++){ result.at<Vec3b>(j, i) = source.at<Vec3b>(j, i); } } return result; } // 박스내 이미지 복사 Mat copyBoxMat(Mat source) { return source(box); } // y축반전 Mat yReflecting(Mat source) { Mat result = copyMat(source); for (int i = 0; i < box.width; i++){ for (int j = 0; j < box.height; j++){ result.at<Vec3b>((box.y + j), (box.x + i)) = source.at<Vec3b>(box.y + j, (box.width + box.x - 1) - i); } } return result; } // x축반전 Mat xReflecting(Mat source) { Mat result = copyMat(source); for (int i = 0; i < box.width; i++){ for (int j = 0; j < box.height; j++){ result.at<Vec3b>((box.y + j), (box.x + i)) = source.at<Vec3b>((box.height + box.y - 1) - j, (box.x + i)); } } return result; } // 회전 Mat rotating(Mat source, double degree) { Mat result = copyMat(source); int x0 = box.x + (box.width / 2); int y0 = box.y + (box.height / 2); double cosd = cos(degree*PI / 180); double sind = sin(degree*PI / 180); // 원본에 덮어씌우는 부분으로 인해 왼쪽 90도, 오른쪽 90도만 가능 for (int i = 0; i < box.width; i++){ for (int j = 0; j < box.height; j++){ int x1 = (box.x + i); int y1 = (box.y + j); int x = ((cosd * (x1 - x0)) - (sind * (y1 - y0)) + x0); int y = ((sind * (x1 - x0)) - (cosd * (y1 - y0)) + y0); result.at<Vec3b>(y, x) = source.at<Vec3b>((box.y + j), (box.x + i)); } } return result; } // 확대 Mat scaling(Mat source, Mat boxMat, double scale) { Mat result = copyMat(source); Mat scaleBoxMat; // 사각형 안의 Mat의 크기를 scale배 늘린다. int boxWidth = (int)(boxMat.size().width * scale); int boxHeight = (int)(boxMat.size().height * scale); cv::resize(boxMat, scaleBoxMat, Size(boxWidth, boxHeight)); // 붙여넣을 때 시작 위치 정보를 갱신한다. int x = box.x - (box.width / 2); int y = box.y - (box.height / 2); for (int i = 0; i < boxWidth; i++){ for (int j = 0; j < boxHeight; j++){ result.at<Vec3b>((y + j), (x + i)) = scaleBoxMat.at<Vec3b>(j, i); } } return result; } int main() { IplImage copy; IplImage * resultImage; Mat resultMat, xReflectMat, yReflectMat, leftRotateMat, scaleMat, boxMat; // 이미지 불러오기 Mat gMatImage = imread("./picture/pic.jpg", 1); // Mat 이미지를 IplImage 로 복사한다. copy = gMatImage; resultImage = &copy; checkDrag = false; namedWindow("image"); setMouseCallback("image", on_mouse, resultImage); cvShowImage("image", resultImage); //드래그 대기 while (!checkDrag){ waitKey(100); } cvShowImage("image", resultImage); //사각형 추가된 사진 저장 resultMat = cvarrToMat(resultImage); boxMat = copyBoxMat(resultMat); cout << box.x << ' ' << box.y << ' ' << box.width << ' ' << box.height << endl; yReflectMat = yReflecting(resultMat); // y축 반전 xReflectMat = xReflecting(resultMat); // x축 반전 scaleMat = scaling(resultMat, boxMat, 1.5); // 크기 변경 leftRotateMat = rotating(resultMat, -90.0); // 90도 회전 waitKey(2000); imshow("y반전 이미지", yReflectMat); imshow("x반전 이미지", xReflectMat); imshow("왼쪽 90도 회전 이미지", leftRotateMat); imshow("1.5배 확대 이미지", scaleMat); waitKey(0); return 0; }
[ [ [ 1, 200 ] ] ]
9902eb5452ca24078c32fd40c10f077849f5b441
948d5663fe68495eb4090350e3bcfae33c3d314d
/include/forecast_io/factories/SynchronicDataPointDetailsSetter.hpp
d9eb866ded44e428527ccc44cf017d1059a870b9
[ "Apache-2.0" ]
permissive
Crystalix007/DarkSky-CPP
b102f000f85d4413a559d79fa04b421a301bc14a
10497ff292efdc460a67bc5dc44811b3a1459beb
refs/heads/master
2020-06-17T04:49:55.946260
2019-07-08T21:17:18
2019-07-08T21:21:27
195,802,094
0
0
null
null
null
null
UTF-8
C++
false
false
1,951
hpp
#ifndef SYNCHRONICDATAPOINTDETAILSSETTER_HPP #define SYNCHRONICDATAPOINTDETAILSSETTER_HPP #include "../../common/InstanceReferenceHolder.hpp" // Base class: common::InstanceReferenceHolder #include "../listeners/SynchronicDataPointDetailsListener.hpp" // Base class: forecast_io::listeners::SynchronicDataPointDetailsListener #include "../SynchronicDataPoint.hpp" #include "SingleDataPointDetailsSetter.hpp" namespace forecast_io { namespace factories { class SynchronicDataPointDetailsSetter : public listeners::SynchronicDataPointDetailsListener, public common::InstanceReferenceHolder<SynchronicDataPoint> { public: SynchronicDataPointDetailsSetter(SynchronicDataPoint& instance) noexcept; virtual void notifyApparentTemperature(double temperature); virtual void notifyCloudCover(double cloudCover); virtual void notifyDewPoint(double dewPoint); virtual void notifyHumidity(double humidity); virtual void notifyIcon(const std::string& name); virtual void notifyNearestStormBearing(double bearing); virtual void notifyNearestStormDistance(double distance); virtual void notifyOzone(double ozone); virtual void notifyPrecipitationIntensity(double intensity); virtual void notifyPrecipitationProbability(double probability); virtual void notifyPrecipitationType(const std::string& type); virtual void notifyPressure(double pressure); virtual void notifySummary(const std::string& summary); virtual void notifyTemperature(double temperature); virtual void notifyTime(time_t time); virtual void notifyUVIndex(double uvIndex); virtual void notifyVisibility(double visibility); virtual void notifyWindBearing(double bearing); virtual void notifyWindGust(double gust); virtual void notifyWindSpeed(double speed); private: SingleDataPointDetailsSetter singleDataPointDetailsSetter; }; } // namespace factories } // namespace forecast_io #endif // SYNCHRONICDATAPOINTDETAILSSETTER_HPP
[ [ [ 1, 4 ], [ 6, 7 ], [ 9, 15 ], [ 18, 36 ], [ 38, 39 ], [ 41, 46 ], [ 48, 48 ], [ 50, 51 ] ], [ [ 5, 5 ], [ 8, 8 ], [ 16, 17 ], [ 37, 37 ], [ 40, 40 ], [ 47, 47 ], [ 49, 49 ] ] ]
a702a5d40a3a672624e691115d63b4a004c979d0
7aa189c718f8a63c256685a435d027ace3833f6b
/include/ogonek/error.h++
ca7ff1f2bc1d6ac11fcbdaacee61fbdef1c7430d
[ "CC0-1.0" ]
permissive
rmartinho/ogonek
d5523145108de1255298a17c1c25065beb19b82c
0042f30c6c674effd21d379c53658c88054c58b9
refs/heads/devel
2020-05-21T15:17:39.490890
2019-09-29T10:58:31
2019-09-29T10:58:31
8,255,019
16
3
null
null
null
null
UTF-8
C++
false
false
4,549
// Ogonek // // Written in 2017 by Martinho Fernandes <[email protected]> // // To the extent possible under law, the author(s) have dedicated all copyright and related // and neighboring rights to this software to the public domain worldwide. This software is // distributed without any warranty. // // You should have received a copy of the CC0 Public Domain Dedication along with this software. // If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. /** * Error handling * ============== */ #ifndef OGONEK_ERROR_HPP #define OGONEK_ERROR_HPP #include <ogonek/error_fwd.h++> #include <ogonek/concepts.h++> #include <ogonek/types.h++> #include <ogonek/encoding.h++> #include <range/v3/range_concepts.hpp> #include <range/v3/range_traits.hpp> #include <stdexcept> namespace ogonek { /** * .. class:: unicode_error * * The base class for all Unicode-related errors. */ struct unicode_error : virtual std::exception { char const* what() const noexcept override { return u8"Unicode error"; } }; /** * .. class:: template <EncodingForm Encoding>\ * encode_error : virtual unicode_error * * :thrown: when an error occurs during an encoding operation. */ template <typename Encoding> struct encode_error : virtual unicode_error { CONCEPT_ASSERT(EncodingForm<Encoding>()); char const* what() const noexcept override { return u8"encoding failed "; } }; /** * .. class:: template <EncodingForm Encoding>\ * decode_error : virtual unicode_error * * :thrown: when an error occurs during a decoding operation. */ template <typename Encoding> struct decode_error : virtual unicode_error { CONCEPT_ASSERT(EncodingForm<Encoding>()); char const* what() const noexcept override { return u8"decoding failed"; } }; /** * .. var:: auto assume_valid * * A tag used to request that encoding/decoding functions assume the * input has been validated before. * * .. warning:: * * Using this tag with input that isn't actually valid yields * undefined behavior. */ struct assume_valid_t {} constexpr assume_valid {}; /** * .. var:: auto discard_errors * * An error handler for encoding/decoding functions that simply * discards the portions of the input that have errors. */ struct discard_errors_t { template <typename E> optional<code_point> operator()(E) const { return {}; } } constexpr discard_errors {}; CONCEPT_ASSERT(EncodeErrorHandler<discard_errors_t, archetypes::EncodingForm>()); CONCEPT_ASSERT(DecodeErrorHandler<discard_errors_t, archetypes::EncodingForm>()); /** * .. var:: auto replace_errors * * An error handler for encoding/decoding functions that replaces * portions of the input that have errors with a replacement character. * When decoding, this is |u-fffd|, but when encoding and the target * doesn't support it, some encoding-specific character is used * instead. */ struct replace_errors_t { template <typename Encoding, CONCEPT_REQUIRES_(EncodingForm<Encoding>())> optional<code_point> operator()(encode_error<Encoding>) const { return replacement_character_v<Encoding>; } template <typename Encoding, CONCEPT_REQUIRES_(EncodingForm<Encoding>())> optional<code_point> operator()(decode_error<Encoding>) const { return { U'\uFFFD' }; } } constexpr replace_errors {}; CONCEPT_ASSERT(EncodeErrorHandler<replace_errors_t, archetypes::EncodingForm>()); CONCEPT_ASSERT(DecodeErrorHandler<replace_errors_t, archetypes::EncodingForm>()); /** * .. var:: auto throw_error * * An error handler for encoding/decoding functions that throws when an * error is found in the input. */ struct throw_error_t { template <typename E> optional<code_point> operator()(E e) const { throw e; } } constexpr throw_error {}; CONCEPT_ASSERT(EncodeErrorHandler<throw_error_t, archetypes::EncodingForm>()); CONCEPT_ASSERT(DecodeErrorHandler<throw_error_t, archetypes::EncodingForm>()); } // namespace ogonek #endif // OGONEK_ERROR_HPP
[ [ [ 1, 148 ] ] ]
0293e83add680ed3f8e92ecea17c897a91d1270b
1ca3477d99bddb6611f2feb67c8ce0c4569d8a4b
/Memendo.cc
7ac722a8f7b952968a9ec15d38a1c9bbc3afc637
[]
no_license
TaoJun724/DesignPattern
0da37a3a34fba54ba21cb809875b20d9eeba3443
b0c62668cfad5b48b85b413e78ee9334812a74b2
refs/heads/master
2020-06-30T08:57:32.156222
2019-08-07T07:42:09
2019-08-07T07:42:09
200,785,533
0
0
null
null
null
null
UTF-8
C++
false
false
1,461
cc
#include <stdio.h> #include<string> class Memento { public: Memento(int n, std::string s) { _s = s; _money = n; } void setMoney(int n) { _money = n; } int getMoney() { return _money; } void setState(std::string s) { _s = s; } std::string getState() { return _s; } private: int _money; std::string _s; }; class Worker { public: Worker(std::string name, int money, std::string s) { _name = name; _money = money; _s = s; } void show() { printf("%s现在有钱%d元,生活状态%s!\n", _name.c_str(), _money, _s.c_str()); } void setState(int money, std::string s) { _money = money; _s = s; } Memento* createMemnto() { return new Memento(_money,_s); } void restoreMemnto(Memento* m) { _money = m->getMoney(); _s = m->getState(); } private: std::string _name; int _money; std::string _s; }; class WorkerStorage { public: void setMemento(Memento* m) { _memento = m; } Memento* getMement() { return _memento; } private: Memento* _memento; }; int main() { Worker* zhangsan = new Worker("张三", 10000, "富裕"); zhangsan->show(); //记住张三现在的状态 WorkerStorage* storage = new WorkerStorage; storage->setMemento(zhangsan->createMemnto()); //张三赌博输了钱,只剩下10元 zhangsan->setState(10, "贫困"); zhangsan->show(); //经过努力张三又回到了之前的状态。 zhangsan->restoreMemnto(storage->getMement()); zhangsan->show(); return 0; }
[ [ [ 1, 93 ] ] ]
9b67f6e27a369c3b66f7fb8bf435dc44a8750a9f
5dbdb28b66c4828bf83564f1cf63f82480d6395f
/HelloWorld_demo_game/Classes/DemoGame/GameClock.h
0376404ad2fc38c0fa7670b28ad9433a96177a3c
[]
no_license
gengyu-mamba/CardGames
87a2b8fca377a6bd3de0ba4c6fe09a9e85e22848
d2b0133c02cc04b75a49ca164a086aaa5603715d
refs/heads/master
2020-04-02T18:23:19.395504
2018-11-08T02:34:23
2018-11-08T02:34:23
154,698,113
0
0
null
null
null
null
UTF-8
C++
false
false
487
h
#ifndef GAME_CLOCK_H #define GAME_CLOCK_H #include "cocos2d.h" USING_NS_CC; class GameLayer; class GameClock :public CCLayer { public: GameClock(GameLayer *pGameLayer); virtual ~GameClock(); void ShowClock(int iTime,int iTablePos); void ResetClock(); private: virtual void onEnter(); virtual void onExit(); void OnSecondTimer(float dt); CCSprite *m_pSpriteBG; CCLabelAtlas *m_pNumLable; int m_iTime; int m_iTablePos; GameLayer *m_pGameLayer; }; #endif
[ [ [ 1, 34 ] ] ]
4ff557683a174bc39aea59e06a19b563d55927d6
cde943952b79d67f4972d180d20b97fc823db548
/preprocesser/preprocesser/self2.hpp
0892b2563bae695f02d2254829e81a6cb84c630e
[]
no_license
yourgracee/preprocesser
e66a0b0c9680442717652185e9ed2dc5172f7771
349453d4092ffe7927b0c1067d3cefc8bf2bdfff
refs/heads/master
2020-04-09T10:52:16.135824
2018-12-04T02:46:03
2018-12-04T02:46:03
160,285,495
0
0
null
null
null
null
UTF-8
C++
false
false
10,701
hpp
#ifdef LIMIT_2 #include "tuple.hpp" #define START_2 TUPLE(0, LIMIT_2) #define FINISH_2 TUPLE(1, LIMIT_2) #undef DEPTH #define DEPTH 2 # if START_2 <= 0 && FINISH_2 >= 0 # define ITERATION_2 0 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 1 && FINISH_2 >= 1 # define ITERATION_2 1 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 2 && FINISH_2 >= 2 # define ITERATION_2 2 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 3 && FINISH_2 >= 3 # define ITERATION_2 3 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 4 && FINISH_2 >= 4 # define ITERATION_2 4 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 5 && FINISH_2 >= 5 # define ITERATION_2 5 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 6 && FINISH_2 >= 6 # define ITERATION_2 6 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 7 && FINISH_2 >= 7 # define ITERATION_2 7 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 8 && FINISH_2 >= 8 # define ITERATION_2 8 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 9 && FINISH_2 >= 9 # define ITERATION_2 9 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 10 && FINISH_2 >= 10 # define ITERATION_2 10 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 11 && FINISH_2 >= 11 # define ITERATION_2 11 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 12 && FINISH_2 >= 12 # define ITERATION_2 12 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 13 && FINISH_2 >= 13 # define ITERATION_2 13 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 14 && FINISH_2 >= 14 # define ITERATION_2 14 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 15 && FINISH_2 >= 15 # define ITERATION_2 15 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 16 && FINISH_2 >= 16 # define ITERATION_2 16 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 17 && FINISH_2 >= 17 # define ITERATION_2 17 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 18 && FINISH_2 >= 18 # define ITERATION_2 18 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 19 && FINISH_2 >= 19 # define ITERATION_2 19 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 20 && FINISH_2 >= 20 # define ITERATION_2 20 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 21 && FINISH_2 >= 21 # define ITERATION_2 21 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 22 && FINISH_2 >= 22 # define ITERATION_2 22 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 23 && FINISH_2 >= 23 # define ITERATION_2 23 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 24 && FINISH_2 >= 24 # define ITERATION_2 24 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 25 && FINISH_2 >= 25 # define ITERATION_2 25 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 26 && FINISH_2 >= 26 # define ITERATION_2 26 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 27 && FINISH_2 >= 27 # define ITERATION_2 27 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 28 && FINISH_2 >= 28 # define ITERATION_2 28 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 29 && FINISH_2 >= 29 # define ITERATION_2 29 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 30 && FINISH_2 >= 30 # define ITERATION_2 30 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 31 && FINISH_2 >= 31 # define ITERATION_2 31 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 32 && FINISH_2 >= 32 # define ITERATION_2 32 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 33 && FINISH_2 >= 33 # define ITERATION_2 33 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 34 && FINISH_2 >= 34 # define ITERATION_2 34 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 35 && FINISH_2 >= 35 # define ITERATION_2 35 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 36 && FINISH_2 >= 36 # define ITERATION_2 36 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 37 && FINISH_2 >= 37 # define ITERATION_2 37 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 38 && FINISH_2 >= 38 # define ITERATION_2 38 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 39 && FINISH_2 >= 39 # define ITERATION_2 39 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 40 && FINISH_2 >= 40 # define ITERATION_2 40 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 41 && FINISH_2 >= 41 # define ITERATION_2 41 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 42 && FINISH_2 >= 42 # define ITERATION_2 42 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 43 && FINISH_2 >= 43 # define ITERATION_2 43 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 44 && FINISH_2 >= 44 # define ITERATION_2 44 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 45 && FINISH_2 >= 45 # define ITERATION_2 45 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 46 && FINISH_2 >= 46 # define ITERATION_2 46 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 47 && FINISH_2 >= 47 # define ITERATION_2 47 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 48 && FINISH_2 >= 48 # define ITERATION_2 48 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 49 && FINISH_2 >= 49 # define ITERATION_2 49 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 50 && FINISH_2 >= 50 # define ITERATION_2 50 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 51 && FINISH_2 >= 51 # define ITERATION_2 51 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 52 && FINISH_2 >= 52 # define ITERATION_2 52 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 53 && FINISH_2 >= 53 # define ITERATION_2 53 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 54 && FINISH_2 >= 54 # define ITERATION_2 54 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 55 && FINISH_2 >= 55 # define ITERATION_2 55 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 56 && FINISH_2 >= 56 # define ITERATION_2 56 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 57 && FINISH_2 >= 57 # define ITERATION_2 57 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 58 && FINISH_2 >= 58 # define ITERATION_2 58 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 59 && FINISH_2 >= 59 # define ITERATION_2 59 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 60 && FINISH_2 >= 60 # define ITERATION_2 60 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 61 && FINISH_2 >= 61 # define ITERATION_2 61 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 62 && FINISH_2 >= 62 # define ITERATION_2 62 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 63 && FINISH_2 >= 63 # define ITERATION_2 63 # include FILENAME_2 # undef ITERATION_2 # endif # if START_2 <= 64 && FINISH_2 >= 64 # define ITERATION_2 64 # include FILENAME_2 # undef ITERATION_2 # endif #undef DEPTH #define DEPTH 1 #endif
[ [ [ 1, 336 ] ] ]
3c1b9a977eb477d5b194c9d62796fdbdb650af98
74b07eb2bc01383744514b70b385571fb90a1a04
/test/test.cpp
c870d6500c7d2c64c80815743dbbe2e47990c430
[]
no_license
yksym/x86_64_hook_without_ld_preload
8ae067c195bf1eb0f23d67a1087ad3f8ebcfab4a
2ed1eaf37f688199f12e3aa34a6f3435b906b932
refs/heads/master
2016-09-05T11:08:33.212588
2015-09-03T13:02:04
2015-09-03T13:02:04
40,049,578
0
0
null
null
null
null
UTF-8
C++
false
false
742
cpp
#include <stdio.h> #include <stdlib.h> #include <hook.h> extern "C" { void* calloc_hook(size_t n, size_t size) { DECL_ORG_FUNC(calloc, org_calloc); puts( __FUNCTION__ ); return org_calloc(n, size); } }; void test(const char* program) { puts(__FILE__ ": 1st"); { HOOK(program, calloc, calloc_hook); void* b = calloc(1, 10); free(b); } puts(__FILE__ ": 2nd"); void* c = calloc(1, 10); free(c); puts(__FILE__ ": 3rd"); { HOOK(program, calloc, calloc_hook); void* b = calloc(1, 10); free(b); } } void test2(const char* program); int main(int argc, char** argv) { test(argv[0]); test2(LIB_NAME); return 0; }
[ [ [ 1, 43 ] ] ]
7394745b36ae5104c00825320576a873b5d50654
c5ed2d57496cafa1b10925814b4fc670fb9d84af
/Opensankore/build-Sankore_3.1-Unnamed-Release/build/win32/release/moc/moc_UBExportCFF.cpp
ccd670b2c223a0e089afb0adb057245688ac9bac
[]
no_license
Educabile/Ardesia
5f5175fef5d7a15ea79469901bdd4c068cc8fec7
9b7b0bfe1c89e89c0ef28f93f6b1e0ac8c348230
refs/heads/master
2020-03-31T17:16:50.538146
2018-10-10T12:34:43
2018-10-10T12:34:43
152,416,207
0
0
null
null
null
null
UTF-8
C++
false
false
2,429
cpp
/**************************************************************************** ** Meta object code from reading C++ file 'UBExportCFF.h' ** ** Created: Fri 4. May 12:28:36 2018 ** by: The Qt Meta Object Compiler version 63 (Qt 4.8.0) ** ** WARNING! All changes made in this file will be lost! *****************************************************************************/ #include "../../../../../Sankore-3.1/src/adaptors/UBExportCFF.h" #if !defined(Q_MOC_OUTPUT_REVISION) #error "The header file 'UBExportCFF.h' doesn't include <QObject>." #elif Q_MOC_OUTPUT_REVISION != 63 #error "This file was generated using the moc from 4.8.0. It" #error "cannot be used with the include files from this version of Qt." #error "(The moc has changed too much.)" #endif QT_BEGIN_MOC_NAMESPACE static const uint qt_meta_data_UBExportCFF[] = { // content: 6, // revision 0, // classname 0, 0, // classinfo 0, 0, // methods 0, 0, // properties 0, 0, // enums/sets 0, 0, // constructors 0, // flags 0, // signalCount 0 // eod }; static const char qt_meta_stringdata_UBExportCFF[] = { "UBExportCFF\0" }; void UBExportCFF::qt_static_metacall(QObject *_o, QMetaObject::Call _c, int _id, void **_a) { Q_UNUSED(_o); Q_UNUSED(_id); Q_UNUSED(_c); Q_UNUSED(_a); } const QMetaObjectExtraData UBExportCFF::staticMetaObjectExtraData = { 0, qt_static_metacall }; const QMetaObject UBExportCFF::staticMetaObject = { { &UBExportAdaptor::staticMetaObject, qt_meta_stringdata_UBExportCFF, qt_meta_data_UBExportCFF, &staticMetaObjectExtraData } }; #ifdef Q_NO_DATA_RELOCATION const QMetaObject &UBExportCFF::getStaticMetaObject() { return staticMetaObject; } #endif //Q_NO_DATA_RELOCATION const QMetaObject *UBExportCFF::metaObject() const { return QObject::d_ptr->metaObject ? QObject::d_ptr->metaObject : &staticMetaObject; } void *UBExportCFF::qt_metacast(const char *_clname) { if (!_clname) return 0; if (!strcmp(_clname, qt_meta_stringdata_UBExportCFF)) return static_cast<void*>(const_cast< UBExportCFF*>(this)); return UBExportAdaptor::qt_metacast(_clname); } int UBExportCFF::qt_metacall(QMetaObject::Call _c, int _id, void **_a) { _id = UBExportAdaptor::qt_metacall(_c, _id, _a); if (_id < 0) return _id; return _id; } QT_END_MOC_NAMESPACE
[ "salvatore.naddeo@€ducabile.it" ]
[ [ [ 1, 81 ] ] ]
bcee12c3aa60f8c1d8f0802c1bfdfe7600a1e3ef
067b197860f7712e3f92564d0f8d88b0cf34f9d7
/ext/hera/wasserstein/include/dnn/parallel/tbb.h
64c59e0ee985223027151daa201d626258eb299b
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
tgebhart/dionysus_tensorflow
be8757369beb4997b12246c5c7d3cbdbb2fd84bb
344769bb6d5446c8fd43462b1dfd6a08d35631a8
refs/heads/master
2021-09-28T10:03:56.406883
2018-11-16T17:15:34
2018-11-16T17:15:34
112,226,756
2
0
null
null
null
null
UTF-8
C++
false
false
7,126
h
#ifndef PARALLEL_H #define PARALLEL_H //#include <iostream> #include <vector> #include <boost/range.hpp> #include <boost/bind.hpp> #include <boost/foreach.hpp> #ifdef TBB #include <tbb/tbb.h> #include <tbb/concurrent_hash_map.h> #include <tbb/scalable_allocator.h> #include <boost/serialization/split_free.hpp> #include <boost/serialization/collections_load_imp.hpp> #include <boost/serialization/collections_save_imp.hpp> namespace dnn { using tbb::mutex; using tbb::task_scheduler_init; using tbb::task_group; using tbb::task; template<class T> struct vector { typedef tbb::concurrent_vector<T> type; }; template<class T> struct atomic { typedef tbb::atomic<T> type; static T compare_and_swap(type& v, T n, T o) { return v.compare_and_swap(n,o); } }; template<class Iterator, class F> void do_foreach(Iterator begin, Iterator end, const F& f) { tbb::parallel_do(begin, end, f); } template<class Range, class F> void for_each_range_(const Range& r, const F& f) { for (typename Range::iterator cur = r.begin(); cur != r.end(); ++cur) f(*cur); } template<class F> void for_each_range(size_t from, size_t to, const F& f) { //static tbb::affinity_partitioner ap; //tbb::parallel_for(c.range(), boost::bind(&for_each_range_<typename Container::range_type, F>, _1, f), ap); tbb::parallel_for(from, to, f); } template<class Container, class F> void for_each_range(const Container& c, const F& f) { //static tbb::affinity_partitioner ap; //tbb::parallel_for(c.range(), boost::bind(&for_each_range_<typename Container::range_type, F>, _1, f), ap); tbb::parallel_for(c.range(), boost::bind(&for_each_range_<typename Container::const_range_type, F>, _1, f)); } template<class Container, class F> void for_each_range(Container& c, const F& f) { //static tbb::affinity_partitioner ap; //tbb::parallel_for(c.range(), boost::bind(&for_each_range_<typename Container::range_type, F>, _1, f), ap); tbb::parallel_for(c.range(), boost::bind(&for_each_range_<typename Container::range_type, F>, _1, f)); } template<class ID, class NodePointer, class IDTraits, class Allocator> struct map_traits { typedef tbb::concurrent_hash_map<ID, NodePointer, IDTraits, Allocator> type; typedef typename type::range_type range; }; struct progress_timer { progress_timer(): start(tbb::tick_count::now()) {} ~progress_timer() { std::cout << (tbb::tick_count::now() - start).seconds() << " s" << std::endl; } tbb::tick_count start; }; } // Serialization for tbb::concurrent_vector<...> namespace boost { namespace serialization { template<class Archive, class T, class A> void save(Archive& ar, const tbb::concurrent_vector<T,A>& v, const unsigned int file_version) { stl::save_collection(ar, v); } template<class Archive, class T, class A> void load(Archive& ar, tbb::concurrent_vector<T,A>& v, const unsigned int file_version) { stl::load_collection<Archive, tbb::concurrent_vector<T,A>, stl::archive_input_seq< Archive, tbb::concurrent_vector<T,A> >, stl::reserve_imp< tbb::concurrent_vector<T,A> > >(ar, v); } template<class Archive, class T, class A> void serialize(Archive& ar, tbb::concurrent_vector<T,A>& v, const unsigned int file_version) { split_free(ar, v, file_version); } template<class Archive, class T> void save(Archive& ar, const tbb::atomic<T>& v, const unsigned int file_version) { T v_ = v; ar << v_; } template<class Archive, class T> void load(Archive& ar, tbb::atomic<T>& v, const unsigned int file_version) { T v_; ar >> v_; v = v_; } template<class Archive, class T> void serialize(Archive& ar, tbb::atomic<T>& v, const unsigned int file_version) { split_free(ar, v, file_version); } } } #else #include <algorithm> #include <map> #include <boost/progress.hpp> namespace dnn { template<class T> struct vector { typedef ::std::vector<T> type; }; template<class T> struct atomic { typedef T type; static T compare_and_swap(type& v, T n, T o) { if (v != o) return v; v = n; return o; } }; template<class Iterator, class F> void do_foreach(Iterator begin, Iterator end, const F& f) { std::for_each(begin, end, f); } template<class F> void for_each_range(size_t from, size_t to, const F& f) { for (size_t i = from; i < to; ++i) f(i); } template<class Container, class F> void for_each_range(Container& c, const F& f) { BOOST_FOREACH(const typename Container::value_type& i, c) f(i); } template<class Container, class F> void for_each_range(const Container& c, const F& f) { BOOST_FOREACH(const typename Container::value_type& i, c) f(i); } struct mutex { struct scoped_lock { scoped_lock() {} scoped_lock(mutex& ) {} void acquire(mutex& ) const {} void release() const {} }; }; struct task_scheduler_init { task_scheduler_init(unsigned) {} void initialize(unsigned) {} static const unsigned automatic = 0; static const unsigned deferred = 0; }; struct task_group { template<class Functor> void run(const Functor& f) const { f(); } void wait() const {} }; template<class ID, class NodePointer, class IDTraits, class Allocator> struct map_traits { typedef std::map<ID, NodePointer, typename IDTraits::Comparison, Allocator> type; typedef type range; }; using boost::progress_timer; } #endif // TBB namespace dnn { template<class Range, class F> void do_foreach(const Range& range, const F& f) { do_foreach(boost::begin(range), boost::end(range), f); } } #endif
[ [ [ 1, 220 ] ] ]
95534aae2f06adbc3b44e859658780f8bf0cf800
3f9081b23333e414fb82ccb970e15b8e74072c54
/bs2k/behaviors/skills/oneortwo_step_kick_bms.h
e7f968c14d8092e86a4e41ed23b6e7ac3a2558ab
[]
no_license
rc2dcc/Brainstormers05PublicRelease
5c8da63ac4dd3b84985bdf791a4e5580bbf0ba59
2141093960fad33bf2b3186d6364c08197e9fe8e
refs/heads/master
2020-03-22T07:32:36.757350
2018-07-04T18:28:32
2018-07-04T18:28:32
null
0
0
null
null
null
null
UTF-8
C++
false
false
7,945
h
/* Brainstormers 2D (Soccer Simulation League 2D) PUBLIC SOURCE CODE RELEASE 2005 Copyright (C) 1998-2005 Neuroinformatics Group, University of Osnabrueck, Germany This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef _ONEORTWO_STEP_KICK_BMS_H_ #define _ONEORTWO_STEP_KICK_BMS_H_ /* This behavior is a port of Move_1or2_Step_Kick into the behavior framework. get_cmd will try to kick in one step and otherwise return a cmd that will start a two-step kick. There are some functions that return information about the reachable velocities and the needed steps, so that you can prepare in your code for what this behavior will do. This behavior usually takes the current player position as reference point, but you can override this by calling set_state() prior to any other function. This makes it possible to "fake" the player's position during the current cycle. Use reset_state to re-read the WS information, or wait until the next cycle. Note that kick_to_pos_with_final_vel() is rather unprecise concerning the final velocity of the ball. I don't know how to calculate the needed starting vel precisely, so I have taken the formula from the original Neuro_Kick2 move (which was even more unprecise...) and tweaked it a bit, but it is still not perfect. Note also that this behavior, as opposed to the original move, has a working collision check - the original move ignored the player's vel... (w) 2002 Manuel Nickschas */ #include "../base_bm.h" #include "one_step_kick_bms.h" #include "angle.h" #include "Vector.h" #include "tools.h" #include "cmd.h" #include "n++.h" #include "macro_msg.h" #include "valueparser.h" #include "options.h" #include "ws_info.h" #include "log_macros.h" #include "mystate.h" #include "../../policy/abstract_mdp.h" class OneOrTwoStepKickItrActions { static const Value kick_pwr_min = 20; static const Value kick_pwr_inc = 10; static const Value kick_pwr_max = 100; static const Value kick_ang_min = 0; static const Value kick_ang_inc = 2*PI/8.; // static const Value kick_ang_inc = 2*PI/36.; // ridi: I think it should be as much! too much static const Value kick_ang_max = 2*PI-kick_ang_inc; static const Value dash_pwr_min = 20; static const Value dash_pwr_inc = 20; static const Value dash_pwr_max = 100; static const Value turn_ang_min = 0; static const Value turn_ang_inc = 2*PI/18.; // static const Value turn_ang_max = 2*PI-turn_ang_inc; static const Value turn_ang_max = 0; // ridi: do not allow turns static const Value kick_pwr_steps = (kick_pwr_max-kick_pwr_min)/kick_pwr_inc + 1; static const Value dash_pwr_steps = (dash_pwr_max-dash_pwr_min)/dash_pwr_inc + 1; static const Value turn_ang_steps = (turn_ang_max-turn_ang_min)/turn_ang_inc + 1; static const Value kick_ang_steps = (kick_ang_max-kick_ang_min)/kick_ang_inc + 1; Cmd_Main action; Value kick_pwr,dash_pwr; ANGLE kick_ang,turn_ang; int kick_pwr_done,kick_ang_done,dash_pwr_done,turn_ang_done; public: void reset() { kick_pwr_done=0;kick_ang_done=0;dash_pwr_done=0;turn_ang_done=0; kick_pwr=kick_pwr_min;kick_ang= ANGLE(kick_ang_min);dash_pwr=dash_pwr_min; turn_ang=ANGLE(turn_ang_min); } Cmd_Main *next() { if(kick_pwr_done<kick_pwr_steps && kick_ang_done<kick_ang_steps) { action.unset_lock(); action.unset_cmd(); action.set_kick(kick_pwr,kick_ang.get_value_mPI_pPI()); kick_ang+= ANGLE(kick_ang_inc); if(++kick_ang_done>=kick_ang_steps) { kick_ang=ANGLE(kick_ang_min); kick_ang_done=0; kick_pwr+=kick_pwr_inc; kick_pwr_done++; } return &action; } if(dash_pwr_done<dash_pwr_steps) { action.unset_lock(); action.unset_cmd(); action.set_dash(dash_pwr); dash_pwr+=dash_pwr_inc; dash_pwr_done++; return &action; } if(turn_ang_done<turn_ang_steps) { action.unset_lock(); action.unset_cmd(); action.set_turn(turn_ang); turn_ang+= ANGLE(turn_ang_inc); turn_ang_done++; return &action; } return NULL; } }; class OneOrTwoStepKick: public BaseBehavior { static bool initialized; #if 0 struct MyState { Vector my_vel; Vector my_pos; ANGLE my_angle; Vector ball_pos; Vector ball_vel; Vector op_pos; ANGLE op_bodydir; }; #endif OneStepKick *onestepkick; OneOrTwoStepKickItrActions itr_actions; Cmd_Main result_cmd1,result_cmd2; Value result_vel1,result_vel2; bool result_status; bool need_2_steps; long set_in_cycle; Vector target_pos; ANGLE target_dir; Value target_vel; bool kick_to_pos; bool calc_done; MyState fake_state; long fake_state_time; void get_ws_state(MyState &state); MyState get_cur_state(); bool calculate(const MyState &state,Value vel,const ANGLE &dir,const Vector &pos,bool to_pos, Cmd_Main &res_cmd1,Value &res_vel1,Cmd_Main &res_cmd2,Value &res_vel2, bool &need_2steps); bool do_calc(); public: /** This makes it possible to "fake" WS information. This must be called _BEFORE_ any of the kick functions, and is valid for the current cycle only. */ void set_state(const Vector &mypos,const Vector &myvel,const ANGLE &myang, const Vector &ballpos,const Vector &ballvel, const Vector &op_pos = Vector(1000,1000), const ANGLE &op_bodydir = ANGLE(0), const int op_bodydir_age = 1000); void set_state( const AState & state ); /** Resets the current state to that found in WS. This must be called _BEFORE_ any of the kick functions. */ void reset_state(); void kick_in_dir_with_initial_vel(Value vel,const ANGLE &dir); void kick_in_dir_with_max_vel(const ANGLE &dir); void kick_to_pos_with_initial_vel(Value vel,const Vector &point); void kick_to_pos_with_final_vel(Value vel,const Vector &point); void kick_to_pos_with_max_vel(const Vector &point); /** false is returned if we do not reach our desired vel within two cycles. Note that velocities are set to zero if the resulting pos is not ok, meaning that even if a cmd would reach the desired vel, we will ignore it if the resulting pos is not ok. */ bool get_vel(Value &vel_1step,Value &vel_2step); bool get_cmd(Cmd &cmd_1step,Cmd &cmd_2step); bool get_vel(Value &best_vel); // get best possible vel (1 or 2 step) bool get_cmd(Cmd &best_cmd); // get best possible cmd (1 or 2 step) // returns 0 if kick is not possible, 1 if kick in 1 step is possible, 2 if in 2 steps. probably modifies vel int is_kick_possible(Value &speed,const ANGLE &dir); bool need_two_steps(); bool can_keep_ball_in_kickrange(); static bool init(char const * conf_file, int argc, char const* const* argv) { if(initialized) return true; initialized = true; if(OneStepKick::init(conf_file,argc,argv)) { cout << "\nOneOrTwoStepKick behavior initialized."; } else { ERROR_OUT << "\nCould not initialize OneStepKick behavior - stop loading."; exit(1); } return true; } OneOrTwoStepKick() { set_in_cycle = -1; onestepkick = new OneStepKick(); onestepkick->set_log(false); // we don't want OneStepKick-Info in our logs! } virtual ~OneOrTwoStepKick() { delete onestepkick; } }; #endif
[ [ [ 1, 238 ] ] ]
40bc68efa1d237aacc7f1b2a5010046f0e4cf13c
4b1289b0eb41c045a24b4626857097571c988e9b
/Least_Loose_Number_In_The_Array.cpp
01dac7320be1eee1ec1af9b49c0962158327697f
[]
no_license
Arvy1998/Calculus-and-Play-with-New-Syntax
136d942c1be8dc59d3b6d764881d7a9aea5a68cd
b442156a850dad2ed7c53ce86d3435fb35d78fe9
refs/heads/master
2021-07-11T02:05:09.180547
2019-03-12T22:00:42
2019-03-12T22:00:42
129,288,984
1
0
null
null
null
null
UTF-8
C++
false
false
965
cpp
#include <iostream> #include <vector> #include <algorithm> using namespace std; int main() { long long n, seka[101], MIN_TEIG = 0, count; vector <long long> izulus_teig_sk; cin >> n; for (auto x = 0; x < n; x++) { cin >> seka[x]; } for (auto i = 0; i < n; i++) { if (i == 0) { if (seka[i] > seka[i + 1]) { izulus_teig_sk.push_back(seka[i]); } } if (i > 0 && i < n - 1) { if (seka[i] > seka[i - 1] && seka[i] > seka[i + 1]) { izulus_teig_sk.push_back(seka[i]); } } if (i == n - 1) { if (seka[i] > seka[i - 1]) { izulus_teig_sk.push_back(seka[i]); } } } if (izulus_teig_sk.size() == 0 || n <= 1) { cout << "NO"; exit(0); } else { sort(izulus_teig_sk.begin(), izulus_teig_sk.end()); for (size_t j = 0; j < izulus_teig_sk.size(); j++) { if (izulus_teig_sk[j] > 0) { MIN_TEIG = izulus_teig_sk[j]; cout << MIN_TEIG; break; } } } if (MIN_TEIG == 0) { cout << "NO"; } return 0; }
[ [ [ 1, 50 ] ] ]
0f14955c67c8ded4e0b25301b31b8648ae16b52f
4985aad8ecfceca8027709cf488bc2c601443385
/build/Android/Debug/app/src/main/include/Fuse.Resources.Resour-7da5075.h
bb740adfa48c8d9b5e34d9b3bf2a2c23882e8030
[]
no_license
pacol85/Test1
a9fd874711af67cb6b9559d9a4a0e10037944d89
c7bb59a1b961bfb40fe320ee44ca67e068f0a827
refs/heads/master
2021-01-25T11:39:32.441939
2017-06-12T21:48:37
2017-06-12T21:48:37
93,937,614
0
0
null
null
null
null
UTF-8
C++
false
false
883
h
// This file was generated based on '../../AppData/Local/Fusetools/Packages/Fuse.Nodes/1.0.2/$.uno'. // WARNING: Changes might be lost if you edit this file directly. #pragma once #include <Uno.h> namespace g{namespace Fuse{namespace Resources{struct ResourceConverters;}}} namespace g{namespace Uno{namespace Collections{struct Dictionary;}}} namespace g{ namespace Fuse{ namespace Resources{ // internal static class ResourceConverters :3538 // { uClassType* ResourceConverters_typeof(); void ResourceConverters__Get_fn(uType* __type, uObject** __retval); struct ResourceConverters : uObject { static uSStrong< ::g::Uno::Collections::Dictionary*> _converters_; static uSStrong< ::g::Uno::Collections::Dictionary*>& _converters() { return ResourceConverters_typeof()->Init(), _converters_; } static uObject* Get(uType* __type); }; // } }}} // ::g::Fuse::Resources
[ [ [ 1, 27 ] ] ]
f45da0032ec95894d113360f36e2c7e74a3b4bd2
be522f6110d4ed6f330da41a653460e4fb1ed3a7
/runtime/nf/httpparser/Buffer.cc
e4717f524b583c4cfdc3f533c545bdec74c3946c
[]
no_license
yxd886/nfa
2a796b10e6e2085470e54dd4f9a4a3721c0d27a9
209fd992ab931f955afea11562673fec943dd8a6
refs/heads/master
2020-06-17T22:09:37.259587
2017-03-24T03:07:38
2017-03-24T03:07:38
74,966,034
0
0
null
null
null
null
UTF-8
C++
false
false
981
cc
#include "Buffer.h" void CBuffer_Reset(struct CBuffer& Cbuf){ if(!Cbuf.buf){ Cbuf.buf = (char*) malloc(BUFFER_SIZE); memset(Cbuf.buf,0x00,Cbuf._free); } if(Cbuf.len > BUFFER_SIZE * 2 && Cbuf.buf){ //如果目前buf的大小是默认值的2倍,则对其裁剪内存,保持buf的大小为默认值,减小内存耗费 char* newbuf = (char*) realloc(Cbuf.buf,BUFFER_SIZE); if(newbuf != Cbuf.buf) Cbuf.buf = newbuf; } Cbuf.len = 0; Cbuf._free = BUFFER_SIZE; } bool Append(struct CBuffer& Cbuf,char* p, size_t size){ if(!p || !size) return true; if(size < Cbuf._free){ memcpy(Cbuf.buf + Cbuf.len, p , size); Cbuf.len += size; Cbuf._free -= size; }else{ return false; } return true; } char* GetBuf(struct CBuffer Cbuf,uint32_t& size){ size = Cbuf.len; return Cbuf.buf; } uint32_t GetBufLen(struct CBuffer Cbuf){ return Cbuf.len; } void Buf_init(struct CBuffer& Cbuf){ Cbuf.len=0; Cbuf._free=0; Cbuf.buf=0; CBuffer_Reset(Cbuf); }
[ [ [ 1, 52 ] ] ]
b7c78a511904d321aa74ab25ce20a44c3a3f0a0e
d51d72f1b6e834d89c8551bb07487bed84cdaa31
/src/output/osg/customCode/osg/AnimationPath_pmoc.cpp
dc66ae9496a4b899d13c9038f85bec5d8cc50019
[]
no_license
wangfeilong321/osg4noob
221204aa15efa18f1f049548ad076ef27371ecad
99a15c3fd2523c4bd537fa3afb0b47e15c8f335a
refs/heads/master
2021-01-12T20:00:43.854775
2015-11-06T15:37:01
2015-11-06T15:37:01
48,840,543
0
1
null
2015-12-31T07:56:31
2015-12-31T07:56:31
null
UTF-8
C++
false
false
1,778
cpp
#include <osg/AnimationPath> //includes #include <MetaQQuickLibraryRegistry.h> #include <customCode/osg/AnimationPath_pmoc.hpp> using namespace pmoc; osg::QMLAnimationPath::QMLAnimationPath(pmoc::Instance *i,QObject* parent):QReflect_AnimationPath(i,parent){ //custom initializations } QQuickItem* osg::QMLAnimationPath::connect2View(QQuickItem*i){ this->_view=QReflect_AnimationPath::connect2View(i); ///connect this's signals/slot to its qml component//////////////////////////////////////////////////////////////// ///CustomiZE here return this->_view; } void osg::QMLAnimationPath::updateModel(){ QReflect_AnimationPath::updateModel(); ///update this according to state of _model when it has been changed via pmoc///////////////////////////////////////////// ///CustomiZE here } #ifndef AUTOMOCCPP #define AUTOMOCCPP 1 #include "moc_AnimationPath_pmoc.cpp" #endif #include <MetaQQuickLibraryRegistry.h> #include <customCode/osg/AnimationPath_pmoc.hpp> using namespace pmoc; osg::QMLAnimationPathCallback::QMLAnimationPathCallback(pmoc::Instance *i,QObject* parent):QReflect_AnimationPathCallback(i,parent){ //custom initializations } QQuickItem* osg::QMLAnimationPathCallback::connect2View(QQuickItem*i){ this->_view=QReflect_AnimationPathCallback::connect2View(i); ///connect this's signals/slot to its qml component//////////////////////////////////////////////////////////////// ///CustomiZE here return this->_view; } void osg::QMLAnimationPathCallback::updateModel(){ QReflect_AnimationPathCallback::updateModel(); ///update this according to state of _model when it has been changed via pmoc///////////////////////////////////////////// ///CustomiZE here } #ifndef AUTOMOCCPP #define AUTOMOCCPP 1 #include "moc_AnimationPath_pmoc.cpp" #endif
[ [ [ 1, 56 ] ] ]
58b00a4202d32fd15e1533444149d9af6d0445dd
e1cda708e5087296dab0fc224a44dc8d7368c63c
/PWGPP/TPC/AliPerformanceRes.cxx
b459e100d86013154e2bec140f3af8694d0034fa
[]
no_license
pbatzing/AliPhysics
36039c28c9670d08bb8de2bcf369840a3a191bbb
8f0962d72943081031580a544a17d6e52e74c481
refs/heads/master
2021-01-22T22:44:31.003908
2017-04-04T11:14:26
2017-04-04T11:14:26
85,572,640
0
0
null
2017-03-20T12:10:32
2017-03-20T12:10:32
null
UTF-8
C++
false
false
45,205
cxx
//------------------------------------------------------------------------------ // Implementation of AliPerformanceRes class. It keeps information from // comparison of reconstructed and MC particle tracks. In addtion, // it keeps selection cuts used during comparison. The comparison // information is stored in the ROOT histograms. Analysis of these // histograms can be done by using Analyse() class function. The result of // the analysis (histograms/graphs) are stored in the folder which is // a data member of AliPerformanceRes. // // Author: J.Otwinowski 04/02/2008 //------------------------------------------------------------------------------ /* // after running comparison task, read the file, and get component gROOT->LoadMacro("$ALICE_PHYSICS/PWGPP/Macros/LoadMyLibs.C"); LoadMyLibs(); TFile f("Output.root"); AliPerformanceRes * compObj = (AliPerformanceRes*)coutput->FindObject("AliPerformanceRes"); // analyse comparison data compObj->Analyse(); // the output histograms/graphs will be stored in the folder "folderRes" compObj->GetAnalysisFolder()->ls("*"); // user can save whole comparison object (or only folder with anlysed histograms) // in the seperate output file (e.g.) TFile fout("Analysed_Res.root","recreate"); compObj->Write(); // compObj->GetAnalysisFolder()->Write(); fout.Close(); */ #include "TCanvas.h" #include "TH1.h" #include "TH2.h" #include "TAxis.h" #include "TF1.h" #include "AliPerformanceRes.h" #include "AliESDEvent.h" #include "AliESDVertex.h" #include "AliESDtrack.h" #include "AliESDfriendTrack.h" #include "AliESDfriend.h" #include "AliLog.h" #include "AliMCEvent.h" #include "AliMCParticle.h" #include "AliHeader.h" #include "AliGenEventHeader.h" #include "AliStack.h" #include "AliMCInfoCuts.h" #include "AliRecInfoCuts.h" #include "AliTracker.h" #include "AliTreeDraw.h" using namespace std; ClassImp(AliPerformanceRes) Double_t AliPerformanceRes::fgkMergeEntriesCut=5000000.; //5*10**6 tracks (small default to keep default memory foorprint low) //_____________________________________________________________________________ AliPerformanceRes::AliPerformanceRes(const Char_t* name, const Char_t* title, Int_t analysisMode, Bool_t hptGenerator): AliPerformanceObject(name,title), fResolHisto(0), fPullHisto(0), // Cuts fCutsRC(0), fCutsMC(0), // histogram folder fAnalysisFolder(0) { // named constructor // SetAnalysisMode(analysisMode); SetHptGenerator(hptGenerator); Init(); } //_____________________________________________________________________________ AliPerformanceRes::~AliPerformanceRes() { // destructor if(fResolHisto) delete fResolHisto; fResolHisto=0; if(fPullHisto) delete fPullHisto; fPullHisto=0; if(fAnalysisFolder) delete fAnalysisFolder; fAnalysisFolder=0; } //_____________________________________________________________________________ void AliPerformanceRes::Init(){ // // histogram bining // // set pt bins Int_t nPtBins = 50; Double_t ptMin = 1.e-1, ptMax = 20.; Double_t *binsPt = 0; if (IsHptGenerator()) { ptMax = 100.; } binsPt = CreateLogAxis(nPtBins,ptMin,ptMax); Double_t yMin = -0.02, yMax = 0.02; Double_t zMin = -12.0, zMax = 12.0; if(GetAnalysisMode() == 3) { // TrackRef coordinate system yMin = -100.; yMax = 100.; zMin = -100.; zMax = 100.; } // res_y:res_z:res_phi,res_lambda:res_pt:y:z:eta:phi:pt Int_t binsResolHisto[10]={100,100,100,100,100,25,50,144,30,nPtBins}; Double_t minResolHisto[10]={-1.,-1.,-0.03,-0.03,-0.2, yMin, zMin, 0., -1.5, ptMin}; Double_t maxResolHisto[10]={ 1., 1., 0.03, 0.03, 0.2, yMax, zMax, 2.*TMath::Pi(), 1.5, ptMax}; fResolHisto = new THnSparseF("fResolHisto","res_y:res_z:res_phi:res_lambda:res_pt:y:z:phi:eta:pt",10,binsResolHisto,minResolHisto,maxResolHisto); //fResolHisto->SetBinEdges(9,binsPt); fResolHisto->GetAxis(9)->Set(nPtBins,binsPt); fResolHisto->GetAxis(0)->SetTitle("y-y_{mc} (cm)"); fResolHisto->GetAxis(1)->SetTitle("z-z_{mc} (cm)"); fResolHisto->GetAxis(2)->SetTitle("#phi-#phi_{mc} (rad)"); fResolHisto->GetAxis(3)->SetTitle("#lambda-#lambda_{mc} (rad)"); fResolHisto->GetAxis(4)->SetTitle("(p_{T}/p_{Tmc}-1)"); fResolHisto->GetAxis(5)->SetTitle("y_{mc} (cm)"); fResolHisto->GetAxis(6)->SetTitle("z_{mc} (cm)"); fResolHisto->GetAxis(7)->SetTitle("#phi_{mc} (rad)"); fResolHisto->GetAxis(8)->SetTitle("#eta_{mc}"); fResolHisto->GetAxis(9)->SetTitle("p_{Tmc} (GeV/c)"); fResolHisto->Sumw2(); ////pull_y:pull_z:pull_phi:pull_lambda:pull_1pt:y:z:eta:phi:pt //Int_t binsPullHisto[10]={100,100,100,100,100,50,50,30,144,nPtBins}; //Double_t minPullHisto[10]={-5.,-5.,-5.,-5.,-5.,yMin, zMin,-1.5, 0., ptMin}; //Double_t maxPullHisto[10]={ 5., 5., 5., 5., 5., yMax, zMax, 1.5, 2.*TMath::Pi(),ptMax}; //fPullHisto = new THnSparseF("fPullHisto","pull_y:pull_z:pull_phi:pull_lambda:pull_1pt:y:z:eta:phi:pt",10,binsPullHisto,minPullHisto,maxPullHisto); //pull_y:pull_z:pull_snp:pull_tgl:pull_1pt:y:z:snp:tgl:1pt //Int_t binsPullHisto[10]={100,100,100,100,100,50,50,50,50,nPtBins}; //Double_t minPullHisto[10]={-5.,-5.,-5.,-5.,-5.,yMin, zMin,-1., -2.0, ptMin}; //Double_t maxPullHisto[10]={ 5., 5., 5., 5., 5., yMax, zMax, 1., 2.0, ptMax}; Int_t binsPullHisto[10]={100,100,100,100,100,50,50,50,50,20}; Double_t minPullHisto[10]={-5.,-5.,-5.,-5.,-5.,yMin, zMin,-1., -2.0, 0.}; Double_t maxPullHisto[10]={ 5., 5., 5., 5., 5., yMax, zMax, 1., 2.0, 10.}; fPullHisto = new THnSparseF("fPullHisto","pull_y:pull_z:pull_y:pull_z:pull_snp:pull_tgl:pull_1pt:y:z:snp:tgl:1pt",10,binsPullHisto,minPullHisto,maxPullHisto); /* if(!IsHptGenerator()) fPullHisto->SetBinEdges(9,bins1Pt); fPullHisto->GetAxis(0)->SetTitle("(y-y_{mc})/#sigma"); fPullHisto->GetAxis(1)->SetTitle("(z-z_{mc})/#sigma"); fPullHisto->GetAxis(2)->SetTitle("(#phi-#phi_{mc})/#sigma"); fPullHisto->GetAxis(3)->SetTitle("(#lambda-#lambda_{mc})/#sigma"); fPullHisto->GetAxis(4)->SetTitle("(p_{Tmc}/p_{T}-1)/#sigma"); fPullHisto->GetAxis(5)->SetTitle("y_{mc} (cm)"); fPullHisto->GetAxis(6)->SetTitle("z_{mc} (cm)"); fPullHisto->GetAxis(7)->SetTitle("#eta_{mc}"); fPullHisto->GetAxis(8)->SetTitle("#phi_{mc} (rad)"); fPullHisto->GetAxis(9)->SetTitle("p_{Tmc} (GeV/c)"); fPullHisto->Sumw2(); */ fPullHisto->GetAxis(9)->Set(nPtBins,binsPt); fPullHisto->GetAxis(0)->SetTitle("(y-y_{mc})/#sigma"); fPullHisto->GetAxis(1)->SetTitle("(z-z_{mc})/#sigma"); fPullHisto->GetAxis(2)->SetTitle("(sin#phi-sin#phi_{mc})/#sigma"); fPullHisto->GetAxis(3)->SetTitle("(tan#lambda-tan#lambda_{mc})/#sigma"); fPullHisto->GetAxis(4)->SetTitle("(p_{Tmc}/p_{T}-1)/#sigma"); fPullHisto->GetAxis(5)->SetTitle("y_{mc} (cm)"); fPullHisto->GetAxis(6)->SetTitle("z_{mc} (cm)"); fPullHisto->GetAxis(7)->SetTitle("sin#phi_{mc}"); fPullHisto->GetAxis(8)->SetTitle("tan#lambda_{mc}"); fPullHisto->GetAxis(9)->SetTitle("1/p_{Tmc} (GeV/c)^{-1}"); fPullHisto->Sumw2(); // Init cuts if(!fCutsMC) AliDebug(AliLog::kError, "ERROR: Cannot find AliMCInfoCuts object"); if(!fCutsRC) AliDebug(AliLog::kError, "ERROR: Cannot find AliRecInfoCuts object"); // init folder fAnalysisFolder = CreateFolder("folderRes","Analysis Resolution Folder"); } //_____________________________________________________________________________ void AliPerformanceRes::ProcessTPC(AliStack* const stack, AliESDtrack *const esdTrack, AliESDEvent* const esdEvent) { if(!esdEvent) return; if(!esdTrack) return; if( IsUseTrackVertex() ) { // Relate TPC inner params to prim. vertex const AliESDVertex *vtxESD = esdEvent->GetPrimaryVertexTracks(); Double_t x[3]; esdTrack->GetXYZ(x); Double_t b[3]; AliTracker::GetBxByBz(x,b); Bool_t isOK = esdTrack->RelateToVertexTPCBxByBz(vtxESD, b, kVeryBig); if(!isOK) return; /* // JMT -- recaluclate DCA for HLT if not present if ( dca[0] == 0. && dca[1] == 0. ) { track->GetDZ( vtxESD->GetX(), vtxESD->GetY(), vtxESD->GetZ(), esdEvent->GetMagneticField(), dca ); } */ } // Fill TPC only resolution comparison information const AliExternalTrackParam* tmpTrack = esdTrack->GetTPCInnerParam(); if(!tmpTrack) return; AliExternalTrackParam track = *tmpTrack; Float_t dca[2], cov[3]; // dca_xy, dca_z, sigma_xy, sigma_xy_z, sigma_z esdTrack->GetImpactParametersTPC(dca,cov); // // Fill rec vs MC information // if(!stack) return; Int_t label = esdTrack->GetTPCLabel(); //Use TPC-only label for TPC-only resolution analysis if (label <= 0) return; TParticle* particle = stack->Particle(label); if(!particle) return; if(!particle->GetPDG()) return; if(particle->GetPDG()->Charge()==0) return; //printf("charge %d \n",particle->GetPDG()->Charge()); // Only 5 charged particle species (e,mu,pi,K,p) if (fCutsMC->IsPdgParticle(TMath::Abs(particle->GetPdgCode())) == kFALSE) return; // exclude electrons if (fCutsMC->GetEM()==TMath::Abs(particle->GetPdgCode())) return; Float_t deltaPtTPC, deltaYTPC, deltaZTPC, deltaPhiTPC, deltaLambdaTPC; Float_t pull1PtTPC, pullYTPC, pullZTPC, pullPhiTPC, pullLambdaTPC; Float_t mceta = particle->Eta(); Float_t mcphi = particle->Phi(); if(mcphi<0) mcphi += 2.*TMath::Pi(); Float_t mcpt = particle->Pt(); Float_t mcsnp = TMath::Sin(TMath::ATan2(particle->Py(),particle->Px())); Float_t mctgl = TMath::Tan(TMath::ATan2(particle->Pz(),particle->Pt())); // nb. TPC clusters cut if (esdTrack->GetTPCNcls()<fCutsRC->GetMinNClustersTPC()) return; // select primaries if(TMath::Abs(dca[0])<fCutsRC->GetMaxDCAToVertexXY() && TMath::Abs(dca[1])<fCutsRC->GetMaxDCAToVertexZ()) { if(mcpt == 0) return; double Bz = esdEvent->GetMagneticField(); Double_t mclocal[4]; //Rotated x,y,px,py mc-coordinates - the MC data should be rotated since the track is propagated best along x Double_t c = TMath::Cos(track.GetAlpha()); Double_t s = TMath::Sin(track.GetAlpha()); Double_t x = particle->Vx(); Double_t y = particle->Vy(); mclocal[0] = x*c + y*s; mclocal[1] =-x*s + y*c; Double_t px = particle->Px(); Double_t py = particle->Py(); mclocal[2] = px*c + py*s; mclocal[3] =-px*s + py*c; Float_t mcsnplocal = TMath::Sin(TMath::ATan2(mclocal[3],mclocal[2])); track.AliExternalTrackParam::PropagateTo(mclocal[0],Bz); deltaYTPC= track.GetY()-mclocal[1]; deltaZTPC = track.GetZ()-particle->Vz(); deltaLambdaTPC = TMath::ATan2(track.Pz(),track.Pt())-TMath::ATan2(particle->Pz(),particle->Pt()); //See comments in ProcessInnerTPC for remarks on local and global momentum coordinates for deltaPhi / pullSnp calculation deltaPhiTPC = TMath::ATan2(track.Py(),track.Px())-TMath::ATan2(particle->Py(),particle->Px()); //delta1PtTPC = (track.OneOverPt()-1./mcpt)*mcpt; deltaPtTPC = (track.Pt()-mcpt) / mcpt; pullYTPC= deltaYTPC / TMath::Sqrt(track.GetSigmaY2()); pullZTPC = deltaZTPC / TMath::Sqrt(track.GetSigmaZ2()); //Double_t sigma_lambda = 1./(1.+track.GetTgl()*track.GetTgl()) * TMath::Sqrt(track.GetSigmaTgl2()); //Double_t sigma_phi = 1./TMath::Sqrt(1-track.GetSnp()*track.GetSnp()) * TMath::Sqrt(track.GetSigmaSnp2()); pullPhiTPC = (track.GetSnp() - mcsnplocal) / TMath::Sqrt(track.GetSigmaSnp2()); pullLambdaTPC = (track.GetTgl() - mctgl) / TMath::Sqrt(track.GetSigmaTgl2()); //pullLambdaTPC = deltaLambdaTPC / TMath::Sqrt(track.GetSigmaTgl2()); //pullPhiTPC = deltaPhiTPC / TMath::Sqrt(track.GetSigmaSnp2()); if (mcpt) pull1PtTPC = (track.OneOverPt()-1./mcpt) / TMath::Sqrt(track.GetSigma1Pt2()); else pull1PtTPC = 0.; Double_t vResolHisto[10] = {deltaYTPC,deltaZTPC,deltaPhiTPC,deltaLambdaTPC,deltaPtTPC,particle->Vy(),particle->Vz(),mcphi,mceta,mcpt}; fResolHisto->Fill(vResolHisto); Double_t vPullHisto[10] = {pullYTPC,pullZTPC,pullPhiTPC,pullLambdaTPC,pull1PtTPC,particle->Vy(),particle->Vz(),mcsnp,mctgl,1./mcpt}; fPullHisto->Fill(vPullHisto); } } //_____________________________________________________________________________ void AliPerformanceRes::ProcessTPCITS(AliStack* const stack, AliESDtrack *const esdTrack, AliESDEvent* const esdEvent) { // Fill resolution comparison information (TPC+ITS) if(!esdEvent) return; if(!esdTrack) return; if( IsUseTrackVertex() ) { // Relate TPC inner params to prim. vertex const AliESDVertex *vtxESD = esdEvent->GetPrimaryVertexTracks(); Double_t x[3]; esdTrack->GetXYZ(x); Double_t b[3]; AliTracker::GetBxByBz(x,b); Bool_t isOK = esdTrack->RelateToVertexBxByBz(vtxESD, b, kVeryBig); if(!isOK) return; /* // JMT -- recaluclate DCA for HLT if not present if ( dca[0] == 0. && dca[1] == 0. ) { track->GetDZ( vtxESD->GetX(), vtxESD->GetY(), vtxESD->GetZ(), esdEvent->GetMagneticField(), dca ); } */ } Float_t dca[2], cov[3]; // dca_xy, dca_z, sigma_xy, sigma_xy_z, sigma_z esdTrack->GetImpactParameters(dca,cov); // // Fill rec vs MC information // if(!stack) return; Int_t label = TMath::Abs(esdTrack->GetLabel()); //Use global label for combined resolution analysis TParticle* particle = stack->Particle(label); if(!particle) return; if(!particle->GetPDG()) return; if(particle->GetPDG()->Charge()==0) return; //printf("charge %d \n",particle->GetPDG()->Charge()); // Only 5 charged particle species (e,mu,pi,K,p) if (fCutsMC->IsPdgParticle(TMath::Abs(particle->GetPdgCode())) == kFALSE) return; // exclude electrons if (fCutsMC->GetEM()==TMath::Abs(particle->GetPdgCode())) return; Float_t mceta = particle->Eta(); Float_t mcphi = particle->Phi(); if(mcphi<0) mcphi += 2.*TMath::Pi(); Float_t mcpt = particle->Pt(); Float_t mcsnp = TMath::Sin(TMath::ATan2(particle->Py(),particle->Px())); Float_t mctgl = TMath::Tan(TMath::ATan2(particle->Pz(),particle->Pt())); if ((esdTrack->GetStatus()&AliESDtrack::kTPCrefit)==0) return; // TPC refit if (esdTrack->GetTPCNcls()<fCutsRC->GetMinNClustersTPC()) return; // min. nb. TPC clusters if(esdTrack->GetITSclusters(0)<fCutsRC->GetMinNClustersITS()) return; // min. nb. ITS clusters Float_t deltaPtTPC, deltaYTPC, deltaZTPC, deltaPhiTPC, deltaLambdaTPC; Float_t pull1PtTPC, pullYTPC, pullZTPC, pullPhiTPC, pullLambdaTPC; // select primaries if(TMath::Abs(dca[0])<fCutsRC->GetMaxDCAToVertexXY() && TMath::Abs(dca[1])<fCutsRC->GetMaxDCAToVertexZ()) { if(mcpt == 0) return; deltaYTPC= esdTrack->GetY()-particle->Vy(); deltaZTPC = esdTrack->GetZ()-particle->Vz(); deltaLambdaTPC = TMath::ATan2(esdTrack->Pz(),esdTrack->Pt())-TMath::ATan2(particle->Pz(),particle->Pt()); deltaPhiTPC = TMath::ATan2(esdTrack->Py(),esdTrack->Px())-TMath::ATan2(particle->Py(),particle->Px()); //delta1PtTPC = (esdTrack->OneOverPt()-1./mcpt)*mcpt; deltaPtTPC = (esdTrack->Pt()-mcpt) / mcpt; pullYTPC= (esdTrack->GetY()-particle->Vy()) / TMath::Sqrt(esdTrack->GetSigmaY2()); pullZTPC = (esdTrack->GetZ()-particle->Vz()) / TMath::Sqrt(esdTrack->GetSigmaZ2()); //Double_t sigma_lambda = 1./(1.+esdTrack->GetTgl()*esdTrack->GetTgl()) * TMath::Sqrt(esdTrack->GetSigmaTgl2()); //Double_t sigma_phi = 1./TMath::Sqrt(1-esdTrack->GetSnp()*esdTrack->GetSnp()) * TMath::Sqrt(esdTrack->GetSigmaSnp2()); pullPhiTPC = (esdTrack->GetSnp() - mcsnp) / TMath::Sqrt(esdTrack->GetSigmaSnp2()); pullLambdaTPC = (esdTrack->GetTgl() - mctgl) / TMath::Sqrt(esdTrack->GetSigmaTgl2()); //pullLambdaTPC = deltaLambdaTPC / TMath::Sqrt(esdTrack->GetSigmaTgl2()); //pullPhiTPC = deltaPhiTPC / TMath::Sqrt(esdTrack->GetSigmaSnp2()); if (mcpt) pull1PtTPC = (esdTrack->OneOverPt()-1./mcpt) / TMath::Sqrt(esdTrack->GetSigma1Pt2()); else pull1PtTPC = 0.; Double_t vResolHisto[10] = {deltaYTPC,deltaZTPC,deltaPhiTPC,deltaLambdaTPC,deltaPtTPC,particle->Vy(),particle->Vz(),mcphi,mceta,mcpt}; fResolHisto->Fill(vResolHisto); Double_t vPullHisto[10] = {pullYTPC,pullZTPC,pullPhiTPC,pullLambdaTPC,pull1PtTPC,particle->Vy(),particle->Vz(),mcsnp,mctgl,1./mcpt}; fPullHisto->Fill(vPullHisto); /* deltaYTPC= esdTrack->GetY()-particle->Vy(); deltaZTPC = esdTrack->GetZ()-particle->Vz(); deltaLambdaTPC = TMath::ATan2(esdTrack->Pz(),esdTrack->Pt())-TMath::ATan2(particle->Pz(),particle->Pt()); deltaPhiTPC = TMath::ATan2(esdTrack->Py(),esdTrack->Px())-TMath::ATan2(particle->Py(),particle->Px()); delta1PtTPC = (esdTrack->OneOverPt()-1./mcpt)*mcpt; pullYTPC= (esdTrack->GetY()-particle->Vy()) / TMath::Sqrt(esdTrack->GetSigmaY2()); pullZTPC = (esdTrack->GetZ()-particle->Vz()) / TMath::Sqrt(esdTrack->GetSigmaZ2()); Double_t sigma_lambda = 1./(1.+esdTrack->GetTgl()*esdTrack->GetTgl()) * TMath::Sqrt(esdTrack->GetSigmaTgl2()); Double_t sigma_phi = 1./TMath::Sqrt(1-esdTrack->GetSnp()*esdTrack->GetSnp()) * TMath::Sqrt(esdTrack->GetSigmaSnp2()); pullLambdaTPC = deltaLambdaTPC / sigma_lambda; pullPhiTPC = deltaPhiTPC / sigma_phi; //pullLambdaTPC = deltaLambdaTPC / TMath::Sqrt(esdTrack->GetSigmaTgl2()); //pullPhiTPC = deltaPhiTPC / TMath::Sqrt(esdTrack->GetSigmaSnp2()); if (mcpt) pull1PtTPC = (esdTrack->OneOverPt()-1./mcpt) / TMath::Sqrt(esdTrack->GetSigma1Pt2()); else pull1PtTPC = 0.; Double_t vResolHisto[10] = {deltaYTPC,deltaZTPC,deltaPhiTPC,deltaLambdaTPC,delta1PtTPC,particle->Vy(),particle->Vz(),mceta,mcphi,mcpt}; fResolHisto->Fill(vResolHisto); Double_t vPullHisto[10] = {pullYTPC,pullZTPC,pullPhiTPC,pullLambdaTPC,pull1PtTPC,particle->Vy(),particle->Vz(),mceta,mcphi,mcpt}; fPullHisto->Fill(vPullHisto); */ } } //_____________________________________________________________________________ void AliPerformanceRes::ProcessConstrained(AliStack* const stack, AliESDtrack *const esdTrack, AliESDEvent* const esdEvent) { // Fill resolution comparison information (constarained parameters) // if(!esdEvent) return; if(!esdTrack) return; if( IsUseTrackVertex() ) { // Relate TPC inner params to prim. vertex const AliESDVertex *vtxESD = esdEvent->GetPrimaryVertexTracks(); Double_t x[3]; esdTrack->GetXYZ(x); Double_t b[3]; AliTracker::GetBxByBz(x,b); Bool_t isOK = esdTrack->RelateToVertexBxByBz(vtxESD, b, kVeryBig); if(!isOK) return; /* // JMT -- recaluclate DCA for HLT if not present if ( dca[0] == 0. && dca[1] == 0. ) { track->GetDZ( vtxESD->GetX(), vtxESD->GetY(), vtxESD->GetZ(), esdEvent->GetMagneticField(), dca ); } */ } const AliExternalTrackParam * track = esdTrack->GetConstrainedParam(); if(!track) return; Float_t dca[2], cov[3]; // dca_xy, dca_z, sigma_xy, sigma_xy_z, sigma_z esdTrack->GetImpactParameters(dca,cov); // // Fill rec vs MC information // if(!stack) return; Int_t label = TMath::Abs(esdTrack->GetLabel()); TParticle* particle = stack->Particle(label); if(!particle) return; if(!particle->GetPDG()) return; if(particle->GetPDG()->Charge()==0) return; //printf("charge %d \n",particle->GetPDG()->Charge()); // Only 5 charged particle species (e,mu,pi,K,p) if (fCutsMC->IsPdgParticle(TMath::Abs(particle->GetPdgCode())) == kFALSE) return; // exclude electrons if (fCutsMC->GetEM()==TMath::Abs(particle->GetPdgCode())) return; Float_t mceta = particle->Eta(); Float_t mcphi = particle->Phi(); if(mcphi<0) mcphi += 2.*TMath::Pi(); Float_t mcpt = particle->Pt(); Float_t mcsnp = TMath::Sin(TMath::ATan2(particle->Py(),particle->Px())); Float_t mctgl = TMath::Tan(TMath::ATan2(particle->Pz(),particle->Pt())); if ((esdTrack->GetStatus()&AliESDtrack::kTPCrefit)==0) return; // TPC refit if (esdTrack->GetTPCNcls()<fCutsRC->GetMinNClustersTPC()) return; // min. nb. TPC clusters Float_t deltaPtTPC, deltaYTPC, deltaZTPC, deltaPhiTPC, deltaLambdaTPC; Float_t pull1PtTPC, pullYTPC, pullZTPC, pullPhiTPC, pullLambdaTPC; // select primaries if(TMath::Abs(dca[0])<fCutsRC->GetMaxDCAToVertexXY() && TMath::Abs(dca[1])<fCutsRC->GetMaxDCAToVertexZ()) { if(mcpt == 0) return; deltaYTPC= track->GetY()-particle->Vy(); deltaZTPC = track->GetZ()-particle->Vz(); deltaLambdaTPC = TMath::ATan2(track->Pz(),track->Pt())-TMath::ATan2(particle->Pz(),particle->Pt()); deltaPhiTPC = TMath::ATan2(track->Py(),track->Px())-TMath::ATan2(particle->Py(),particle->Px()); //delta1PtTPC = (track->OneOverPt()-1./mcpt)*mcpt; deltaPtTPC = (track->Pt()-mcpt) / mcpt; pullYTPC= (track->GetY()-particle->Vy()) / TMath::Sqrt(track->GetSigmaY2()); pullZTPC = (track->GetZ()-particle->Vz()) / TMath::Sqrt(track->GetSigmaZ2()); //Double_t sigma_lambda = 1./(1.+track->GetTgl()*track->GetTgl()) * TMath::Sqrt(track->GetSigmaTgl2()); //Double_t sigma_phi = 1./TMath::Sqrt(1-track->GetSnp()*track->GetSnp()) * TMath::Sqrt(track->GetSigmaSnp2()); pullPhiTPC = (track->GetSnp() - mcsnp) / TMath::Sqrt(track->GetSigmaSnp2()); pullLambdaTPC = (track->GetTgl() - mctgl) / TMath::Sqrt(track->GetSigmaTgl2()); //pullLambdaTPC = deltaLambdaTPC / TMath::Sqrt(track->GetSigmaTgl2()); //pullPhiTPC = deltaPhiTPC / TMath::Sqrt(track->GetSigmaSnp2()); if (mcpt) pull1PtTPC = (track->OneOverPt()-1./mcpt) / TMath::Sqrt(track->GetSigma1Pt2()); else pull1PtTPC = 0.; Double_t vResolHisto[10] = {deltaYTPC,deltaZTPC,deltaPhiTPC,deltaLambdaTPC,deltaPtTPC,particle->Vy(),particle->Vz(),mcphi,mceta,mcpt}; fResolHisto->Fill(vResolHisto); Double_t vPullHisto[10] = {pullYTPC,pullZTPC,pullPhiTPC,pullLambdaTPC,pull1PtTPC,particle->Vy(),particle->Vz(),mcsnp,mctgl,1./mcpt}; fPullHisto->Fill(vPullHisto); /* deltaYTPC= track->GetY()-particle->Vy(); deltaZTPC = track->GetZ()-particle->Vz(); deltaLambdaTPC = TMath::ATan2(track->Pz(),track->Pt())-TMath::ATan2(particle->Pz(),particle->Pt()); deltaPhiTPC = TMath::ATan2(track->Py(),track->Px())-TMath::ATan2(particle->Py(),particle->Px()); delta1PtTPC = (track->OneOverPt()-1./mcpt)*mcpt; pullYTPC= (track->GetY()-particle->Vy()) / TMath::Sqrt(track->GetSigmaY2()); pullZTPC = (track->GetZ()-particle->Vz()) / TMath::Sqrt(track->GetSigmaZ2()); Double_t sigma_lambda = 1./(1.+track->GetTgl()*track->GetTgl()) * TMath::Sqrt(track->GetSigmaTgl2()); Double_t sigma_phi = 1./TMath::Sqrt(1-track->GetSnp()*track->GetSnp()) * TMath::Sqrt(track->GetSigmaSnp2()); pullLambdaTPC = deltaLambdaTPC / sigma_lambda; pullPhiTPC = deltaPhiTPC / sigma_phi; //pullLambdaTPC = deltaLambdaTPC / TMath::Sqrt(track->GetSigmaTgl2()); //pullPhiTPC = deltaPhiTPC / TMath::Sqrt(track->GetSigmaSnp2()); if (mcpt) pull1PtTPC = (track->OneOverPt()-1./mcpt) / TMath::Sqrt(track->GetSigma1Pt2()); else pull1PtTPC = 0.; Double_t vResolHisto[10] = {deltaYTPC,deltaZTPC,deltaPhiTPC,deltaLambdaTPC,delta1PtTPC,particle->Vy(),particle->Vz(),mceta,mcphi,mcpt}; fResolHisto->Fill(vResolHisto); Double_t vPullHisto[10] = {pullYTPC,pullZTPC,pullPhiTPC,pullLambdaTPC,pull1PtTPC,particle->Vy(),particle->Vz(),mceta,mcphi,mcpt}; fPullHisto->Fill(vPullHisto); */ } } //_____________________________________________________________________________ void AliPerformanceRes::ProcessInnerTPC(AliMCEvent *const mcEvent, AliESDtrack *const esdTrack, AliESDEvent* const esdEvent) { // // Fill resolution comparison information (inner params at TPC reference point) // if(!esdEvent) return; if(!esdTrack) return; if( IsUseTrackVertex() ) { // Relate TPC inner params to prim. vertex const AliESDVertex *vtxESD = esdEvent->GetPrimaryVertexTracks(); Double_t x[3]; esdTrack->GetXYZ(x); Double_t b[3]; AliTracker::GetBxByBz(x,b); Bool_t isOK = esdTrack->RelateToVertexTPCBxByBz(vtxESD, b, kVeryBig); if(!isOK) return; /* // JMT -- recaluclate DCA for HLT if not present if ( dca[0] == 0. && dca[1] == 0. ) { track->GetDZ( vtxESD->GetX(), vtxESD->GetY(), vtxESD->GetZ(), esdEvent->GetMagneticField(), dca ); } */ } const AliExternalTrackParam * innerParam = esdTrack->GetInnerParam(); if(!innerParam) return; // create new AliExternalTrackParam AliExternalTrackParam *track = new AliExternalTrackParam(*innerParam); if(!track) return; Float_t dca[2], cov[3]; // dca_xy, dca_z, sigma_xy, sigma_xy_z, sigma_z esdTrack->GetImpactParametersTPC(dca,cov); // // Fill rec vs MC information // if(!mcEvent) return; Int_t label = esdTrack->GetTPCLabel(); //Use TPC-only label for TPC-only resolution analysis if (label <= 0) return; AliMCParticle *mcParticle = (AliMCParticle*) mcEvent->GetTrack(label); if(!mcParticle) return; // get the first TPC track reference AliTrackReference *ref0 = GetFirstTPCTrackRef(mcParticle); if(!ref0) return; // Only 5 charged particle species (e,mu,pi,K,p) TParticle *particle = mcParticle->Particle(); if(!particle) return; if (fCutsMC->IsPdgParticle(TMath::Abs(particle->GetPdgCode())) == kFALSE) return; // exclude electrons if (fCutsMC->GetEM()==TMath::Abs(particle->GetPdgCode())) return; Double_t mclocal[4]; //Rotated x,y,Px,Py mc-coordinates - the MC data should be rotated since the track is propagated best along x Double_t c = TMath::Cos(track->GetAlpha()); Double_t s = TMath::Sin(track->GetAlpha()); Double_t x = ref0->X(); Double_t y = ref0->Y(); mclocal[0] = x*c + y*s; mclocal[1] =-x*s + y*c; Double_t px = ref0->Px(); Double_t py = ref0->Py(); mclocal[2] = px*c + py*s; mclocal[3] =-px*s + py*c; //Double_t xyz[3] = {ref0->X(),ref0->Y(),ref0->Z()}; // propagate track to the radius of the first track reference within TPC //Double_t trRadius = TMath::Sqrt(xyz[1] * xyz[1] + xyz[0] * xyz[0]); Double_t field[3]; track->GetBxByBz(field); if (TGeoGlobalMagField::Instance()->GetField() == NULL) { Error("ProcessInnerTPC", "Magnetic Field not set"); } Bool_t isOK = track->PropagateToBxByBz(mclocal[0],field); if(!isOK) {return;} //track->AliExternalTrackParam::PropagateTo(mclocal[0],esdEvent->GetMagneticField()); //Use different propagation since above methods returns zero B field and does not work Float_t mceta = -TMath::Log(TMath::Tan(0.5 * ref0->Theta())); Float_t mcphi = ref0->Phi(); if(mcphi<0) mcphi += 2.*TMath::Pi(); Float_t mcpt = ref0->Pt(); Float_t mcsnp = TMath::Sin(TMath::ATan2(ref0->Py(),ref0->Px())); Float_t mcsnplocal = TMath::Sin(TMath::ATan2(mclocal[3],mclocal[2])); Float_t mctgl = TMath::Tan(TMath::ATan2(ref0->Pz(),ref0->Pt())); if ((esdTrack->GetStatus()&AliESDtrack::kTPCrefit)==0) return; // TPC refit if (esdTrack->GetTPCNcls()<fCutsRC->GetMinNClustersTPC()) return; // min. nb. TPC clusters Float_t deltaPtTPC, deltaYTPC, deltaZTPC, deltaPhiTPC, deltaLambdaTPC; Float_t pull1PtTPC, pullYTPC, pullZTPC, pullPhiTPC, pullLambdaTPC; // select primaries Bool_t isPrimary; if ( IsUseTrackVertex() ) { isPrimary = TMath::Abs(dca[0])<fCutsRC->GetMaxDCAToVertexXY() && TMath::Abs(dca[1])<fCutsRC->GetMaxDCAToVertexZ(); } else { //If Track vertex is not used the above check does not work, hence we use the MC reference track isPrimary = label < mcEvent->Stack()->GetNprimary(); } if(isPrimary) { if(mcpt == 0) return; deltaYTPC= track->GetY()-mclocal[1]; deltaZTPC = track->GetZ()-ref0->Z(); deltaLambdaTPC = TMath::ATan2(track->Pz(),track->Pt())-TMath::ATan2(ref0->Pz(),ref0->Pt()); //track->Px() etc returns momentum in global coordinates, hence mc momentum must not be rotated. deltaPhiTPC = TMath::ATan2(track->Py(),track->Px())-TMath::ATan2(ref0->Py(),ref0->Px()); //delta1PtTPC = (track->OneOverPt()-1./mcpt)*mcpt; deltaPtTPC = (track->Pt()-mcpt) / mcpt; pullYTPC= deltaYTPC / TMath::Sqrt(track->GetSigmaY2()); pullZTPC = deltaZTPC / TMath::Sqrt(track->GetSigmaZ2()); //Double_t sigma_lambda = 1./(1.+track->GetTgl()*track->GetTgl()) * TMath::Sqrt(track->GetSigmaTgl2()); //Double_t sigma_phi = 1./TMath::Sqrt(1-track->GetSnp()*track->GetSnp()) * TMath::Sqrt(track->GetSigmaSnp2()); //track->GetSnp returns value in local coordinates, hence here, in contrast to deltaPhiTPC, the mc momentum must be rotated pullPhiTPC = (track->GetSnp() - mcsnplocal) / TMath::Sqrt(track->GetSigmaSnp2()); pullLambdaTPC = (track->GetTgl() - mctgl) / TMath::Sqrt(track->GetSigmaTgl2()); //pullLambdaTPC = deltaLambdaTPC / TMath::Sqrt(track->GetSigmaTgl2()); //pullPhiTPC = deltaPhiTPC / TMath::Sqrt(track->GetSigmaSnp2()); if (mcpt) pull1PtTPC = (track->OneOverPt()-1./mcpt) / TMath::Sqrt(track->GetSigma1Pt2()); else pull1PtTPC = 0.; Double_t vResolHisto[10] = {deltaYTPC,deltaZTPC,deltaPhiTPC,deltaLambdaTPC,deltaPtTPC,ref0->Y(),ref0->Z(),mcphi,mceta,mcpt}; fResolHisto->Fill(vResolHisto); Double_t vPullHisto[10] = {pullYTPC,pullZTPC,pullPhiTPC,pullLambdaTPC,pull1PtTPC,ref0->Y(),ref0->Z(),mcsnp,mctgl,1./mcpt}; fPullHisto->Fill(vPullHisto); } if(track) delete track; } //_____________________________________________________________________________ void AliPerformanceRes::ProcessOuterTPC(AliMCEvent *const mcEvent, AliESDtrack *const esdTrack, AliESDfriendTrack *const friendTrack, AliESDEvent* const esdEvent) { // // Fill resolution comparison information (outer params at TPC reference point) // if(!friendTrack) return; if(!esdEvent) return; if(!esdTrack) return; if( IsUseTrackVertex() ) { // Relate TPC inner params to prim. vertex const AliESDVertex *vtxESD = esdEvent->GetPrimaryVertexTracks(); Double_t x[3]; esdTrack->GetXYZ(x); Double_t b[3]; AliTracker::GetBxByBz(x,b); Bool_t isOK = esdTrack->RelateToVertexTPCBxByBz(vtxESD, b, kVeryBig); if(!isOK) return; /* // JMT -- recaluclate DCA for HLT if not present if ( dca[0] == 0. && dca[1] == 0. ) { track->GetDZ( vtxESD->GetX(), vtxESD->GetY(), vtxESD->GetZ(), esdEvent->GetMagneticField(), dca ); } */ } const AliExternalTrackParam * outerParam = friendTrack->GetTPCOut(); if(!outerParam) return; // create new AliExternalTrackParam AliExternalTrackParam *track = new AliExternalTrackParam(*outerParam); if(!track) return; Float_t dca[2], cov[3]; // dca_xy, dca_z, sigma_xy, sigma_xy_z, sigma_z esdTrack->GetImpactParametersTPC(dca,cov); // // Fill rec vs MC information // if(!mcEvent) return; Int_t label = esdTrack->GetTPCLabel(); //Use TPC-only label for TPC-only resolution analysis if (label <= 0) return; AliMCParticle *mcParticle = (AliMCParticle*) mcEvent->GetTrack(label); if(!mcParticle) return; // get the last TPC track reference AliTrackReference *ref0 = GetLastTPCTrackRef(mcParticle); if(!ref0) return; // Only 5 charged particle species (e,mu,pi,K,p) TParticle *particle = mcParticle->Particle(); if(!particle) return; if (fCutsMC->IsPdgParticle(TMath::Abs(particle->GetPdgCode())) == kFALSE) return; // exclude electrons if (fCutsMC->GetEM()==TMath::Abs(particle->GetPdgCode())) return; // calculate alpha angle Double_t xyz[3] = {ref0->X(),ref0->Y(),ref0->Z()}; Double_t alpha = TMath::ATan2(xyz[1],xyz[0]); //if (alpha<0) alpha += TMath::TwoPi(); // rotate outer track to local coordinate system // and propagate to the radius of the last track reference of TPC Double_t trRadius = TMath::Sqrt(xyz[1] * xyz[1] + xyz[0] * xyz[0]); //Bool_t isOK = track->Propagate(alpha,trRadius,AliTracker::GetBz()); Double_t field[3]; track->GetBxByBz(field); Bool_t isOK = track->PropagateBxByBz(alpha,trRadius,field); if(!isOK) return; Float_t mceta = -TMath::Log(TMath::Tan(0.5 * ref0->Theta())); Float_t mcphi = ref0->Phi(); if(mcphi<0) mcphi += 2.*TMath::Pi(); Float_t mcpt = ref0->Pt(); Float_t mcsnp = TMath::Sin(TMath::ATan2(ref0->Py(),ref0->Px())); Float_t mctgl = TMath::Tan(TMath::ATan2(ref0->Pz(),ref0->Pt())); if ((esdTrack->GetStatus()&AliESDtrack::kTPCrefit)==0) return; // TPC refit if (esdTrack->GetTPCNcls()<fCutsRC->GetMinNClustersTPC()) return; // min. nb. TPC clusters Float_t deltaPtTPC, deltaYTPC, deltaZTPC, deltaPhiTPC, deltaLambdaTPC; Float_t pull1PtTPC, pullYTPC, pullZTPC, pullPhiTPC, pullLambdaTPC; // select primaries if(TMath::Abs(dca[0])<fCutsRC->GetMaxDCAToVertexXY() && TMath::Abs(dca[1])<fCutsRC->GetMaxDCAToVertexZ()) { if(mcpt == 0) return; deltaYTPC= track->GetY(); // already rotated deltaZTPC = track->GetZ()-ref0->Z(); deltaLambdaTPC = TMath::ATan2(track->Pz(),track->Pt())-TMath::ATan2(ref0->Pz(),ref0->Pt()); deltaPhiTPC = TMath::ATan2(track->Py(),track->Px())-TMath::ATan2(ref0->Py(),ref0->Px()); //delta1PtTPC = (track->OneOverPt()-1./mcpt)*mcpt; deltaPtTPC = (track->Pt()-mcpt) / mcpt; pullYTPC= track->GetY() / TMath::Sqrt(track->GetSigmaY2()); pullZTPC = (track->GetZ()-ref0->Z()) / TMath::Sqrt(track->GetSigmaZ2()); //Double_t sigma_lambda = 1./(1.+track->GetTgl()*track->GetTgl()) * TMath::Sqrt(track->GetSigmaTgl2()); //Double_t sigma_phi = 1./TMath::Sqrt(1-track->GetSnp()*track->GetSnp()) * TMath::Sqrt(track->GetSigmaSnp2()); pullPhiTPC = (track->GetSnp() - mcsnp) / TMath::Sqrt(track->GetSigmaSnp2()); pullLambdaTPC = (track->GetTgl() - mctgl) / TMath::Sqrt(track->GetSigmaTgl2()); //pullLambdaTPC = deltaLambdaTPC / TMath::Sqrt(track->GetSigmaTgl2()); //pullPhiTPC = deltaPhiTPC / TMath::Sqrt(track->GetSigmaSnp2()); if (mcpt) pull1PtTPC = (track->OneOverPt()-1./mcpt) / TMath::Sqrt(track->GetSigma1Pt2()); else pull1PtTPC = 0.; Double_t vResolHisto[10] = {deltaYTPC,deltaZTPC,deltaPhiTPC,deltaLambdaTPC,deltaPtTPC,ref0->Y(),ref0->Z(),mcphi,mceta,mcpt}; fResolHisto->Fill(vResolHisto); Double_t vPullHisto[10] = {pullYTPC,pullZTPC,pullPhiTPC,pullLambdaTPC,pull1PtTPC,ref0->Y(),ref0->Z(),mcsnp,mctgl,1./mcpt}; fPullHisto->Fill(vPullHisto); } if(track) delete track; } //_____________________________________________________________________________ AliTrackReference * AliPerformanceRes::GetFirstTPCTrackRef(AliMCParticle *mcParticle) { // return first TPC track reference if(!mcParticle) return 0; // find first track reference // check direction to select proper reference point for looping tracks Int_t nTrackRef = mcParticle->GetNumberOfTrackReferences(); AliTrackReference *ref = 0; AliTrackReference *refIn = 0; for (Int_t iref = 0; iref < nTrackRef; iref++) { ref = mcParticle->GetTrackReference(iref); if(ref && (ref->DetectorId()==AliTrackReference::kTPC)) { Float_t dir = ref->X()*ref->Px()+ref->Y()*ref->Py(); if(dir < 0.) break; refIn = ref; break; } } return refIn; } //_____________________________________________________________________________ AliTrackReference * AliPerformanceRes::GetLastTPCTrackRef(AliMCParticle *mcParticle) { // return last TPC track reference if(!mcParticle) return 0; // find last track reference // check direction to select proper reference point for looping tracks Int_t nTrackRef = mcParticle->GetNumberOfTrackReferences(); AliTrackReference *ref = 0; AliTrackReference *refOut = 0; for (Int_t iref = 0; iref < nTrackRef; iref++) { ref = mcParticle->GetTrackReference(iref); if(ref && (ref->DetectorId()==AliTrackReference::kTPC)) { Float_t dir=ref->X()*ref->Px()+ref->Y()*ref->Py(); if(dir< 0.0) break; refOut = ref; } } return refOut; } //_____________________________________________________________________________ void AliPerformanceRes::Exec(AliMCEvent* const mcEvent, AliESDEvent *const esdEvent, AliESDfriend *const esdFriend, const Bool_t bUseMC, const Bool_t bUseESDfriend) { // Process comparison information if(!esdEvent) { Error("Exec","esdEvent not available"); return; } AliHeader* header = 0; AliGenEventHeader* genHeader = 0; AliStack* stack = 0; TArrayF vtxMC(3); if(bUseMC) { if(!mcEvent) { Error("Exec","mcEvent not available"); return; } // get MC event header header = mcEvent->Header(); if (!header) { Error("Exec","Header not available"); return; } // MC particle stack stack = mcEvent->Stack(); if (!stack) { Error("Exec","Stack not available"); return; } // get MC vertex genHeader = header->GenEventHeader(); if (!genHeader) { Error("Exec","Could not retrieve genHeader from Header"); return; } genHeader->PrimaryVertex(vtxMC); } else { Error("Exec","MC information required!"); return; } // use ESD friends if(bUseESDfriend) { if(!esdFriend) { Error("Exec","esdFriend not available"); return; } } // get event vertex const AliESDVertex *vtxESD = NULL; if( IsUseTrackVertex() ) { // track vertex vtxESD = esdEvent->GetPrimaryVertexTracks(); if(vtxESD && (vtxESD->GetStatus()<=0)) return; } // Coverity - removed else branch as vtxESD is not further used in method // else { // // TPC track vertex // vtxESD = esdEvent->GetPrimaryVertexTPC(); // } // Process events for (Int_t iTrack = 0; iTrack < esdEvent->GetNumberOfTracks(); iTrack++) { AliESDtrack *track = esdEvent->GetTrack(iTrack); if(!track) continue; AliESDfriendTrack *friendTrack=0; Int_t label = TMath::Abs(track->GetLabel()); if ( label > stack->GetNtrack() ) { ULong_t status = track->GetStatus(); printf ("Error : ESD MCLabel %d - StackSize %d - Status %lu \n", track->GetLabel(), stack->GetNtrack(), status ); printf(" NCluster %d \n", track->GetTPCclusters(0) ); /* if ((status&AliESDtrack::kTPCrefit)== 0 ) printf(" kTPCrefit \n"); if ((status&AliESDtrack::kTPCin)== 0 ) printf(" kTPCin \n"); if ((status&AliESDtrack::kTPCout)== 0 ) printf(" kTPCout \n"); if ((status&AliESDtrack::kTRDrefit)== 0 ) printf(" kTRDrefit \n"); if ((status&AliESDtrack::kTRDin)== 0 ) printf(" kTRDin \n"); if ((status&AliESDtrack::kTRDout)== 0 ) printf(" kTRDout \n"); if ((status&AliESDtrack::kITSrefit)== 0 ) printf(" kITSrefit \n"); if ((status&AliESDtrack::kITSin)== 0 ) printf(" kITSin \n"); if ((status&AliESDtrack::kITSout)== 0 ) printf(" kITSout \n"); */ continue; } if (label == 0) continue; //Cannot distinguish between track or fake track if (track->GetLabel() < 0) continue; //Do not consider fake tracks if(GetAnalysisMode() == 0) ProcessTPC(stack,track,esdEvent); else if(GetAnalysisMode() == 1) ProcessTPCITS(stack,track,esdEvent); else if(GetAnalysisMode() == 2) ProcessConstrained(stack,track,esdEvent); else if(GetAnalysisMode() == 3) ProcessInnerTPC(mcEvent,track,esdEvent); else if(GetAnalysisMode() == 4) { if(bUseESDfriend) { friendTrack=esdFriend->GetTrack(iTrack); if(!friendTrack) continue; } ProcessOuterTPC(mcEvent,track,friendTrack,esdEvent); } else { printf("ERROR: AnalysisMode %d \n",fAnalysisMode); return; } } } //_____________________________________________________________________________ TH1F* AliPerformanceRes::MakeResol(TH2F * his, Int_t integ, Bool_t type, Int_t cut){ // Create resolution histograms TH1F *hisr, *hism; if (!gPad) new TCanvas; hisr = AliTreeDraw::CreateResHistoII(his,&hism,integ,kTRUE,cut); if (type) return hism; else return hisr; } //_____________________________________________________________________________ void AliPerformanceRes::Analyse() { // Analyse comparison information and store output histograms // in the folder "folderRes" // TH1::AddDirectory(kFALSE); TH1F *h=0; TH2F *h2D=0; TObjArray *aFolderObj = new TObjArray; if(!aFolderObj) return; // write results in the folder TCanvas * c = new TCanvas("Phi resol Tan","Phi resol Tan"); c->cd(); char name[256]; char title[256]; for(Int_t i=0; i<5; i++) { for(Int_t j=5; j<10; j++) { if(j!=8) fResolHisto->GetAxis(8)->SetRangeUser(-0.9,0.89); // eta window //if(j!=8) fResolHisto->GetAxis(8)->SetRangeUser(0.0,0.89); // eta window else fResolHisto->GetAxis(8)->SetRangeUser(-1.5,1.49); if(GetAnalysisMode() == 3) fResolHisto->GetAxis(5)->SetRangeUser(-80.,79.99); // y range h2D = (TH2F*)fResolHisto->Projection(i,j); h = AliPerformanceRes::MakeResol(h2D,1,0,100); snprintf(name,256,"h_res_%d_vs_%d",i,j); h->SetName(name); h->GetXaxis()->SetTitle(fResolHisto->GetAxis(j)->GetTitle()); snprintf(title,256,"%s %s",fResolHisto->GetAxis(i)->GetTitle(),"(resolution)"); h->GetYaxis()->SetTitle(title); snprintf(title,256,"%s vs %s",title,fResolHisto->GetAxis(j)->GetTitle()); h->SetTitle(title); if(j==9) h->SetBit(TH1::kLogX); aFolderObj->Add(h); h = AliPerformanceRes::MakeResol(h2D,1,1,100); //h = (TH1F*)arr->At(1); snprintf(name,256,"h_mean_res_%d_vs_%d",i,j); h->SetName(name); h->GetXaxis()->SetTitle(fResolHisto->GetAxis(j)->GetTitle()); snprintf(title,256,"%s %s",fResolHisto->GetAxis(i)->GetTitle(),"(mean)"); h->GetYaxis()->SetTitle(title); snprintf(title,256,"%s vs %s",title,fResolHisto->GetAxis(j)->GetTitle()); h->SetTitle(title); if(j==9) h->SetBit(TH1::kLogX); aFolderObj->Add(h); fResolHisto->GetAxis(8)->SetRangeUser(-1.5,1.5); fResolHisto->GetAxis(9)->SetRangeUser(0.1,100.); // if(j!=8) fPullHisto->GetAxis(8)->SetRangeUser(-0.9,0.89); // eta window //if(j!=8) fPullHisto->GetAxis(8)->SetRangeUser(0.0,0.89); // eta window else fPullHisto->GetAxis(8)->SetRangeUser(-1.5,1.49); // eta window fPullHisto->GetAxis(9)->SetRangeUser(0.,9.99); // 1./pt threshold if(GetAnalysisMode() == 3) fPullHisto->GetAxis(5)->SetRangeUser(-80.,79.99); // y range h2D = (TH2F*)fPullHisto->Projection(i,j); h = AliPerformanceRes::MakeResol(h2D,1,0,100); snprintf(name,256,"h_pull_%d_vs_%d",i,j); h->SetName(name); h->GetXaxis()->SetTitle(fPullHisto->GetAxis(j)->GetTitle()); snprintf(title,256,"%s %s",fPullHisto->GetAxis(i)->GetTitle(),"(resolution)"); h->GetYaxis()->SetTitle(title); snprintf(title,256,"%s vs %s",title,fPullHisto->GetAxis(j)->GetTitle()); h->SetTitle(title); //if(j==9) h->SetBit(TH1::kLogX); aFolderObj->Add(h); h = AliPerformanceRes::MakeResol(h2D,1,1,100); snprintf(name,256,"h_mean_pull_%d_vs_%d",i,j); h->SetName(name); h->GetXaxis()->SetTitle(fPullHisto->GetAxis(j)->GetTitle()); snprintf(title,256,"%s %s",fPullHisto->GetAxis(i)->GetTitle(),"(mean)"); h->GetYaxis()->SetTitle(title); snprintf(title,256,"%s vs %s",title,fPullHisto->GetAxis(j)->GetTitle()); h->SetTitle(title); //if(j==9) h->SetBit(TH1::kLogX); aFolderObj->Add(h); } } for (Int_t i = 0;i < fResolHisto->GetNdimensions();i++) { fResolHisto->GetAxis(i)->SetRange(1,0); //Reset Range } for (Int_t i = 0;i < fPullHisto->GetNdimensions();i++) { fPullHisto->GetAxis(i)->SetRange(1,0); //Reset Range } // export objects to analysis folder fAnalysisFolder = ExportToFolder(aFolderObj); // delete only TObjArray if(aFolderObj) delete aFolderObj; } //_____________________________________________________________________________ TFolder* AliPerformanceRes::ExportToFolder(TObjArray * array) { // recreate folder avery time and export objects to new one // AliPerformanceRes * comp=this; TFolder *folder = comp->GetAnalysisFolder(); TString name, title; TFolder *newFolder = 0; Int_t i = 0; Int_t size = array->GetSize(); if(folder) { // get name and title from old folder name = folder->GetName(); title = folder->GetTitle(); // delete old one delete folder; // create new one newFolder = CreateFolder(name.Data(),title.Data()); newFolder->SetOwner(); // add objects to folder while(i < size) { newFolder->Add(array->At(i)); i++; } } return newFolder; } //_____________________________________________________________________________ Long64_t AliPerformanceRes::Merge(TCollection* const list) { // Merge list of objects (needed by PROOF) if (!list) return 0; if (list->IsEmpty()) return 1; TIterator* iter = list->MakeIterator(); TObject* obj = 0; // collection of generated histograms Int_t count=0; while((obj = iter->Next()) != 0) { AliPerformanceRes* entry = dynamic_cast<AliPerformanceRes*>(obj); if (entry == 0) continue; if (fResolHisto->GetEntries()<fgkMergeEntriesCut){ fResolHisto->Add(entry->fResolHisto); fPullHisto->Add(entry->fPullHisto); } count++; } return count; } //_____________________________________________________________________________ TFolder* AliPerformanceRes::CreateFolder(TString name,TString title) { // create folder for analysed histograms // TFolder *folder = 0; folder = new TFolder(name.Data(),title.Data()); return folder; }
[ "jotwinow@f7af4fe6-9843-0410-8265-dc069ae4e863", "[email protected]", "mkrzewic@f7af4fe6-9843-0410-8265-dc069ae4e863", "jthaeder@f7af4fe6-9843-0410-8265-dc069ae4e863", "marian@f7af4fe6-9843-0410-8265-dc069ae4e863" ]
[ [ [ 1, 15 ], [ 17, 61 ], [ 63, 64 ], [ 66, 220 ], [ 225, 253 ], [ 255, 263 ], [ 292, 292 ], [ 297, 297 ], [ 302, 617 ], [ 629, 630 ], [ 632, 633 ], [ 641, 645 ], [ 647, 655 ], [ 667, 669 ], [ 671, 672 ], [ 674, 677 ], [ 680, 682 ], [ 685, 930 ], [ 932, 932 ], [ 939, 972 ], [ 976, 1029 ], [ 1032, 1104 ], [ 1114, 1159 ], [ 1161, 1175 ], [ 1180, 1195 ] ], [ [ 16, 16 ] ], [ [ 62, 62 ], [ 65, 65 ] ], [ [ 221, 224 ], [ 254, 254 ], [ 264, 291 ], [ 293, 296 ], [ 298, 301 ], [ 618, 628 ], [ 631, 631 ], [ 634, 640 ], [ 646, 646 ], [ 656, 666 ], [ 670, 670 ], [ 673, 673 ], [ 678, 679 ], [ 683, 684 ], [ 931, 931 ], [ 933, 938 ], [ 973, 975 ], [ 1030, 1031 ], [ 1105, 1113 ] ], [ [ 1160, 1160 ], [ 1176, 1179 ] ] ]
fb91f6eaa8d8ee4570429a0ed27d843cbd9b7e4f
1d3220f8f390aa9f5847ace75afdb045531e6cd5
/DMUploadingRule.cpp
afbd8ae8d3bf984ef96b2eeb2910225e7677da0c
[]
no_license
persenlee/FileTransfer
d85d7577e3366c5515d86ef47c8c925feb2d62d1
fff2f0b9649fd6259cece45e6b2adfa3bb26d008
refs/heads/master
2021-01-01T03:46:55.882496
2016-05-20T03:22:28
2016-05-20T03:22:28
58,631,662
0
0
null
null
null
null
UTF-8
C++
false
false
7,625
cpp
// // DMUploadingRule.cpp // FileTransfer // // Created by duomai on 16/5/16. // // #include "DMUploadingRule.hpp" #include "DMFileUploadManager.hpp" #include "DMFileTransferException.hpp" #include "DMFileTransferDef.h" using namespace web; using namespace web::json; void logRequest(http_request request); void logResponse(http_response response); void DMUploadingRule::setUserToken(string const &token) { _userToken = token; } #pragma mark - Ovrride Methods bool DMUploadingRule::preProcess() { return checkFileMeta(); } bool DMUploadingRule::doUpload() { return uploadFileChunk(); } bool DMUploadingRule::endProcess() { return true; } #pragma mark - Private Methods bool DMUploadingRule::checkFileMeta() { json::value params = json::value::object(); utility::string_t file_hash(U("file_hash")); params[file_hash] = json::value(_file.SHA1()); utility::string_t file_crc(U("file_crc")); params[file_crc] = json::value(_file.CRC32()); utility::string_t file_name(U("file_name")); params[file_name] = json::value(_file.fileName); utility::string_t total_size(U("total_size")); params[total_size] = json::value(_file.fileSize()); const method mtd = methods::POST; const utility::string_t field_name1 = U("user_session_token"); const utility::string_t value1 = _userToken; http_request request(mtd); request.set_request_uri(U("check_file_meta")); request.headers().add(field_name1, value1); request.set_body(params); request.headers().add(U("User-Agent"), "DMFileUploadManager"); pplx::task<http_response> responsetTask = _client.request(request); logRequest(request); http_response resp ; try { resp = responsetTask.get(); } catch (http_exception ex) { DMFileTransferException dmException((int)DMFileTransfer_CouldNotGetResponse); throw dmException; } logResponse(resp); if (resp.status_code() == 200) { pplx::task<json::value> jsonTask = resp.extract_json(); json::value result= jsonTask.get(); json::value file_status = result[U("file_status")]; // json::value file_upload_token = result[U("file_upload_token")]; json::value file_url = result[U("file_url")]; json::value last_ok_chunk_sn = result[U("last_ok_chunk_sn")]; json::value chunk_size = result[U("chunk_size")]; cfmrModel = CheckFileMetaResponseModel((DMFileUploadStatus)file_status.as_integer(), !file_upload_token.is_null() ? file_upload_token.as_string() : "", !chunk_size.is_null() ? chunk_size.as_integer() : 0, !last_ok_chunk_sn.is_null() ? last_ok_chunk_sn.as_integer() : 0, !file_url.is_null() ? file_url.as_string() : ""); switch (cfmrModel.file_status) { case 0: { _handler->uploadingProgressHandler(0, _file.fileSize()); } break; case 1: { _handler->uploadingProgressHandler(cfmrModel.chunk_size * cfmrModel.last_ok_chunk_sn, _file.fileSize()); } break; case 2: { _handler->uploadCompleteHandler(true,file_url.as_string()); _handler->uploadingProgressHandler(_file.fileSize(), _file.fileSize()); return false; } break; default: break; } return true; } else { _handler->uploadCompleteHandler(false, ""); return false; } } bool DMUploadingRule::uploadFileChunk() { bool success = false; const method mtd = methods::POST; const utility::string_t field_name1 = U("upload_token"); const utility::string_t value1 = cfmrModel.file_upload_token; http_request request(mtd); request.set_request_uri(U("upload_file_chunk")); request.headers().add(field_name1, value1); request.headers().set_content_length(INTMAX_MAX); request.headers().add(U("User-Agent"), "DMFileUploadManager"); int64_t File_Size = _file.fileLength(); _file.openFile(/*iostream::binary*/); //续传 int64_t uploadedSize = cfmrModel.last_ok_chunk_sn * cfmrModel.chunk_size; if (uploadedSize > 0) { _file.moveFileReadPos(uploadedSize); } do { int request_again_times = 0; int readSize = cfmrModel.chunk_size; if (uploadedSize + cfmrModel.chunk_size > File_Size) { readSize = File_Size % cfmrModel.chunk_size; } std::vector<unsigned char> body; _file.readFile2Vector(body, readSize); request.set_body(body); request_again: request_again_times ++; logRequest(request); pplx::task<http_response> responsetTask = _client.request(request); http_response resp ; try { resp = responsetTask.get(); } catch (http_exception ex) { DMFileTransferException dmException((int)DMFileTransfer_CouldNotGetResponse); throw dmException; } logResponse(resp); if (resp.status_code() == 200) { pplx::task<json::value> jsonTask = resp.extract_json(); json::value result= jsonTask.get(); cout << "response body : " << result.serialize() << endl; json::value file_status = result[U("file_status")]; // json::value chunk_status = result[U("chunk_status")]; json::value file_url = result[U("file_url")]; switch (file_status.as_integer()) { case 1: //正在上传 { if (chunk_status.as_integer() == -1) { // 标识数据块保存失败 goto request_again; } else if(chunk_status.as_integer() == 0){ uploadedSize += readSize; _handler->uploadingProgressHandler(uploadedSize, File_Size); } } break; case 2: //上传成功 { uploadedSize += readSize; _handler->uploadingProgressHandler(uploadedSize, File_Size); _handler->uploadCompleteHandler(true,file_url.as_string()); success = true; } break; case -1: //文件上传失败 { _handler->uploadCompleteHandler(false, "");; } break; default: break; } } else { _handler->uploadCompleteHandler(false, ""); } } while (uploadedSize < File_Size); _file.closeFile(); return success; } void logRequest(http_request request) { cout << "---------------------request start------------------" << endl; cout << request.to_string() << endl; cout << "---------------------request end------------------" << endl << endl; } void logResponse(http_response response) { cout << "++++++++++++++++++++response start++++++++++++++++++++" << endl; cout << response.to_string() << endl; cout << "++++++++++++++++++++response end++++++++++++++++++++" << endl << endl; }
[ [ [ 1, 238 ] ] ]
376f659de9de4170c19135d4e5e6f4fa7d95e938
bc33abf80f11c4df023d6b1f0882bff1e30617cf
/CPP/other/李泉彰/hhh.cpp
0e114bad33f893d5b9c3e166e74c22c9172ffe76
[]
no_license
pkuzhd/ALL
0fad250c710b4804dfd6f701d8f45381ee1a5d11
c18525decdfa70346ec32ca2f47683951f4c39e0
refs/heads/master
2022-07-11T18:20:26.435897
2019-11-20T13:25:24
2019-11-20T13:25:24
119,031,607
0
0
null
2022-06-21T21:10:42
2018-01-26T09:19:23
C++
UTF-8
C++
false
false
6,060
cpp
#include <stdio.h> #include <iostream> using namespace std; int qipan[15][15] = { 0 }; int times = 0; int print(); bool is_win(int x, int y, int flag); bool is_near(int x, int y); bool AI_set(int flag); int calc_value(int x, int y, int flag, int depth, int _max_value); int qixing(int x, int y); int main(int argc, char **argv) { int flag = 1; while (true) { ++times; print(); int x, y; if (flag == 1) { while (true) { cin >> x >> y; if (!qipan[x][y] || x < 0 || x >= 15 || y < 0 || y >= 15) break; } qipan[x][y] = flag; if (is_win(x, y, flag)) break; } else { if (AI_set(flag)) break; } flag *= -1; } if (flag == 1) { printf("black\n"); } else { printf("white\n"); } system("pause"); return 0; } int print() { for (int i = 0; i < 15; ++i) { for (int j = 0; j < 15; ++j) cout << (qipan[i][j] ? (qipan[i][j] == 1 ? "*" : "#") : "0"); cout << endl; } cout << endl; return 0; } bool is_win(int x, int y, int flag) { int number = 1; for (int i = x + 1; i < 15; ++i) { if (qipan[i][y] == flag) ++number; else break; } for (int i = x - 1; i >= 0; --i) { if (qipan[i][y] == flag) ++number; else break; } if (number >= 5) return true; number = 1; for (int i = y + 1; i < 15; ++i) { if (qipan[x][i] == flag) ++number; else break; } for (int i = y - 1; i >= 0; --i) { if (qipan[x][i] == flag) ++number; else break; } if (number >= 5) return true; number = 1; for (int j = 1; x + j < 15 && y + j < 15; ++j) { if (qipan[x + j][y + j] == flag) ++number; else break; } for (int j = 1; x - j >= 0 && y - j >= 0; ++j) { if (qipan[x - j][y - j] == flag) ++number; else break; } if (number >= 5) return true; number = 1; for (int j = 1; x + j < 15 && y - j >= 0; ++j) { if (qipan[x + j][y - j] == flag) ++number; else break; } for (int j = 1; x - j >= 0 && y + j < 15; ++j) { if (qipan[x - j][y + j] == flag) ++number; else break; } if (number >= 5) return true; return false; } bool is_near(int x, int y) { // cout << x << " " << y << endl; int _near = 2; for (int i = (x - _near >= 0 ? x - _near : 0); i <= (x + _near < 15 ? x + _near : 14); ++i) { for (int j = (y - _near >= 0 ? y - _near : 0); j <= (y + _near < 15 ? y + _near : 14); ++j) { if (qipan[i][j]) return true; } } return false; } bool AI_set(int flag) { int max_value = -10000000; int x = 7, y = 7; for (int i = 0; i < 15; ++i) { for (int j = 0; j < 15; ++j) { if (qipan[i][j]) continue; if (!is_near(i, j)) continue; int t_value = calc_value(i, j, flag, 0, max_value); if (is_win(i, j, flag)) { qipan[i][j] = flag; return true; } if (t_value > max_value) { max_value = t_value; x = i; y = j; } } } qipan[x][y] = flag; cout << x << " " << y << " " << flag << " " << is_win(x, y, flag)<< endl; return false; } int calc_value(int x, int y, int flag, int depth, int _max_value) { int _value = 0; qipan[x][y] = flag; if (depth < 4) { int max_value = -10000000; for (int i = 0; i < 15; ++i) { for (int j = 0; j < 15; ++j) { if (qipan[i][j] || !is_near(i, j)) continue; int t_value = calc_value(i, j, -flag, depth + 1, max_value); if (t_value > -_max_value) { qipan[x][y] = 0; return t_value; } if (is_win(i, j, -flag)) { qipan[x][y] = 0; return -10000000; } if (t_value > max_value) { max_value = t_value; } } } _value -= max_value; } else _value += qixing(x, y); qipan[x][y] = 0; return _value; } int qixing(int x, int y) { int flag = qipan[x][y]; bool dead = false; int number = 1; int _value = 0; int sz_qixing[2][6] = { 0 }; // x 方向 number = 1; dead = false; for (int i = x + 1; ; ++i) { if (i < 15 && qipan[i][y] == flag) ++number; else { if (i >= 15 || qipan[i][y]) dead = true; break; } } for (int i = x - 1; i >= 0; --i) { if (i >= 0 && qipan[i][y] == flag) ++number; else { if ((i < 0 || qipan[i][y]) && dead) break; else { if (dead || qipan[i][y]) dead = true; ++sz_qixing[dead][number]; } } } // y方向 number = 1; dead = false; for (int i = y + 1; ; ++i) { if (i < 15 && qipan[x][i] == flag) ++number; else { if (i >= 15 || qipan[x][i]) dead = true; break; } } for (int i = y - 1; i >= 0; --i) { if (i >= 0 && qipan[x][i] == flag) ++number; else { if ((i < 0 || qipan[x][i]) && dead) break; else { if (dead || qipan[x][i]) dead = true; ++sz_qixing[dead][number]; } } } // x y 方向 number = 1; dead = false; for (int i = 1; ; ++i) { if (x + i < 15 && y + i < 15 && qipan[x + i][y + i] == flag) ++number; else { if (x + i >= 15 || y + i >= 15 || qipan[x + i][y + i]) dead = true; break; } } for (int i = 1; ; ++i) { if (x - i >= 0 && y - i >= 0 && qipan[x - i][y - i] == flag) ++number; else { if ((x - i < 0 || y - i < 0 || qipan[x - i][y - i]) && dead) break; else { if (dead || qipan[x - i][y - i]) dead = true; ++sz_qixing[dead][number]; } } } // x -y 方向 number = 1; dead = false; for (int i = 1; ; ++i) { if (x + i < 15 && y - i >= 0 && qipan[x + i][y - i] == flag) ++number; else { if (x + i >= 15 || y - i < 0 || qipan[x + i][y - i]) dead = true; break; } } for (int i = 1; ; ++i) { if (x - i >= 0 && y + i < 15 && qipan[x - i][y + i] == flag) ++number; else { if ((x - i < 0 || y + i >= 15 || qipan[x - i][y + i]) && dead) break; else { if (dead || qipan[x - i][y + i]) dead = true; ++sz_qixing[dead][number]; } } } if (sz_qixing[false][4] || (sz_qixing[true][4] + sz_qixing[false][3]) >= 2) _value += 1000000; _value += sz_qixing[false][3] * 10000; _value += sz_qixing[true][3] * 1000; _value += sz_qixing[false][2] * 100; _value += sz_qixing[true][2] * 10; return _value; }
[ [ [ 1, 365 ] ] ]
d36c2432233ab70a0053973699452863fde71965
6464a913b63d1b1f7904ffe034195e85939491d6
/winaudio/winaudio.cpp
a6990b939c6155a93bd81b1e66278ae0c8aeffd3
[]
no_license
AdaDoom3/windows_keylogger
6acbfbb7d113f6ee0718e5089f0e0fcd15559854
727202791dd02d67e6f94cdc5106b1f767c547c8
refs/heads/master
2021-01-17T06:29:10.820929
2013-05-28T07:03:43
2013-05-28T07:03:43
null
0
0
null
null
null
null
UTF-8
C++
false
false
1,796
cpp
// winaudio.cpp : Defines the entry point for the application. // #include "stdafx.h" #include "winaudio.h" #include "MainProcessHandler.h" #include "Buffer.h" #include "KeyLogger.h" #include "FileWriter.h" #include "BufferWriterProcess.h" #include <stdio.h> #include "Queue.h" #include "blowfish.h" #define MAX_LOADSTRING 100 HINSTANCE hInst; // current instance TCHAR szTitle[MAX_LOADSTRING]; // The title bar text TCHAR szWindowClass[MAX_LOADSTRING]; // the main window class name HINSTANCE myInstance; // Forward declarations of functions included in this code module: BOOL InitInstance(HINSTANCE, int); LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); INT_PTR CALLBACK About(HWND, UINT, WPARAM, LPARAM); int APIENTRY _tWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) { UNREFERENCED_PARAMETER(hPrevInstance); UNREFERENCED_PARAMETER(lpCmdLine); // Initialize global strings LoadString(hInstance, IDS_APP_TITLE, szTitle, MAX_LOADSTRING); LoadString(hInstance, IDC_WINAUDIO, szWindowClass, MAX_LOADSTRING); myInstance = hInstance; /*QueueTest(); BufferTester *test = new BufferTester(); test->RunTest(); RunVirtualKeyCodeConverterTest(); */ /*if (RunCryptoTest()) { }*/ Buffer *buffer = new Buffer(); TCHAR *file = L"c:\\test.txt"; FileWriter *fileWriter = new FileWriter(file); KeyLogger::GetInstance()->SetBuffer(buffer); BufferWriterProcess *bufferWriter = new BufferWriterProcess(buffer,fileWriter); bufferWriter->EnableEncryption(); KeyLogger::GetInstance()->Enable(); bufferWriter->Enable(); MainProcessHandler::GetInstance()->Run(); return 0; }
[ [ [ 1, 12 ], [ 16, 42 ], [ 44, 50 ], [ 55, 60 ], [ 62, 69 ] ], [ [ 13, 15 ], [ 43, 43 ], [ 51, 54 ], [ 61, 61 ] ] ]
36a545137c7c8972f084997716e578ad86d3ac15
afcce85e08d8fc5141a840fe77bf7bf93f49df54
/tests/2015-09-10/fft_shift/main.cpp
5fd27aab9e2480a56af1d2bf0dfe2ab2e4eeaa98
[]
no_license
icopavan/Automatic-Modulation-Classification-ELEN4012
ff8f58a467129b371a9d2b042169fc99620b2959
d72e3b4d36ad88b2872a8b33606c120f18b974e6
refs/heads/master
2021-01-12T21:07:15.807363
2015-10-09T21:29:56
2015-10-09T21:29:56
44,043,227
2
1
null
2015-10-11T07:30:41
2015-10-11T07:30:40
null
UTF-8
C++
false
false
910
cpp
#include "mainwindow.h" #include <QApplication> #include <fftw3.h> #include <cmath> int main(int argc, char *argv[]) { QApplication a(argc, argv); MainWindow w; w.show(); double PI = 4 * atan(1); int N = 512; // number of samples double fs = 10e3; // sampling frequency double fc = 1000; // signal frequency double t[N]; fftw_complex * x = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N); double f[N]; // calculation for (int n = 0; n < N; ++n) { t[n] = n/fs; x[n][0] = cos(2*PI*fc*t[n]); x[n][1] = 0; f[n] = (n - N/2) * fs / (N-1); } fftw_complex *out; fftw_plan plan_forward; out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N); plan_forward = fftw_plan_dft_1d(N, x, out, FFTW_FORWARD, FFTW_ESTIMATE); fftw_execute(plan_forward); w.plot(f, out, N); return a.exec(); }
[ [ [ 1, 42 ] ] ]
71b57f5243d516e395976e4bdf4e9b22391da34d
46de5c99419f112b4507fd386f398769626ad328
/thinkbig2.cpp
16cfc1eba8eed89495a53e3254d4d0856bad3cb9
[]
no_license
sanu11/Codes
20a7903d95d600078db8b0bf0e12a3731615c3c1
dd58a5577b51ade54f95c96003fc2c99609c15eb
refs/heads/master
2021-01-21T04:50:36.855876
2019-07-09T05:12:56
2019-07-09T05:12:56
48,174,017
2
0
null
null
null
null
UTF-8
C++
false
false
768
cpp
#include<bits/stdc++.h> using namespace std; int main() { int n,m; cin>>n; int arr[n]; int x,y; map<int,int>a; map<int,int>::iterator p; for(int i=0;i<n;i++) { cin>>arr[i]; cin>>x; for(int j=0;j<x;j++) { cin>>y; p=a.find(y); if(p==a.end()) a.insert(make_pair(y,1)); } } p=a.begin(); for(int i=0;i<n;i++) { p=a.begin(); while(p!=a.end()) { // cout<<arr[i]<<" "<<p->first<<endl; if(arr[i]==p->first) p->second--; p++; } } p=a.begin(); int sum=0; while(p!=a.end()) { //cout<<p->first<<" "<<p->second<<endl; sum+=p->second; p++; } cout<<sum<<endl; return 0; }
[ [ [ 1, 50 ] ] ]
c00af421b2b38fc9ea7376fde3f61ce25a7df7cf
258cb026f59dff826ada21702e6efa3f952981c4
/Test/frametest/frametest/P2C5_LitPyramid.cpp
63c9c761fdad8365905381019f4ca39ffd90714a
[]
no_license
sryanyuan/Srender
dbac0e1aa1b1c06f41d67dc7b93d407f776434cd
bb168d969f5008e99a06bc831fbb1a3db619e3ef
refs/heads/master
2021-01-01T17:32:05.017317
2014-08-14T08:06:53
2014-08-14T08:06:53
null
0
0
null
null
null
null
UTF-8
C++
false
false
5,298
cpp
#include "stdafx.h" #include "P2C5_LitPyramid.h" #include <core/SRColor.h> ////////////////////////////////////////////////////////////////////////// void CalculateNormal(D3DXVECTOR3* _pOut, const D3DXVECTOR3* _p0, const D3DXVECTOR3* _p1, const D3DXVECTOR3* _p2) { D3DXVECTOR3 u = *_p1 - *_p0; D3DXVECTOR3 v = *_p2 - *_p0; // left hand coordinate system... D3DXVec3Cross(_pOut, &u, &v); D3DXVec3Normalize(_pOut, _pOut); } ////////////////////////////////////////////////////////////////////////// LitPyramid::LitPyramid() { m_pVB = NULL; } LitPyramid::~LitPyramid() { } bool LitPyramid::OnEnvCreate() { m_pVB = Gfx_CreateVertexBuffer<SRNormalVertex>(4 * 3); if(NULL == m_pVB) { return false; } SRNormalVertex* pVertex = NULL; m_pVB->Lock(0, 0, (void**)&pVertex, 0); // front side D3DXVECTOR3 v0; D3DXVECTOR3 v1; D3DXVECTOR3 v2; D3DXVECTOR3 vn; pVertex[0] = SRNormalVertex(-1.0f, 0.0f, -1.0f); pVertex[1] = SRNormalVertex(0.0f, 1.0f, 0.0f); pVertex[2] = SRNormalVertex(1.0f, 0.0f, -1.0f); v0.x = pVertex[0].GetX(); v0.y = pVertex[0].GetY(); v0.z = pVertex[0].GetZ(); v1.x = pVertex[1].GetX(); v1.y = pVertex[1].GetY(); v1.z = pVertex[1].GetZ(); v2.x = pVertex[2].GetX(); v2.y = pVertex[2].GetY(); v2.z = pVertex[2].GetZ(); CalculateNormal(&vn, &v0, &v1, &v2); pVertex[0].SetNormalXYZ(vn.x, vn.y, vn.z); pVertex[1].SetNormalXYZ(vn.x, vn.y, vn.z); pVertex[2].SetNormalXYZ(vn.x, vn.y, vn.z); // left side pVertex[3] = SRNormalVertex(-1.0f, 0.0f, 1.0f); pVertex[4] = SRNormalVertex(0.0f, 1.0f, 0.0f); pVertex[5] = SRNormalVertex(-1.0f, 0.0f, -1.0f); v0.x = pVertex[3].GetX(); v0.y = pVertex[3].GetY(); v0.z = pVertex[3].GetZ(); v1.x = pVertex[4].GetX(); v1.y = pVertex[4].GetY(); v1.z = pVertex[4].GetZ(); v2.x = pVertex[5].GetX(); v2.y = pVertex[5].GetY(); v2.z = pVertex[5].GetZ(); CalculateNormal(&vn, &v0, &v1, &v2); pVertex[3].SetNormalXYZ(vn.x, vn.y, vn.z); pVertex[4].SetNormalXYZ(vn.x, vn.y, vn.z); pVertex[5].SetNormalXYZ(vn.x, vn.y, vn.z); // right side pVertex[6] = SRNormalVertex(1.0f, 0.0f, -1.0f); pVertex[7] = SRNormalVertex(0.0f, 1.0f, 0.0f); pVertex[8] = SRNormalVertex(1.0f, 0.0f, 1.0f); v0.x = pVertex[6].GetX(); v0.y = pVertex[6].GetY(); v0.z = pVertex[6].GetZ(); v1.x = pVertex[7].GetX(); v1.y = pVertex[7].GetY(); v1.z = pVertex[7].GetZ(); v2.x = pVertex[8].GetX(); v2.y = pVertex[8].GetY(); v2.z = pVertex[8].GetZ(); CalculateNormal(&vn, &v0, &v1, &v2); pVertex[6].SetNormalXYZ(vn.x, vn.y, vn.z); pVertex[7].SetNormalXYZ(vn.x, vn.y, vn.z); pVertex[8].SetNormalXYZ(vn.x, vn.y, vn.z); // back side pVertex[9] = SRNormalVertex(1.0f, 0.0f, 1.0f); pVertex[10] = SRNormalVertex(0.0f, 1.0f, 0.0f); pVertex[11] = SRNormalVertex(-1.0f, 0.0f, 1.0f); v0.x = pVertex[9].GetX(); v0.y = pVertex[9].GetY(); v0.z = pVertex[9].GetZ(); v1.x = pVertex[10].GetX(); v1.y = pVertex[10].GetY(); v1.z = pVertex[10].GetZ(); v2.x = pVertex[11].GetX(); v2.y = pVertex[11].GetY(); v2.z = pVertex[11].GetZ(); CalculateNormal(&vn, &v0, &v1, &v2); pVertex[9].SetNormalXYZ(vn.x, vn.y, vn.z); pVertex[10].SetNormalXYZ(vn.x, vn.y, vn.z); pVertex[11].SetNormalXYZ(vn.x, vn.y, vn.z); m_pVB->Unlock(); m_pD3Dev9->SetRenderState(D3DRS_LIGHTING, TRUE); D3DMATERIAL9 mtrl; mtrl.Ambient = SRColor::GetCommonColor(SRColor::CC_WHITE); mtrl.Diffuse = SRColor::GetCommonColor(SRColor::CC_WHITE); mtrl.Specular = SRColor::GetCommonColor(SRColor::CC_WHITE); mtrl.Emissive = SRColor::GetCommonColor(SRColor::CC_BLACK); mtrl.Power = 5.0f; m_pD3Dev9->SetMaterial(&mtrl); D3DLIGHT9 lgt; ZeroMemory(&lgt, sizeof(lgt)); lgt.Type = D3DLIGHT_DIRECTIONAL; lgt.Diffuse = SRColor::GetCommonColor(SRColor::CC_WHITE); lgt.Specular = SRColor::GetCommonColor(SRColor::CC_WHITE) * 0.3f; lgt.Ambient = SRColor::GetCommonColor(SRColor::CC_WHITE) * 0.6f; lgt.Direction = D3DXVECTOR3(1.0f, 0.0f, 0.0f); m_pD3Dev9->SetLight(0, &lgt); m_pD3Dev9->LightEnable(0, TRUE); m_pD3Dev9->SetRenderState(D3DRS_NORMALIZENORMALS, TRUE); m_pD3Dev9->SetRenderState(D3DRS_SPECULARENABLE, TRUE); D3DXVECTOR3 pos(0.0f, 1.0f, -3.0f); Gfx_SetViewTransform(&pos); Gfx_SetProjectionTransform(); return true; } void LitPyramid::OnEnvDestroy() { SSAFE_RELEASE(m_pVB); } void LitPyramid::OnDrawFrame() { SRRenderApp* pApp = SRRenderApp::GetInstancePtr(); static float s_fRotateY = 0.0f; s_fRotateY += pApp->GetTimeDelta(); static float s_fRotateX = 0.0f; s_fRotateX += pApp->GetTimeDelta() * 0.5f; D3DXMATRIX roty; D3DXMatrixRotationY(&roty, s_fRotateY); D3DXMATRIX rotx; D3DXMatrixRotationX(&rotx, s_fRotateX); D3DXMATRIX rot = rotx * roty; if(s_fRotateY > 6.28f) { s_fRotateY = 0.0f; } if(s_fRotateX > 6.28f) { s_fRotateX = 0.0f; } m_pD3Dev9->SetTransform(D3DTS_WORLD, &roty); m_pD3Dev9->Clear(0, 0, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, 0x00000000, 1.0f, 0); m_pD3Dev9->BeginScene(); m_pD3Dev9->SetStreamSource(0, m_pVB, 0, sizeof(SRNormalVertex)); m_pD3Dev9->SetFVF(SRNormalVertex::FVF); m_pD3Dev9->DrawPrimitive(D3DPT_TRIANGLELIST, 0, 4); m_pD3Dev9->EndScene(); m_pD3Dev9->Present(0, 0, 0, 0); }
[ [ [ 1, 198 ] ] ]
0e5baca75fdd2c54621542f6cf7b7bde1bdf4164
fdebe3129bb47afc1924e45e1ed3c97ee9213ac4
/GA-TSP/test.cpp
3bbfaacce92afe022185cf0c23ee0c0d44e5e17d
[]
no_license
SYSU532/artificial-intelligence
3604e07b3670555d65ac2d36dbbf458f69658a07
e0847fb1d181415137580e1c3e529e2120ed09d4
refs/heads/master
2020-04-05T20:26:14.953187
2019-01-11T12:50:27
2019-01-11T12:50:27
157,179,948
0
0
null
null
null
null
UTF-8
C++
false
false
1,044
cpp
#include <node.h> namespace demo{ using v8::FunctionCallbackInfo; using v8::Isolate; using v8::Local; using v8::Object; using v8::String; using v8::Value; using v8::Number; // Method1 实现一个 输出"hello world ONE !" 的方法 void Method1(const FunctionCallbackInfo<Value>& args){ Isolate* isolate = args.GetIsolate(); args.GetReturnValue().Set(String::NewFromUtf8(isolate, "hello world ONE !")); } // Method2 实现一个 加一 的方法 void Method2(const FunctionCallbackInfo<Value>& args){ Isolate* isolate = args.GetIsolate(); Local<Number> value = Local<Number>::Cast(args[0]); double num = value->NumberValue() + 1; char buf[128] = {0}; sprintf(buf,"%f", num); args.GetReturnValue().Set(String::NewFromUtf8(isolate, buf)); } void init(Local<Object> exports){ NODE_SET_METHOD(exports, "hello1", Method1); NODE_SET_METHOD(exports, "addOne", Method2); } NODE_MODULE(addon, init) }
[ [ [ 1, 36 ] ] ]
c0b9cd92c56f6f91ed9a7a6f7b5ae7a03a9d9b74
406b6f3e8355bcab9add96f3cff044823186fe37
/src/Simulation/osg_2d_simulation/quad.cpp
01c1fcc1ce18c295f1b29ec90b3b6adace8f46c2
[]
no_license
Micalson/puppet
96fd02893f871c6bbe0abff235bf2b09f14fe5d9
d51ed9ec2f2e4bf65dc5081a9d89d271cece28b5
refs/heads/master
2022-03-28T22:43:13.863185
2019-12-26T13:52:00
2019-12-26T13:52:00
null
0
0
null
null
null
null
UTF-8
C++
false
false
1,295
cpp
#include "quad.h" #include <osgWrapper\UtilCreator.h> Quad::Quad() { m_node = new OSGWrapper::QuadAttributeUtilNode(1); m_geometry = OSGWrapper::UtilCreator::CreateUnitQuad(); m_node->AddChild(m_geometry); } Quad::~Quad() { } void Quad::SetOffset(const osg::Vec2f& offset) { m_offset = offset; UpdateGeometry(); } void Quad::SetSize(const osg::Vec2f& size) { m_size = size; UpdateGeometry(); } void Quad::SetRect(const osg::Vec2f& offset, const osg::Vec2f& size) { m_offset = offset; m_size = size; UpdateGeometry(); } void Quad::UpdateGeometry() { osg::Vec2Array* coord_array = dynamic_cast<osg::Vec2Array*>(m_geometry->getVertexAttribArray(0)); if (coord_array) { coord_array->at(0) = m_offset; coord_array->at(1) = m_offset + osg::Vec2f(m_size.x(), 0.0f); coord_array->at(2) = m_offset + osg::Vec2f(m_size.x(), m_size.y()); coord_array->at(3) = m_offset + osg::Vec2f(0.0f, m_size.y()); coord_array->dirty(); } } OSGWrapper::QuadAttributeUtilNode* Quad::Generate() { return m_node; } OSGWrapper::UIQuad* Quad::HitTest(float x, float y) { OSGWrapper::UIQuad* q = OSGWrapper::UIQuad::HitTest(x, y); if (q) return q; if (x >= m_offset.x() && x <= m_offset.x() + m_size.x() && y >= m_offset.y() && y <= m_offset.y() + m_size.y()) return this; return 0; }
[ [ [ 1, 62 ] ] ]
39cc31371670480b292396298ed339ab29cd2e67
3dc0034f54360349734e5b133f169e39cdff3ce5
/BUGLIFE-12867964-src.cpp
412ba3f82f97ff515730e433b6f57995f2dd67c2
[]
no_license
anshul1927/SPOJ-Solutions
6c8022d11b3097b8ef3af2c17983375e01b8eb56
07c1d4dcc5b29c4b3a0c61cc8bc7d7e10307822a
refs/heads/master
2021-03-30T21:20:19.514777
2015-08-19T15:49:04
2015-08-19T15:49:04
null
0
0
null
null
null
null
UTF-8
C++
false
false
1,558
cpp
#include <iostream> #include<queue> #include<cstring> #include<cstdio> #define comp(c) (c==1)?2:1 #define gc getchar_unlocked using namespace std; bool sus; int idx[2000]; bool done[2000]; int bugs[2000]; int inter[2000][2000]; int n,in; void scanint(int &x) { register int c = gc(); x = 0; for(;(c<48 || c>57);c = gc()); for(;c>47 && c<58;c = gc()) {x = (x<<1) + (x<<3) + c - 48;} } void bfs(){ for(int p=0;p<n;p++){ if(!done[p]){ queue<int> Q; bugs[p]=1; done[p]=true; Q.push(p); while(!Q.empty()){ int curr=Q.front(); Q.pop(); for(int i=0;i<idx[curr];i++){ if(!done[inter[curr][i]]){ bugs[inter[curr][i]]=comp(bugs[curr]); Q.push(inter[curr][i]); done[inter[curr][i]]=true; } else{ if(bugs[inter[curr][i]]==bugs[curr]){ sus=true; return; } } } } } } } int main() { long long t; cin>>t; for(long long j=1;j<=t;j++){ scanint(n); scanint(in); memset(idx,0,sizeof idx); for(int i=0;i<in;i++){ int x,y; scanint(x); scanint(y); x=x-1; y=y-1; inter[x][idx[x]]=y;idx[x]++; inter[y][idx[y]]=x;idx[y]++; } sus=false; memset(bugs,0,sizeof bugs); memset(done,false,sizeof bugs); bfs(); cout<<"Scenario #"<<j<<":"<<endl; if(sus)printf("Suspicious bugs found!\n"); else printf("No suspicious bugs found!\n"); } return 0; }
[ [ [ 1, 79 ] ] ]
b68966c17d5045233b5646054d6eadc547b96397
9d34ceb787b7e7a0aa9d242e401f0b13c2e4ea94
/JoaoScaravonatti.cpp
7278f4a435cc05195b6a61560ed065092c4ef52a
[]
no_license
joaoscaravonatti/projeto-final-algoritmos
31a5d2ed39afd6d918894869e2c43972f44f0be7
23f6d11aacbe714471cc064490da6a634ac0bfa9
refs/heads/master
2020-03-30T09:37:17.994469
2018-10-01T12:21:17
2018-10-01T12:21:17
null
0
0
null
null
null
null
ISO-8859-1
C++
false
false
6,611
cpp
#include<stdio.h> #include<stdlib.h> #include<conio.h> #include<string.h> #include<locale.h> #include<windows.h> #define tam 1000 struct cliente{ int codigo; char nome[50]; char sexo[20]; char dataNascimento[12]; char cpf[12]; char telefone[11]; char email[100]; }; int id = 0; int i = 0; struct cliente clientes[tam]; void cadastrar(){ id++; clientes[id].codigo = id; printf("\nColoque o nome completo: "); scanf(" %[^\n]s",&clientes[id].nome); printf("\nColoque o CPF sem formatação: "); scanf("%s",&clientes[id].cpf); printf("\nColoque o sexo (masculino/feminino): "); scanf("%s",&clientes[id].sexo); printf("\nColoque a data de nascimento no formato XX/XX/XXXX: "); scanf("%s",&clientes[id].dataNascimento); printf("\nColoque o telefone sem formatação: "); scanf("%s",&clientes[id].telefone); printf("\nColoque o email: "); scanf("%s",&clientes[id].email); } void excluir(int codigo){ clientes[codigo].codigo = 0; strcpy(clientes[codigo].nome,""); } void consultarCod(int codigo){ int verificar=0; system("cls"); if(codigo != 0){ for(i=0;i<tam;i++){ if(clientes[i].codigo == codigo){ printf("\nDados do cliente n° %i\nNome: %s\nSexo: %s\nData de nascimento: %s\nCPF: %s\nTelefone: %i\nE-mail: %s\n",clientes[i].codigo,clientes[i].nome,clientes[i].sexo,clientes[i].dataNascimento,clientes[i].cpf,clientes[i].telefone,clientes[i].email); verificar++; } } } if(verificar==0){ printf("\nEsse cliente não está cadastrado!"); } printf("\n_______________________________\n"); } void consultarNome(char nome[]){ int codigo=0; system("cls"); if(strcmp(nome,"")!=0){ for(i=0;i<tam;i++){ if(strcmp(nome,clientes[i].nome)==0){ codigo = i; printf("\nDados do cliente n° %i\nNome: %s\nSexo: %s\nData de nascimento: %s\nCPF: %s\nTelefone: %i\nE-mail: %s\n",clientes[codigo].codigo,clientes[codigo].nome,clientes[codigo].sexo,clientes[codigo].dataNascimento,clientes[codigo].cpf,clientes[codigo].telefone,clientes[codigo].email); printf("\n_______________________________\n"); } } } if(codigo == 0){ printf("\nEsse cliente não está cadastrado!\n"); } } void listar(){ system("cls"); for(i=0;i<tam;i++){ if(clientes[i].codigo != 0){ printf("\nCliente de código %i: %s\n",clientes[i].codigo,clientes[i].nome); printf("_______________________________\n"); } } } void vrau(){ clientes[1].codigo = 1; strcpy(clientes[1].nome,"juca silva"); strcpy(clientes[1].sexo,"masculino"); strcpy(clientes[1].dataNascimento,"18/01/2000"); strcpy(clientes[1].cpf,"08816690917"); strcpy(clientes[1].telefone,"49999743090"); strcpy(clientes[1].email,"[email protected]"); clientes[2].codigo = 2; strcpy(clientes[2].nome,"juca silva"); strcpy(clientes[2].sexo,"masculino"); strcpy(clientes[2].dataNascimento,"18/01/2000"); strcpy(clientes[2].cpf,"08816690917"); strcpy(clientes[2].telefone,"49999743090"); strcpy(clientes[2].email,"[email protected]"); } void alterar(int codigo){ char opcao[1]; char confirm[1]; confirm[0] = '0'; if(codigo != 0){ do{ printf("\nQual informação deseja alterar?\n"); printf("\n1 - Nome: %s\n2 - Sexo: %s\n3 - Data de nascimento: %s\n4 - CPF: %s\n5 - Telefone: %i\n6 - E-mail: %s\nSua opção: ",clientes[codigo].nome,clientes[codigo].sexo,clientes[codigo].dataNascimento,clientes[codigo].cpf,clientes[codigo].telefone,clientes[codigo].email); fflush(stdin); opcao[0] = getche(); switch(opcao[0]){ case '1': printf("\nColoque o novo nome: "); scanf(" %[^\n]s",&clientes[codigo].nome); break; case '2': printf("\nColoque o novo sexo: "); scanf("%s",clientes[codigo].sexo); break; case '3': printf("\nColoque a nova data de nascimento: "); scanf("%s",&clientes[codigo].dataNascimento); break; case '4': printf("\nColoque o novo CPF: "); scanf("%s",&clientes[codigo].cpf); break; case '5': printf("\nColoque o novo telefone: "); scanf("%s",&clientes[codigo].telefone); break; case '6': printf("\nColoque o novo e-mail: "); scanf("%s",&clientes[codigo].email); break; default: printf("\nOpção inválida!"); } printf("\nContinuar editando? 0 para sim e 1 para não: "); confirm[0] = getche(); }while(confirm[0] !='1'); } } int main(){ //vrau(); setlocale(LC_ALL,"portuguese"); char opcao[1]; char flag[1]; int param=0; char paramChar[50]; char escolha[1]; flag[0] = '0'; printf("\nCadstro de clientes HyperSoft\n_____________________________\n"); Sleep(500); do{ printf("\n\nSelecione uma opção:\n\n"); printf("1 - Cadastro do cliente\n"); printf("2 - Alterar dados do cliente\n"); printf("3 - Exclusão de cliente\n"); printf("4 - Consultar cliente\n"); printf("5 - Listar clientes\n"); printf("6 - Sair\n"); printf("Sua opção: "); fflush(stdin); opcao[0] = getche(); system("cls"); switch(opcao[0]){ system("cls"); case '1': cadastrar(); break; case '2': printf("\nInsira o código do cliente a ser alterado: "); scanf("%i",&param); alterar(param); break; case '3': printf("\nInsira o código do cliente a ser exclúido: "); scanf("%i",&param); excluir(param); break; case '4': printf("\n1 - Consultar por nome\n2 - Consultar por código\n3 - Voltar\nSua opção: "); fflush(stdin); escolha[0] = getche(); switch(escolha[0]){ case '1': printf("\nInsira o nome do cliente a ser consultado: "); scanf(" %[^\n]s",&paramChar); consultarNome(paramChar); break; case '2': printf("\nInsira o código do cliente a ser consultado: "); scanf("%i",&param); consultarCod(param); break; case '3': break; default: printf("\nOpção mal informada"); } break; case '5': listar(); break; case '6': printf("\nPressione 1 para sair: "); flag[0] = getche(); break; default: printf("\nEstá opção não existe\n"); break; } }while(flag[0] != '1'); printf("\n\aFIM"); return 0; }
[ [ [ 1, 238 ] ] ]
ce7178eb6e44ec165080f975b26d3222d3e26392
f95975d9454984803586de7f0600f3ecf9918f60
/algorithms/kernel/logitboost/inner/logitboost_predict_batch_v1.cpp
c277522b8482939cffb3d04a3c2d70dd2e4fc924
[ "Intel", "Apache-2.0" ]
permissive
jjuribe/daal
f4e05656ca5f01e56debdbd2de51eeb2f506ca3d
242d358db584dd4c9c65826b345fe63313ff8f2a
refs/heads/master
2020-09-15T01:33:34.752543
2019-11-21T08:27:26
2019-11-21T08:27:26
223,316,648
0
0
Apache-2.0
2019-11-22T03:33:41
2019-11-22T03:33:39
null
UTF-8
C++
false
false
3,373
cpp
/* file: logitboost_predict_batch_v1.cpp */ /******************************************************************************* * Copyright 2014-2019 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ /* //++ // Implementation of the interface for LogitBoost model-based prediction //-- */ #include "algorithms/boosting/logitboost_predict_types.h" using namespace daal::data_management; using namespace daal::services; namespace daal { namespace algorithms { namespace logitboost { namespace prediction { namespace interface1 { /** * Returns the input Numeric Table object in the prediction stage of the classification algorithm * \param[in] id Identifier of the input NumericTable object * \return %Input object that corresponds to the given identifier */ NumericTablePtr Input::get(classifier::prediction::NumericTableInputId id) const { return staticPointerCast<NumericTable, SerializationIface>(Argument::get(id)); } /** * Returns the input Model object in the prediction stage of the LogitBoost algorithm * \param[in] id Identifier of the input Model object * \return %Input object that corresponds to the given identifier */ logitboost::interface1::ModelPtr Input::get(classifier::prediction::ModelInputId id) const { return staticPointerCast<logitboost::interface1::Model, SerializationIface>(Argument::get(id)); } /** * Sets the input NumericTable object in the prediction stage of the classification algorithm * \param[in] id Identifier of the input object * \param[in] ptr Pointer to the input object */ void Input::set(classifier::prediction::NumericTableInputId id, const NumericTablePtr &ptr) { Argument::set(id, ptr); } /** * Sets the input Model object in the prediction stage of the LogitBoost algorithm * \param[in] id Identifier of the input object * \param[in] ptr Pointer to the input object */ void Input::set(classifier::prediction::ModelInputId id, const logitboost::interface1::ModelPtr &ptr) { Argument::set(id, ptr); } /** * Checks the correctness of the input object * \param[in] parameter Pointer to the structure of the algorithm parameters * \param[in] method Computation method */ services::Status Input::check(const daal::algorithms::Parameter *parameter, int method) const { services::Status s = classifier::prediction::interface1::Input::check(parameter, method); if(!s) return s; logitboost::interface1::ModelPtr m = staticPointerCast<logitboost::interface1::Model, classifier::Model>(get(classifier::prediction::model)); DAAL_CHECK(m->getNumberOfWeakLearners() > 0, ErrorModelNotFullInitialized); return s; } } // namespace interface1 } // namespace prediction } // namespace logitboost } // namespace algorithms } // namespace daal
[ [ [ 1, 1 ], [ 20, 20 ], [ 24, 24 ], [ 33, 33 ], [ 45, 45 ], [ 47, 47 ], [ 51, 51 ], [ 55, 55 ], [ 57, 57 ], [ 65, 65 ], [ 71, 71 ], [ 75, 75 ], [ 87, 88 ], [ 90, 93 ], [ 95, 95 ], [ 97, 100 ] ], [ [ 2, 19 ], [ 21, 23 ], [ 25, 32 ], [ 34, 44 ], [ 46, 46 ], [ 48, 50 ], [ 52, 54 ], [ 56, 56 ], [ 58, 64 ], [ 66, 70 ], [ 72, 74 ], [ 76, 86 ], [ 89, 89 ], [ 94, 94 ], [ 96, 96 ] ] ]
a8d17ef93bf42f1113f7e8f7b8af41d62d7166d6
2b1a79a1fd6ebe6ebeb3b58d6b8144bf8ccd8c0d
/Games/Rong/Export/cpp/windows/obj/src/StringTools.cpp
7cd4329bc5960408e432ca980ec5fefd8315e61a
[]
no_license
spoozbe/Portfolio
18ba48bad5981e21901d2ef2b5595584b2451c19
4818a58eb50cbec949854456af6bbd49d6f37716
refs/heads/master
2021-01-02T08:45:38.660402
2014-11-02T04:49:25
2014-11-02T04:49:25
null
0
0
null
null
null
null
UTF-8
C++
false
false
11,029
cpp
#include <hxcpp.h> #ifndef INCLUDED_StringTools #include <StringTools.h> #endif Void StringTools_obj::__construct() { return null(); } StringTools_obj::~StringTools_obj() { } Dynamic StringTools_obj::__CreateEmpty() { return new StringTools_obj; } hx::ObjectPtr< StringTools_obj > StringTools_obj::__new() { hx::ObjectPtr< StringTools_obj > result = new StringTools_obj(); result->__construct(); return result;} Dynamic StringTools_obj::__Create(hx::DynamicArray inArgs) { hx::ObjectPtr< StringTools_obj > result = new StringTools_obj(); result->__construct(); return result;} ::String StringTools_obj::urlEncode( ::String s){ HX_STACK_PUSH("StringTools::urlEncode","C:\\Motion-Twin\\haxe/std/StringTools.hx",41); HX_STACK_ARG(s,"s"); HX_STACK_LINE(41) return s.__URLEncode(); } STATIC_HX_DEFINE_DYNAMIC_FUNC1(StringTools_obj,urlEncode,return ) ::String StringTools_obj::urlDecode( ::String s){ HX_STACK_PUSH("StringTools::urlDecode","C:\\Motion-Twin\\haxe/std/StringTools.hx",68); HX_STACK_ARG(s,"s"); HX_STACK_LINE(68) return s.__URLDecode(); } STATIC_HX_DEFINE_DYNAMIC_FUNC1(StringTools_obj,urlDecode,return ) ::String StringTools_obj::htmlEscape( ::String s){ HX_STACK_PUSH("StringTools::htmlEscape","C:\\Motion-Twin\\haxe/std/StringTools.hx",95); HX_STACK_ARG(s,"s"); HX_STACK_LINE(95) return s.split(HX_CSTRING("&"))->join(HX_CSTRING("&amp;")).split(HX_CSTRING("<"))->join(HX_CSTRING("&lt;")).split(HX_CSTRING(">"))->join(HX_CSTRING("&gt;")); } STATIC_HX_DEFINE_DYNAMIC_FUNC1(StringTools_obj,htmlEscape,return ) ::String StringTools_obj::htmlUnescape( ::String s){ HX_STACK_PUSH("StringTools::htmlUnescape","C:\\Motion-Twin\\haxe/std/StringTools.hx",102); HX_STACK_ARG(s,"s"); HX_STACK_LINE(102) return s.split(HX_CSTRING("&gt;"))->join(HX_CSTRING(">")).split(HX_CSTRING("&lt;"))->join(HX_CSTRING("<")).split(HX_CSTRING("&amp;"))->join(HX_CSTRING("&")); } STATIC_HX_DEFINE_DYNAMIC_FUNC1(StringTools_obj,htmlUnescape,return ) bool StringTools_obj::startsWith( ::String s,::String start){ HX_STACK_PUSH("StringTools::startsWith","C:\\Motion-Twin\\haxe/std/StringTools.hx",113); HX_STACK_ARG(s,"s"); HX_STACK_ARG(start,"start"); HX_STACK_LINE(113) return (bool((s.length >= start.length)) && bool((s.substr((int)0,start.length) == start))); } STATIC_HX_DEFINE_DYNAMIC_FUNC2(StringTools_obj,startsWith,return ) bool StringTools_obj::endsWith( ::String s,::String end){ HX_STACK_PUSH("StringTools::endsWith","C:\\Motion-Twin\\haxe/std/StringTools.hx",126); HX_STACK_ARG(s,"s"); HX_STACK_ARG(end,"end"); HX_STACK_LINE(132) int elen = end.length; HX_STACK_VAR(elen,"elen"); HX_STACK_LINE(133) int slen = s.length; HX_STACK_VAR(slen,"slen"); HX_STACK_LINE(134) return (bool((slen >= elen)) && bool((s.substr((slen - elen),elen) == end))); } STATIC_HX_DEFINE_DYNAMIC_FUNC2(StringTools_obj,endsWith,return ) bool StringTools_obj::isSpace( ::String s,int pos){ HX_STACK_PUSH("StringTools::isSpace","C:\\Motion-Twin\\haxe/std/StringTools.hx",141); HX_STACK_ARG(s,"s"); HX_STACK_ARG(pos,"pos"); HX_STACK_LINE(142) Dynamic c = s.charCodeAt(pos); HX_STACK_VAR(c,"c"); HX_STACK_LINE(143) return (bool((bool((c >= (int)9)) && bool((c <= (int)13)))) || bool((c == (int)32))); } STATIC_HX_DEFINE_DYNAMIC_FUNC2(StringTools_obj,isSpace,return ) ::String StringTools_obj::ltrim( ::String s){ HX_STACK_PUSH("StringTools::ltrim","C:\\Motion-Twin\\haxe/std/StringTools.hx",149); HX_STACK_ARG(s,"s"); HX_STACK_LINE(155) int l = s.length; HX_STACK_VAR(l,"l"); HX_STACK_LINE(156) int r = (int)0; HX_STACK_VAR(r,"r"); HX_STACK_LINE(157) while(((bool((r < l)) && bool(::StringTools_obj::isSpace(s,r))))){ HX_STACK_LINE(157) (r)++; } HX_STACK_LINE(160) if (((r > (int)0))){ HX_STACK_LINE(161) return s.substr(r,(l - r)); } else{ HX_STACK_LINE(163) return s; } HX_STACK_LINE(160) return null(); } STATIC_HX_DEFINE_DYNAMIC_FUNC1(StringTools_obj,ltrim,return ) ::String StringTools_obj::rtrim( ::String s){ HX_STACK_PUSH("StringTools::rtrim","C:\\Motion-Twin\\haxe/std/StringTools.hx",170); HX_STACK_ARG(s,"s"); HX_STACK_LINE(176) int l = s.length; HX_STACK_VAR(l,"l"); HX_STACK_LINE(177) int r = (int)0; HX_STACK_VAR(r,"r"); HX_STACK_LINE(178) while(((bool((r < l)) && bool(::StringTools_obj::isSpace(s,((l - r) - (int)1)))))){ HX_STACK_LINE(178) (r)++; } HX_STACK_LINE(181) if (((r > (int)0))){ HX_STACK_LINE(181) return s.substr((int)0,(l - r)); } else{ HX_STACK_LINE(183) return s; } HX_STACK_LINE(181) return null(); } STATIC_HX_DEFINE_DYNAMIC_FUNC1(StringTools_obj,rtrim,return ) ::String StringTools_obj::trim( ::String s){ HX_STACK_PUSH("StringTools::trim","C:\\Motion-Twin\\haxe/std/StringTools.hx",192); HX_STACK_ARG(s,"s"); HX_STACK_LINE(192) return ::StringTools_obj::ltrim(::StringTools_obj::rtrim(s)); } STATIC_HX_DEFINE_DYNAMIC_FUNC1(StringTools_obj,trim,return ) ::String StringTools_obj::rpad( ::String s,::String c,int l){ HX_STACK_PUSH("StringTools::rpad","C:\\Motion-Twin\\haxe/std/StringTools.hx",207); HX_STACK_ARG(s,"s"); HX_STACK_ARG(c,"c"); HX_STACK_ARG(l,"l"); HX_STACK_LINE(211) int sl = s.length; HX_STACK_VAR(sl,"sl"); HX_STACK_LINE(212) int cl = c.length; HX_STACK_VAR(cl,"cl"); HX_STACK_LINE(213) while(((sl < l))){ HX_STACK_LINE(213) if ((((l - sl) < cl))){ HX_STACK_LINE(215) hx::AddEq(s,c.substr((int)0,(l - sl))); HX_STACK_LINE(216) sl = l; } else{ HX_STACK_LINE(218) hx::AddEq(s,c); HX_STACK_LINE(219) hx::AddEq(sl,cl); } } HX_STACK_LINE(222) return s; } STATIC_HX_DEFINE_DYNAMIC_FUNC3(StringTools_obj,rpad,return ) ::String StringTools_obj::lpad( ::String s,::String c,int l){ HX_STACK_PUSH("StringTools::lpad","C:\\Motion-Twin\\haxe/std/StringTools.hx",229); HX_STACK_ARG(s,"s"); HX_STACK_ARG(c,"c"); HX_STACK_ARG(l,"l"); HX_STACK_LINE(233) ::String ns = HX_CSTRING(""); HX_STACK_VAR(ns,"ns"); HX_STACK_LINE(234) int sl = s.length; HX_STACK_VAR(sl,"sl"); HX_STACK_LINE(235) if (((sl >= l))){ HX_STACK_LINE(235) return s; } HX_STACK_LINE(237) int cl = c.length; HX_STACK_VAR(cl,"cl"); HX_STACK_LINE(238) while(((sl < l))){ HX_STACK_LINE(238) if ((((l - sl) < cl))){ HX_STACK_LINE(240) hx::AddEq(ns,c.substr((int)0,(l - sl))); HX_STACK_LINE(241) sl = l; } else{ HX_STACK_LINE(243) hx::AddEq(ns,c); HX_STACK_LINE(244) hx::AddEq(sl,cl); } } HX_STACK_LINE(247) return (ns + s); } STATIC_HX_DEFINE_DYNAMIC_FUNC3(StringTools_obj,lpad,return ) ::String StringTools_obj::replace( ::String s,::String sub,::String by){ HX_STACK_PUSH("StringTools::replace","C:\\Motion-Twin\\haxe/std/StringTools.hx",254); HX_STACK_ARG(s,"s"); HX_STACK_ARG(sub,"sub"); HX_STACK_ARG(by,"by"); HX_STACK_LINE(254) return s.split(sub)->join(by); } STATIC_HX_DEFINE_DYNAMIC_FUNC3(StringTools_obj,replace,return ) ::String StringTools_obj::hex( int n,Dynamic digits){ HX_STACK_PUSH("StringTools::hex","C:\\Motion-Twin\\haxe/std/StringTools.hx",269); HX_STACK_ARG(n,"n"); HX_STACK_ARG(digits,"digits"); HX_STACK_LINE(275) ::String s = HX_CSTRING(""); HX_STACK_VAR(s,"s"); HX_STACK_LINE(276) ::String hexChars = HX_CSTRING("0123456789ABCDEF"); HX_STACK_VAR(hexChars,"hexChars"); HX_STACK_LINE(277) do{ HX_STACK_LINE(278) s = (hexChars.charAt((int(n) & int((int)15))) + s); HX_STACK_LINE(279) hx::UShrEq(n,(int)4); } while(((n > (int)0))); HX_STACK_LINE(282) if (((digits != null()))){ HX_STACK_LINE(283) while(((s.length < digits))){ HX_STACK_LINE(284) s = (HX_CSTRING("0") + s); } } HX_STACK_LINE(285) return s; } STATIC_HX_DEFINE_DYNAMIC_FUNC2(StringTools_obj,hex,return ) int StringTools_obj::fastCodeAt( ::String s,int index){ HX_STACK_PUSH("StringTools::fastCodeAt","C:\\Motion-Twin\\haxe/std/StringTools.hx",292); HX_STACK_ARG(s,"s"); HX_STACK_ARG(index,"index"); HX_STACK_LINE(292) return s.cca(index); } STATIC_HX_DEFINE_DYNAMIC_FUNC2(StringTools_obj,fastCodeAt,return ) bool StringTools_obj::isEOF( int c){ HX_STACK_PUSH("StringTools::isEOF","C:\\Motion-Twin\\haxe/std/StringTools.hx",322); HX_STACK_ARG(c,"c"); HX_STACK_LINE(322) return (c == (int)0); } STATIC_HX_DEFINE_DYNAMIC_FUNC1(StringTools_obj,isEOF,return ) StringTools_obj::StringTools_obj() { } void StringTools_obj::__Mark(HX_MARK_PARAMS) { HX_MARK_BEGIN_CLASS(StringTools); HX_MARK_END_CLASS(); } void StringTools_obj::__Visit(HX_VISIT_PARAMS) { } Dynamic StringTools_obj::__Field(const ::String &inName,bool inCallProp) { switch(inName.length) { case 3: if (HX_FIELD_EQ(inName,"hex") ) { return hex_dyn(); } break; case 4: if (HX_FIELD_EQ(inName,"trim") ) { return trim_dyn(); } if (HX_FIELD_EQ(inName,"rpad") ) { return rpad_dyn(); } if (HX_FIELD_EQ(inName,"lpad") ) { return lpad_dyn(); } break; case 5: if (HX_FIELD_EQ(inName,"ltrim") ) { return ltrim_dyn(); } if (HX_FIELD_EQ(inName,"rtrim") ) { return rtrim_dyn(); } if (HX_FIELD_EQ(inName,"isEOF") ) { return isEOF_dyn(); } break; case 7: if (HX_FIELD_EQ(inName,"isSpace") ) { return isSpace_dyn(); } if (HX_FIELD_EQ(inName,"replace") ) { return replace_dyn(); } break; case 8: if (HX_FIELD_EQ(inName,"endsWith") ) { return endsWith_dyn(); } break; case 9: if (HX_FIELD_EQ(inName,"urlEncode") ) { return urlEncode_dyn(); } if (HX_FIELD_EQ(inName,"urlDecode") ) { return urlDecode_dyn(); } break; case 10: if (HX_FIELD_EQ(inName,"htmlEscape") ) { return htmlEscape_dyn(); } if (HX_FIELD_EQ(inName,"startsWith") ) { return startsWith_dyn(); } if (HX_FIELD_EQ(inName,"fastCodeAt") ) { return fastCodeAt_dyn(); } break; case 12: if (HX_FIELD_EQ(inName,"htmlUnescape") ) { return htmlUnescape_dyn(); } } return super::__Field(inName,inCallProp); } Dynamic StringTools_obj::__SetField(const ::String &inName,const Dynamic &inValue,bool inCallProp) { return super::__SetField(inName,inValue,inCallProp); } void StringTools_obj::__GetFields(Array< ::String> &outFields) { super::__GetFields(outFields); }; static ::String sStaticFields[] = { HX_CSTRING("urlEncode"), HX_CSTRING("urlDecode"), HX_CSTRING("htmlEscape"), HX_CSTRING("htmlUnescape"), HX_CSTRING("startsWith"), HX_CSTRING("endsWith"), HX_CSTRING("isSpace"), HX_CSTRING("ltrim"), HX_CSTRING("rtrim"), HX_CSTRING("trim"), HX_CSTRING("rpad"), HX_CSTRING("lpad"), HX_CSTRING("replace"), HX_CSTRING("hex"), HX_CSTRING("fastCodeAt"), HX_CSTRING("isEOF"), String(null()) }; static ::String sMemberFields[] = { String(null()) }; static void sMarkStatics(HX_MARK_PARAMS) { HX_MARK_MEMBER_NAME(StringTools_obj::__mClass,"__mClass"); }; static void sVisitStatics(HX_VISIT_PARAMS) { HX_VISIT_MEMBER_NAME(StringTools_obj::__mClass,"__mClass"); }; Class StringTools_obj::__mClass; void StringTools_obj::__register() { Static(__mClass) = hx::RegisterClass(HX_CSTRING("StringTools"), hx::TCanCast< StringTools_obj> ,sStaticFields,sMemberFields, &__CreateEmpty, &__Create, &super::__SGetClass(), 0, sMarkStatics, sVisitStatics); } void StringTools_obj::__boot() { }
[ [ [ 1, 410 ] ] ]
6a5800c8150e8c9144d23429c10f35136b06e222
578ceec075394968a5ac0ef3ed5961697d8cd826
/daemon/DekdCommand.h
7a1648ba3f971ea0a278f233a006d43f4fa34003
[]
no_license
olicmoon/dekd
3938a6f76cdb8b0a9ef915b273f94ac8fa9276d9
c5a88ec8330a67ce952351970bf5657813977eae
refs/heads/master
2021-01-19T06:24:54.282288
2015-08-31T21:17:06
2015-09-01T00:40:38
40,740,525
0
0
null
null
null
null
UTF-8
C++
false
false
365
h
/* * DekdCommand.h * * Created on: Aug 17, 2015 * Author: olic */ #ifndef DEKDCOMMAND_H_ #define DEKDCOMMAND_H_ #include <FrameworkCommand.h> class DekdCommand : public FrameworkCommand { public: DekdCommand(const char *cmd); virtual ~DekdCommand() {} int runCommand(SocketClient *c, int argc, char **argv); }; #endif /* DEKDCOMMAND_H_ */
[ [ [ 1, 22 ] ] ]
2b17e47589ce2b7bb6579f599aad8e4a664896b5
b8487f927d9fb3fa5529ad3686535714c687dd50
/include/hermes/VM/JIT/DenseUInt64.h
7cb45f61cba99d132ac4e42fc17f6b4a3b55cbc0
[ "MIT" ]
permissive
hoangtuanhedspi/hermes
4a1399f05924f0592c36a9d4b3fd1f804f383c14
02dbf3c796da4d09ec096ae1d5808dcb1b6062bf
refs/heads/master
2020-07-12T21:21:53.781167
2019-08-27T22:58:17
2019-08-27T22:59:55
204,908,743
1
0
MIT
2019-08-28T17:44:49
2019-08-28T10:44:49
null
UTF-8
C++
false
false
2,568
h
/* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the LICENSE * file in the root directory of this source tree. */ #ifndef HERMES_VM_JIT_DENSEUINT64_H #define HERMES_VM_JIT_DENSEUINT64_H #include "hermes/VM/HermesValue.h" #include "llvm/ADT/DenseMapInfo.h" namespace hermes { namespace vm { /// A wrapper for using uint64_t with llvm::DenseMap/Set. class DenseUInt64 { public: /// Enum to differentiate between LLVM's empty/tombstone and normal values. enum class MapKeyType { empty, tombstone, valid, }; DenseUInt64(uint64_t cval) : keyType_(MapKeyType::valid), rawValue_(cval) {} DenseUInt64(void *addr) : keyType_(MapKeyType::valid), rawValue_((uint64_t)addr) {} DenseUInt64(HermesValue hv) : keyType_(MapKeyType::valid), rawValue_(hv.getRaw()) {} DenseUInt64(double v) : DenseUInt64(HermesValue::encodeDoubleValue(v)) {} DenseUInt64(MapKeyType keyType) : keyType_(keyType), rawValue_(0) { assert(keyType_ != MapKeyType::valid && "valid entries must have a value"); } bool operator==(const DenseUInt64 &other) const { return keyType_ == other.keyType_ && rawValue_ == other.rawValue_; } HermesValue valueAsHV() const { assert( keyType_ == MapKeyType::valid && "attempting to get the value of tombstone/empty entry"); return HermesValue(rawValue_); } void *valueAsAddr() const { assert( keyType_ == MapKeyType::valid && "attempting to get the value of tombstone/empty entry"); return (void *)rawValue_; } uint64_t rawValue() const { return rawValue_; } private: /// The type of value we have: empty/tombstone/normal. MapKeyType keyType_; /// A raw uint64_t: it could be a HermesValue or an address uint64_t rawValue_; }; } // namespace vm } // namespace hermes namespace llvm { /// Traits to enable using UInt64Constant with llvm::DenseSet/Map. template <> struct DenseMapInfo<hermes::vm::DenseUInt64> { using UInt64Constant = hermes::vm::DenseUInt64; using MapKeyType = UInt64Constant::MapKeyType; static inline UInt64Constant getEmptyKey() { return MapKeyType::empty; } static inline UInt64Constant getTombstoneKey() { return MapKeyType::tombstone; } static inline unsigned getHashValue(UInt64Constant x) { return DenseMapInfo<uint64_t>::getHashValue(x.rawValue()); } static inline bool isEqual(UInt64Constant a, UInt64Constant b) { return a == b; } }; } // namespace llvm #endif // HERMES_VM_JIT_DENSEUINT64_H
[ [ [ 1, 93 ] ] ]
849e17e440d0e9523fb0dd1a5f7f9d2bf5e1f416
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5686313294495744_0/C++/vidhan13j07/test.cpp
5edfd10037fb916f2f5fbdef7cf9305b0b29d5b9
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
C++
false
false
2,489
cpp
#include<bits/stdc++.h> #define sc(v) v.size() #define eb push_back #define pb pop_back #define f(i,a,b) for(int i=a;i<b;i++) #define TC() int t;cin>>t;while(t--) #define all(x) x.begin(),x.end() #define mk make_pair #define fi first #define se second #define endl "\n" #define eps 1e-9 #define pw(x) (1ll<<(x)) #define trace1(x) cout <<#x<<": "<<x<<endl; #define trace2(x, y) cout <<#x<<": "<<x<<" | "<<#y<<": "<<y<< endl; #define trace3(x, y, z) cout <<#x<<": "<<x<<" | "<<#y<<": "<<y<<" | "<<#z<<": "<<z<<endl; #define trace4(a, b, c, d) cout <<#a<<": "<<a<<" | "<<#b<<": "<<b<<" | "<<#c<<": "<<c<<" | "<<#d<<": "<<d<<endl; #define trace5(a, b, c, d, e) cout <<#a<<": "<<a<<" | "<<#b<<": "<<b<<" | "<<#c<<": "<<c<<" | "<<#d<<": "<<d<<" | "<<#e<<": "<<e<<endl; using namespace std; typedef long long int ll; typedef vector<int> vi; typedef vector<ll> vll; typedef pair<string,string> pi; typedef pair<ll,ll> pll; inline bool EQ(double a,double b) { return fabs(a - b) < 1e-9; } inline void set_bit(int & n, int b) { n |= pw(b); } inline void unset_bit(int & n, int b) { n &= ~pw(b); } int main() { #ifndef ONLINE_JUDGE //freopen("input.txt","r",stdin); //freopen("output.txt","w",stdout); #endif clock_t tStart = clock(); int tc = 1; int n; map< pi,int > mp; vector< pi > v; set< pi > vv; vector<string> f,rr; string x,y; set<string> a,b; TC() { printf("Case #%d: ", tc++); mp.clear(); v.clear(); a.clear(); b.clear(); scanf("%d",&n); f(i,0,n) { cin>>x>>y; v.eb(mk(x,y)); mp[mk(x,y)] = 1; } int ans = 0; f(i,0,1 << n) { f.clear(); rr.clear(); vv.clear(); int c = 0; f(j,0,n) if(i&(1 << j)) { f.eb(v[j].fi); rr.eb(v[j].se); vv.insert(v[j]); } f(j,0,sc(f)) f(k,0,sc(rr)) { if(vv.find(mk(f[j],rr[k])) != vv.end()) continue; if(mp[mk(f[j],rr[k])]) c++; } ans = max(ans,c); } printf("%d\n",ans); } //printf("Time taken: %.2fs\n", (double)(clock() - tStart)/CLOCKS_PER_SEC); return 0; }
[ [ [ 1, 90 ] ] ]
83c1a88dc48365856197594c6712168628615a60
52a932a54983d3c1a40d30d0cd546085deb1fd86
/source/Mobs/Zombie.h
61f8e3bb84ee3895ca4f367a944df4e218e15e7a
[ "Apache-2.0" ]
permissive
Xury/MCServer
ce8068fd4cf9401b5348769dcc6ed7b670dcae08
c019e8f0c568163967de4b6c370964cfc0b1adb3
refs/heads/master
2021-01-18T02:49:50.005403
2013-09-03T12:54:50
2013-09-03T12:55:07
null
0
0
null
null
null
null
UTF-8
C++
false
false
326
h
#pragma once #include "AggressiveMonster.h" class cZombie : public cAggressiveMonster { typedef cAggressiveMonster super; public: cZombie(); CLASS_PROTODEF(cZombie); virtual void Tick(float a_Dt, cChunk & a_Chunk) override; virtual void GetDrops(cItems & a_Drops, cEntity * a_Killer = NULL) override; } ;
[ "[email protected]@0a769ca7-a7f5-676a-18bf-c427514a06d6", "[email protected]@0a769ca7-a7f5-676a-18bf-c427514a06d6" ]
[ [ [ 1, 2 ], [ 4, 4 ], [ 11, 11 ], [ 14, 16 ], [ 25, 25 ] ], [ [ 3, 3 ], [ 5, 10 ], [ 12, 13 ], [ 17, 24 ] ] ]
e80178df0d6d8e25163f4e3d848c8940e1e40d2f
8ea2c608d0ea52bdf26e045ada1367b93f76c046
/OpenGL/objeto.h
6ebbac6737b5475febb0a458045ceb0aa82a7255
[]
no_license
Alexandrecajamos/geometria_comp
0aedf467e337ffc2627e68564c9ade03354f3881
d0264e2ec8bfb0da50c1ee8ec14042779d860612
refs/heads/master
2021-04-12T09:52:11.906345
2018-06-21T21:17:36
2018-06-21T21:17:36
126,262,600
0
0
null
null
null
null
UTF-8
C++
false
false
1,027
h
#ifndef OBJETO_H #define OBJETO_H #include<vector> #include "stdio.h" #include "coord_3d.h" #include "esfera.h" #include <fstream> #include "face.h" #include<cmath> #define TAM 4 class Objeto { public: Objeto(); void addPoint(float x, float y, float z); void addFace(int iP1, int iP2, int iP3); float Ray_intersept(Coord_3D Po, Coord_3D Dir, int *iFace); bool Tiro(Coord_3D Ponto); void calc_Esfera(); void ImpPoints(); void ImpFaces(); bool Obstaculo(Coord_3D Pint, Coord_3D l); void Libera(); void Ordena(int eixo); void CopiaPontos(Objeto* O); Coord_3D Centro(); float Area_Externa(); float Volume(); int MaiorX();//Retorna Indice int MenorX();//Retorna Indice int MaiorY();//Retorna Indice int MenorY();//Retorna Indice int MaiorZ();//Retorna Indice int MenorZ();//Retorna Indice bool Pertence(int iP1, int iP2, int iP3); Esfera Esf; std::vector<Coord_3D*> points; std::vector<Face*> faces; }; #endif // OBJETO_H
[ [ [ 1, 50 ] ] ]
fa606684822edaeb65a3facbab4e69b8044c96ef
6aeccfb60568a360d2d143e0271f0def40747d73
/sandbox/SOC/2011/simd/boost/simd/toolbox/constant/include/constants/minexponent.hpp
0fd6c857f2cef5aa7fcc1f22aca4daf4a5f7a9c3
[]
no_license
ttyang/sandbox
1066b324a13813cb1113beca75cdaf518e952276
e1d6fde18ced644bb63e231829b2fe0664e51fac
refs/heads/trunk
2021-01-19T17:17:47.452557
2013-06-07T14:19:55
2013-06-07T14:19:55
13,488,698
1
3
null
2023-03-20T11:52:19
2013-10-11T03:08:51
C++
UTF-8
C++
false
false
232
hpp
#ifndef BOOST_SIMD_TOOLBOX_CONSTANT_INCLUDE_CONSTANTS_MINEXPONENT_HPP_INCLUDED #define BOOST_SIMD_TOOLBOX_CONSTANT_INCLUDE_CONSTANTS_MINEXPONENT_HPP_INCLUDED #include <boost/simd/toolbox/constant/constants/minexponent.hpp> #endif
[ [ [ 1, 6 ] ] ]
b54f8af3b8d91ec3312f1936cc121941612c52f9
33c05858242f026297d97a902656ee8f066683a8
/satellite_sniffer_BoTFSM/src/Canvas.cpp
ad8ababfa55c65250d872cc2f5187e0f6e6b207d
[]
no_license
CodecoolBP20171/cpp-satellite-sniffer-botfsm
d8bcb902da2c4f3e2d7b827da0558343022687c3
b29818ae7dc1d2f7f3967c278a3d01c447786df8
refs/heads/master
2021-06-01T16:43:46.978984
2018-09-30T13:10:56
2018-09-30T13:10:56
113,032,533
4
2
null
2018-09-30T13:10:57
2017-12-04T11:09:09
C
UTF-8
C++
false
false
883
cpp
#include "stdafx.h" #include "Canvas.h" #include "Resources.h" #include <SDL.h> Canvas::Canvas(const int width, const int height) { this->height = height; this->width = width; texture = SDL_CreateTexture(Resources::getInstance()->getRenderer(), SDL_PIXELFORMAT_RGBA8888, SDL_TEXTUREACCESS_TARGET, width, height); SDL_SetTextureBlendMode(texture, SDL_BLENDMODE_BLEND); } void Canvas::resize(const int width, const int height) { if (texture) SDL_DestroyTexture(texture); this->height = height; this->width = width; texture = SDL_CreateTexture(Resources::getInstance()->getRenderer(), SDL_PIXELFORMAT_RGBA8888, SDL_TEXTUREACCESS_TARGET, width, height); SDL_SetTextureBlendMode(texture, SDL_BLENDMODE_BLEND); } void Canvas::setAsRenderTarget() { SDL_SetRenderTarget(Resources::getInstance()->getRenderer(), texture); } Canvas::~Canvas() { }
[ [ [ 1, 31 ] ] ]
cf94e7e7f6a5aa06a4c6a7230f8e8a546b0206a4
607829232b9ec8d6733fb67be85e8555d19e1ee0
/libs/core/include/fcppt/math/vector/ceil_div_signed.hpp
6ebdffb5f1f010dcdee214d5164fac81c3a66cd8
[ "BSL-1.0" ]
permissive
cnsuhao/fcppt
3b917196d5faf477d769b8f04e0001361a857776
104c035118a04011c5fd9574cc78b2889550ea65
refs/heads/master
2021-01-13T06:30:29.527419
2016-11-05T13:33:41
2016-11-05T13:33:41
null
0
0
null
null
null
null
UTF-8
C++
false
false
1,306
hpp
// Copyright Carl Philipp Reh 2009 - 2016. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef FCPPT_MATH_VECTOR_CEIL_DIV_SIGNED_HPP_INCLUDED #define FCPPT_MATH_VECTOR_CEIL_DIV_SIGNED_HPP_INCLUDED #include <fcppt/math/ceil_div_signed.hpp> #include <fcppt/math/map.hpp> #include <fcppt/math/size_type.hpp> #include <fcppt/math/vector/object_impl.hpp> #include <fcppt/math/vector/static.hpp> #include <fcppt/config/external_begin.hpp> #include <type_traits> #include <fcppt/config/external_end.hpp> namespace fcppt { namespace math { namespace vector { /** \brief Division rounded up for signed vectors \ingroup fcpptmathvector */ template< typename T, fcppt::math::size_type N, typename S > fcppt::math::vector::static_< T, N > ceil_div_signed( fcppt::math::vector::object< T, N, S > const _vector, T const _factor ) { static_assert( std::is_signed< T >::value, "T must be signed" ); return fcppt::math::map< fcppt::math::vector::static_< T, N > >( _vector, [ _factor ]( T const _value ) { return fcppt::math::ceil_div_signed( _value, _factor ); } ); } } } } #endif
[ [ [ 1, 1 ], [ 12, 12 ], [ 14, 14 ], [ 27, 31 ], [ 34, 34 ], [ 37, 37 ], [ 39, 40 ], [ 59, 59 ], [ 61, 61 ] ], [ [ 2, 11 ], [ 13, 13 ], [ 15, 26 ], [ 32, 33 ], [ 35, 36 ], [ 38, 38 ], [ 41, 58 ], [ 60, 60 ], [ 62, 84 ] ] ]
334f0712fc8566ea028524f0cd56702b83f8dbd4
9b273539e02cca8d408e8cf793007ee84e6637d5
/ext/bliss/src/iterators/edge_iterator.hpp
2217a705bef1dc4b94ba3493a6facab66fe6ad3e
[ "Apache-2.0" ]
permissive
tuan1225/parconnect_sc16
23b82c956eed4dabe5deec8bd48cc8ead91af615
bcd6f99101685d746cf30e22fa3c3f63ddd950c9
refs/heads/master
2020-12-24T12:01:13.846352
2016-11-07T16:51:29
2016-11-07T16:51:29
73,055,274
0
0
null
null
null
null
UTF-8
C++
false
false
9,760
hpp
/* * edge_iterator.hpp * * Created on: Aug 4, 2015 * Author: yongchao */ #ifndef EDGE_ITERATOR_HPP_ #define EDGE_ITERATOR_HPP_ #include <iterator> #include "common/alphabets.hpp" namespace bliss { namespace iterator { // careful with the use of enable_if. evaluation should occur at function call time, // i.e. class template params will be evaluated with no substitution. // instead, a function should declare a template parameter proxy for the class template parameter. // then enable_if evaluates using the proxy. // e.g. template< class c = C; typename std::enable_if<std::is_same<c, std::string>::value, int>::type x = 0> /** * @class edge_iterator * @brief given a k-mer position, retrieve its left and right bases, including the dummy bases at both ends * @details specializations of this class uses a byte to manage the edge info. * upper 4 bits holds the left base (encoded), lower 4 bits holds the right base (encoded) * * no reverse complement or reordering is applied. * * edge iterator should be valid for std::distance(_data_end - _data_start - k + 1) iterations. */ template<typename IT, typename ALPHA = bliss::common::DNA16> class edge_iterator : public ::std::iterator<::std::forward_iterator_tag, uint8_t> { protected: // curr position IT _curr; //previous position IT _left; //a position of distance k from the _curr on the right IT _right; /*data*/ const IT _data_start; const IT _data_end; public: typedef ALPHA Alphabet; typedef edge_iterator<IT, ALPHA> self_type; /*define edge iterator type*/ typedef uint8_t edge_type; //type to represent an edge // accessors IT& getBase() { return _curr; } //constructor edge_iterator(IT data_start, IT data_end, const uint32_t k) : _curr (data_start), _left(data_end), _right(data_start), _data_start(data_start), _data_end(data_end) { /*compute the offset*/ ::std::advance(_curr, k - 1); _right = _curr; ::std::advance(_right, 1); } edge_iterator(IT data_end) : _curr(data_end), _left(data_end), _right(data_end), _data_start(data_end), _data_end(data_end) { } /// copy constructor edge_iterator(const self_type& Other) : _curr (Other._curr), _left(Other._left), _right(Other._right), _data_start(Other._data_start), _data_end(Other._data_end) { /*do nothing*/ } /// copy assignment iterator self_type& operator=(const self_type& Other) { _curr = Other._curr; _left = Other._left; _right = Other._right; _data_start = Other._data_start; _data_end = Other._data_end; return *this; } /// increment to next matching element in base iterator self_type& operator++() { // if _curr at end, subsequent calls should not move _curr. // on call, if not at end, need to move first then evaluate. if (_curr == _data_end){ // if at end, don't move it. return *this; } /*save the previous position*/ if (_left == _data_end) _left = _data_start; else ++_left; /*move forward by 1*/ ++_curr; /*ensure that _right does not exceed _end*/ if(_right != _data_end){ ++_right; } return *this; } /** * post increment. make a copy then increment that. */ self_type operator++(int) { self_type output(*this); this->operator++(); return output; } /// compare 2 filter iterators inline bool operator==(const self_type& rhs) { return _curr == rhs._curr; } /// compare 2 filter iterators inline bool operator!=(const self_type& rhs) { return _curr != rhs._curr; } /// dereference operator. _curr is guaranteed to be valid inline edge_type operator*() { /*using four bits to represent an edge*/ if(_left != _data_end && _right != _data_end){ /*internal k-mer node*/ return (ALPHA::FROM_ASCII[*_left] << 4) | ALPHA::FROM_ASCII[*_right]; }else if(_left == _data_end && _right != _data_end){ /*the left-most k-mer node*/ return ALPHA::FROM_ASCII[*_right]; }else if(_left != _data_end && _right == _data_end){ /*the rigth-most k-mer node*/ return ALPHA::FROM_ASCII[*_left] << 4; } /*if(_left == _end && _right == _end)*/ return 0; } }; template<typename IT> using DNA16_edge_iterator = edge_iterator<IT, bliss::common::DNA16>; template<typename IT> using DNA_IUPAC_edge_iterator = edge_iterator<IT, bliss::common::DNA_IUPAC>; // not suitable for edge iterator since there is no value for unknown char. template<typename IT> using DNA_edge_iterator = edge_iterator<IT, bliss::common::DNA>; template<typename IT> using DNA5_edge_iterator = edge_iterator<IT, bliss::common::DNA5>; // not suitable for edge iterator since there is no value for unknown char. template<typename IT> using RNA_edge_iterator = edge_iterator<IT, bliss::common::RNA>; template<typename IT> using RNA5_edge_iterator = edge_iterator<IT, bliss::common::RNA5>; /*EdgeType = short unsigned int*/ template<typename IT> class edge_iterator<IT, bliss::common::ASCII>: public ::std::iterator<::std::forward_iterator_tag, uint16_t> { protected: // curr position IT _curr; //previous position IT _left; //a position of distance k from the _curr on the right IT _right; /*data*/ const IT _data_start; const IT _data_end; public: typedef bliss::common::ASCII Alphabet; typedef edge_iterator<IT, bliss::common::ASCII> self_type; /*define edge iterator type*/ typedef uint16_t edge_type; //type to represent an edge // accessors IT& getBase() { return _curr; } //constructor edge_iterator(IT data_start, IT data_end, const uint32_t k) : _curr (data_start), _left(data_end), _right(data_start), _data_start(data_start), _data_end(data_end) { /*compute the offset*/ ::std::advance(_curr, k-1); _right = _curr; ::std::advance(_right, 1); } edge_iterator(IT data_end) : _curr(data_end), _left(data_end), _right(data_end), _data_start(data_end), _data_end(data_end) { } /// copy constructor edge_iterator(const self_type& Other) : _curr (Other._curr), _left(Other._left), _right(Other._right), _data_start(Other._data_start), _data_end(Other._data_end) { /*do nothing*/ } /// copy assignment iterator self_type& operator=(const self_type& Other) { _curr = Other._curr; _left = Other._left; _right = Other._right; _data_start = Other._data_start; _data_end = Other._data_end; return *this; } /// increment to next matching element in base iterator self_type& operator++() { // if _curr at end, subsequent calls should not move _curr. // on call, if not at end, need to move first then evaluate. if (_curr == _data_end){ // if at end, don'IT move it. return *this; } /*save the previous position*/ if (_left == _data_end) _left = _data_start; else ++_left; /*move forward by 1*/ ++_curr; /*ensure that _right does not exceed _end*/ if(_right != _data_end){ ++_right; } return *this; } /** * post increment. make a copy then increment that. */ self_type operator++(int) { self_type output(*this); this->operator++(); return output; } /// compare 2 filter iterators inline bool operator==(const self_type& rhs) { return _curr == rhs._curr; } /// compare 2 filter iterators inline bool operator!=(const self_type& rhs) { return _curr != rhs._curr; } /// dereference operator. _curr is guaranteed to be valid inline edge_type operator*() { /*using 8 bits to represent an edge*/ if(_left != _data_end && _right != _data_end){ /*internal k-mer node*/ return (*_left << 8) | *_right; }else if(_left == _data_end && _right != _data_end){ /*the left-most k-mer node*/ return *_right & 0x0ff; }else if(_left != _data_end && _right == _data_end){ /*the rigth-most k-mer node*/ return *_left << 8; } /*if(_left == _end && _right == _end)*/ return 0; } }; template<typename IT> using raw_edge_iterator = edge_iterator<IT, bliss::common::ASCII>; } // iterator } // bliss #endif /* EDGE_ITERATOR_HPP_ */
[ [ [ 1, 312 ] ] ]
125d9dfb6a31d7b8178cff53df30313fe499c04f
7749a4165ee0dbc239aa2d6415087d3bf8356819
/cpp/datautil.cpp
9f2efed3beffa1587636dd9f57d23743e072f2f8
[ "Unlicense", "CC-BY-4.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
csavur/c2gQtCon_x
e792dac2fdc92b64245527d5032fe5dc3b1b17a4
510019256f9243e7ebeafefbf58285ce71d24c9f
refs/heads/master
2021-01-12T14:56:36.621567
2017-09-05T20:57:36
2017-09-05T20:57:36
89,668,134
0
0
null
2017-04-28T04:41:26
2017-04-28T04:41:26
null
UTF-8
C++
false
false
68,114
cpp
#include "datautil.hpp" #include <QDebug> #include <QJsonDocument> #include <QJsonObject> #include <QFile> #include <QDir> #include <QImage> const QString YYYY_MM_DD = "yyyy-MM-dd"; const QString HH_MM = "HH:mm"; const QString LOCAL_HH_MM = "hh:mm"; const QString YYYY_MM_DD_HH_MM = "yyyy-MM-ddHH:mm"; const QString DAYNAME = "dddd"; const QString DAYNAME_HH_MM = "dddd, HH:mm"; const QString DEFAULT_SPEAKER_IMAGE_URL = "http://conf.qtcon.org/person_original.png"; const QString EMPTY_TRACK = "*****"; DataUtil::DataUtil(QObject *parent) : QObject(parent) { } void DataUtil::init(DataManager* dataManager, DataServer* dataServer) { mDataManager = dataManager; mDataServer = dataServer; mConferenceDataPath = mDataManager->mDataPath + "conference/"; mDataServer->setConferenceDataPath(mConferenceDataPath); // used for temp dynamic lists as QQmlPropertyLists mSessionLists = mDataManager->createSessionLists(); // connections bool res = connect(mDataServer, SIGNAL(serverSuccess()), this, SLOT(onServerSuccess())); if (!res) { Q_ASSERT(res); } res = connect(mDataServer, SIGNAL(serverFailed(QString)), this, SLOT(onServerFailed(QString))); if (!res) { Q_ASSERT(res); } res = connect(mDataServer, SIGNAL(versionSuccess(QByteArray)), this, SLOT(onVersionSuccess(QByteArray))); if (!res) { Q_ASSERT(res); } res = connect(mDataServer, SIGNAL(versionFailed(QString)), this, SLOT(onVersionFailed(QString))); if (!res) { Q_ASSERT(res); } } QString DataUtil::conferenceDataPath4QML() { return "file://"+mConferenceDataPath; } bool DataUtil::isDateTooLate() { QString todayDate = QDate::currentDate().toString(YYYY_MM_DD); if(mDataManager->mAllDay.empty()) return false; QString lastConferenceDay = ((Day*) mDataManager->mAllDay.last())->conferenceDay().toString(YYYY_MM_DD); qDebug() << "todayDate" << todayDate << "lastConferenceDay" << lastConferenceDay; return todayDate > lastConferenceDay; } /** * @brief DataUtil::sessionInfoForSpeaker * @param speaker * @return all Session Title line by line */ QString DataUtil::sessionInfoForSpeaker(Speaker *speaker) { QString info; if(!speaker) { return info; } for (int i = 0; i < speaker->sessions().size(); ++i) { if(i > 0) { info.append("\n"); } info.append(speaker->sessions().at(i)->title()); } return info; } QString DataUtil::speakerNamesForSession(Session *session) { QString info; if(!session) { return info; } for (int i = 0; i < session->presenter().size(); ++i) { QString name = session->presenter().at(i)->name(); if(name.length()) { if(info.length()) { info.append(", "); } info.append(name); } } return info; } QString DataUtil::scheduleItemImageForSession(Session *session) { if(!session || !session->hasScheduleItem()) { return ""; } if(session->scheduleItemAsDataObject()->isRegistration()) { return "key.png"; } if(session->scheduleItemAsDataObject()->isLunch()) { return "lunch.png"; } if(session->scheduleItemAsDataObject()->isEvent()) { return "party_event.png"; } return "break.png"; } QString DataUtil::letterForButton(Session *session) { if(!session) { return "S"; } if(session->isTraining()) { return "T"; } if(session->isLightning()) { return "L"; } if (session->isKeynote()) { return "K"; } if(session->isCommunity()) { return "C"; } if(session->isMeeting()) { return "M"; } if(session->isUnconference()) { return "U"; } return "S"; } QString DataUtil::textForSessionTrack(Session *session) { if(!session || !session->hasSessionTrack()) { return ""; } QString name = session->sessionTrackAsDataObject()->name(); // if(name == "Community") { // return ""; // } if(name == "*****") { return ""; } if(name == "Unconference") { return ""; } return name; } QString DataUtil::textForSessionType(Session *session) { if(!session) { return ""; } QString info = " (" + QString::number(session->minutes()) + tr(" Minutes)"); if(session->hasScheduleItem()) { if(session->scheduleItemAsDataObject()->isRegistration()) { return tr("Registration")+info; } if(session->scheduleItemAsDataObject()->isEvent()) { return tr("Event")+info; } if(session->scheduleItemAsDataObject()->isLunch()) { return tr("Lunch")+info; } return tr("Break")+info; } if(session->isTraining()) { return tr("Training")+info; } if(session->isLightning()) { return tr("Lightning Talk")+info; } if(session->isKeynote()) { return tr("Keynote")+info; } if(session->isCommunity()) { return tr("Community")+info; } if(session->isUnconference()) { return tr("Unconference")+info; } if(session->isMeeting()) { return tr("Meeting")+info; } return tr("Session")+info; } QString DataUtil::trackColor(const int trackId) { switch (trackId) { case 3: // ***** return "transparent"; case 27: // 3D return "#FFCDD2"; case 28: // Automotive, Mobile and Embedded return "#F06292"; case 29: // Best practices return "#BA68C8"; case 30: // Beyond Code return "#D1C4E9"; case 31: // Break "#FFFFFF" return "grey"; case 32: // Codecs return "#E8EAF6"; case 33: // Community return "#B3E5FC"; case 34: // Distributing Software and Resources return "#64B5F6"; case 35: // Free Software policies and politics return "#4DD0E1"; case 36: // Geolocation return "#CDDC39"; case 37: // In depth return "#26A69A"; case 38: // KDE‘s Latest and Greatest return "#2196F3"; case 39: // Let‘s talk business return "#FFEB3B"; case 40: // Let‘s talk software return "#FFC107"; case 41: // Misc return "#FF9890"; case 42: // Multithreading return "#FF7043"; case 43: // OpenGL and 3D return "#E53935"; case 44: // Platforms and Integration return "#BCAAA4"; case 45: // Qt in Use return "#4CAF50"; case 46: // QtQuick return "#8BC34A"; case 47: // Technical Discussions return "#8D6E63"; case 48: // Testing and Continuous Integration return "#E0E0E0"; case 49: // Tooling return "#90A4AE"; case 50: // Web return "#607D8B"; default: // transparent return "transparent"; } } // if update failed Data in memory is inconsistent // delete all, then do init again void DataUtil::reloadData() { // delete all to avoid orphans mProgressInfotext.append(tr(" Rollback")); emit progressInfo(mProgressInfotext); // DO IT // reload mProgressInfotext.append(tr(" Reload")); emit progressInfo(mProgressInfotext); // DO IT mDataManager->init(); } // creates missing dirs if preparing conference (pre-conf-stuff) // or checking for schedule updates bool DataUtil::checkDirs() { // data/conference QString directory = mDataManager->mDataPath + "conference/"; QDir myDir; bool exists; exists = myDir.exists(directory); if (!exists) { bool ok = myDir.mkpath(directory); if(!ok) { qWarning() << "Couldn't create conference dir " << directory; return false; } qDebug() << "created directory conference " << directory; } // data/conference/speakerImages directory.append("speakerImages/"); exists = myDir.exists(directory); if (!exists) { bool ok = myDir.mkpath(directory); if(!ok) { qWarning() << "Couldn't create speakerImages dir " << directory; return false; } qDebug() << "created directory speakerImages " << directory; } return true; } // P R E C O N F E R E N C E S T U F F /** * Prepare will be done before submitting the App to AppStore * Use public Cache * Best practice: * 1. remove app from dev device * 2. start app, switch to public cache * 3. restart app * If all done send files from Phone to PC/Mac * Copy them into data-assets /prod or /test * Test again after deleting app from dev device * Now Users will get this directly by installing the app * and updates are fast */ void DataUtil::prepareConference() { // must use public cache if(!mDataManager->settingsData()->hasPublicCache()) { qWarning() << "Preparation must be done from public cache"; return; } qDebug() << "PREPARE CONFERENCE "; // check dirs for pre-conference stuff bool dirsOk = checkDirs(); if(!dirsOk) { qWarning() << "cannot create directories"; return; } // create some data for this specific conference prepareEventData(); // prepare speaker prepareSpeaker(); // prepare sessions // speaker must exist because sessions will be added to prepareSessions(); // download speaker images prepareSpeakerImages(); // now cache all the data // if ok - copied to qrc: data-assets qDebug() << "cache DATA"; mDataManager->saveConferenceToCache(); mDataManager->saveDayToCache(); mDataManager->saveBuildingToCache(); mDataManager->saveFloorToCache(); mDataManager->saveRoomToCache(); mDataManager->saveSessionToCache(); // sort Tracks QMultiMap<QString, SessionTrack*> sessionTrackSortMap; for (int i = 0; i < mDataManager->allSessionTrack().size(); ++i) { SessionTrack* sessionTrack = (SessionTrack*) mDataManager->allSessionTrack().at(i); sessionTrackSortMap.insert(sessionTrack->name(), sessionTrack); } mDataManager->mAllSessionTrack.clear(); QMapIterator<QString, SessionTrack*> sessionTrackIterator(sessionTrackSortMap); while (sessionTrackIterator.hasNext()) { sessionTrackIterator.next(); SessionTrack* sessionTrack = sessionTrackIterator.value(); mDataManager->insertSessionTrack(sessionTrack); } mDataManager->saveSessionTrackToCache(); mDataManager->saveScheduleItemToCache(); mDataManager->saveSessionLinkToCache(); mDataManager->saveSpeakerToCache(); // set API Version mDataManager->mSettingsData->setApiVersion(mNewApi); qDebug() << "PREPARE D O N E - WAIT FOR IMAGES"; } // conference, days, building-floor-rooms void DataUtil::prepareEventData() { qDebug() << "PREPARE EVENT "; // CONFERENCE mDataManager->deleteConference(); mDataManager->deleteDay(); mDataManager->deleteSession(); mDataManager->deleteScheduleItem(); mDataManager->deleteSessionLink(); mDataManager->deleteSpeaker(); mDataManager->deleteSpeakerImage(); // Conference* conference = mDataManager->createConference(); int lastNr = 0; for (int i = 0; i < mDataManager->allBuilding().size(); ++i) { Building* building = (Building*) mDataManager->allBuilding().at(i); if(building->buildingId() > lastNr) { lastNr = building->buildingId(); } } conference->setLastBuildingId(lastNr); lastNr = 0; for (int i = 0; i < mDataManager->allFloor().size(); ++i) { Floor* floor = (Floor*) mDataManager->allFloor().at(i); if(floor->floorId() > lastNr) { lastNr = floor->floorId(); } } conference->setLastFloorId(lastNr); lastNr = 0; for (int i = 0; i < mDataManager->allRoom().size(); ++i) { Room* room = (Room*) mDataManager->allRoom().at(i); if(room->roomId() > lastNr) { lastNr = room->roomId(); } room->clearSessions(); } conference->setLastRoomId(lastNr); lastNr = 0; for (int i = 0; i < mDataManager->allSessionTrack().size(); ++i) { SessionTrack* track = (SessionTrack*) mDataManager->allSessionTrack().at(i); if(track->trackId() > lastNr) { lastNr = track->trackId(); } track->clearSessions(); } conference->setLastSessionTrackId(lastNr); conference->setConferenceName("SoSE 2017"); conference->setConferenceCity("Hawaii"); QString venueAddress; venueAddress = "Waikoloa Hilton Village, Hawaii"; venueAddress.append("\n"); venueAddress.append("Waikoloa Beach Drive"); // venueAddress.append("\n"); // venueAddress.append("Alexanderstr. 11"); venueAddress.append("\n"); venueAddress.append("96738 Hawaii"); venueAddress.append("\n"); venueAddress.append("USA"); conference->setAddress(venueAddress); conference->setTimeZoneName("Hawaii-Aleutian"); conference->setTimeZoneOffsetSeconds(1 * 60 * 60); // +01:00 GMT conference->setConferenceFrom(QDate::fromString("2017-06-18", YYYY_MM_DD)); conference->setConferenceTo(QDate::fromString("2017-06-21", YYYY_MM_DD)); conference->setHashTag("#SoSE2017"); conference->setHomePage("http://sosengineering.org/"); QString coordinate; coordinate = QString::number(52.520778)+";"+QString::number(13.416515); // conference->coordinate()->setLatitude(52.520778); // conference->coordinate()->setLongitude(13.416515); conference->setCoordinate(coordinate); mDataManager->insertConference(conference); // DAYS // Days dayOfWeek 1=monday, 7 = sunday // thursday Day* day = mDataManager->createDay(); day->setId(1); day->setWeekDay(4); day->setConferenceDay(QDate::fromString("2017-06-18", YYYY_MM_DD)); conference->addToDays(day); mDataManager->insertDay(day); // friday day = mDataManager->createDay(); day->setId(2); day->setWeekDay(5); day->setConferenceDay(QDate::fromString("2017-06-19", YYYY_MM_DD)); conference->addToDays(day); mDataManager->insertDay(day); // saturday day = mDataManager->createDay(); day->setId(3); day->setWeekDay(6); day->setConferenceDay(QDate::fromString("2017-06-20", YYYY_MM_DD)); conference->addToDays(day); mDataManager->insertDay(day); // sunday day = mDataManager->createDay(); day->setId(4); day->setWeekDay(1); day->setConferenceDay(QDate::fromString("2017-06-21", YYYY_MM_DD)); conference->addToDays(day); mDataManager->insertDay(day); // BUILDING // Building and FLOORS already created // ROOMS created, but delete current sessions yet qDebug() << "ROOMS: #" << mDataManager->allRoom().size(); for (int r = 0; r < mDataManager->allRoom().size(); ++r) { Room* room = (Room*) mDataManager->allRoom().at(r); room->clearSessions(); } // } QVariantMap DataUtil::readScheduleFile(const QString schedulePath) { QVariantMap map; QFile readFile(schedulePath); if(!readFile.exists()) { qWarning() << "Schedule Path not found " << schedulePath; return map; } if (!readFile.open(QIODevice::ReadOnly)) { qWarning() << "Couldn't open file: " << schedulePath; return map; } QJsonDocument jda = QJsonDocument::fromJson(readFile.readAll()); readFile.close(); if(!jda.isObject()) { qWarning() << "Couldn't create JSON from file: " << schedulePath; return map; } qDebug() << "QJsonDocument for schedule with Object :)"; map = jda.toVariant().toMap(); return map; } Day* DataUtil::findDayForServerDate(const QString& dayDate) { Day* day = nullptr; bool found = false; for (int dl = 0; dl < mDataManager->mAllDay.size(); ++dl) { day = (Day*) mDataManager->mAllDay.at(dl); if( day->conferenceDay().toString(YYYY_MM_DD) == dayDate) { found = true; break; } } if(found) { qDebug() << "Day found"; return day; } qDebug() << "Day not found"; return 0; } void DataUtil::adjustPersons(QVariantMap& sessionMap) { QStringList personKeys; QVariantList personsList; personsList = sessionMap.value("persons").toList(); if (personsList.size() > 0) { for (int pvl = 0; pvl < personsList.size(); ++pvl) { QVariantMap map = personsList.at(pvl).toMap(); if(map.contains("id")) { personKeys.append(map.value("id").toString()); } } sessionMap.insert("persons", personKeys); } } void DataUtil::createAndAdjustLinks(QVariantMap& sessionMap) { QStringList linkKeys; QVariantList linksList; linksList = sessionMap.value("links").toList(); if (linksList.size() > 0) { for (int lvl = 0; lvl < linksList.size(); ++lvl) { QVariantMap map = linksList.at(lvl).toMap(); if(map.contains("url")) { SessionLink* sessionLink = mDataManager->createSessionLink(); sessionLink->setUrl(map.value("url").toString()); sessionLink->setTitle(map.value("title").toString()); mDataManager->insertSessionLink(sessionLink); linkKeys.append(sessionLink->uuid()); } } sessionMap.insert("links", linkKeys); } } bool DataUtil::checkIfIgnored(SessionAPI* sessionAPI) { QString room = "Kohala Promenade"; qDebug() << "room " << sessionAPI->room(); if(sessionAPI->title() == "Registration and Coffee" && sessionAPI->room() != room) { qDebug() << "unwanted session: " << sessionAPI->sessionId() << " " << sessionAPI->title() << " " << sessionAPI->room(); return true; } if(sessionAPI->title() == "Lunch" && sessionAPI->room() != room) { qDebug() << "unwanted session: " << sessionAPI->sessionId() << " " << sessionAPI->title() << " " << sessionAPI->room(); return true; } if(sessionAPI->title() == "Coffee break" && sessionAPI->room() != room) { qDebug() << "unwanted session: " << sessionAPI->sessionId() << " " << sessionAPI->title() << " " << sessionAPI->room(); return true; } if(sessionAPI->title() == "Evening event" && sessionAPI->room() != room) { qDebug() << "unwanted session: " << sessionAPI->sessionId() << " " << sessionAPI->title() << " " << sessionAPI->room(); return true; } if(sessionAPI->title() == "Welcome" && sessionAPI->room() != room) { qDebug() << "unwanted session: " << sessionAPI->sessionId() << " " << sessionAPI->title() << " " << sessionAPI->room(); return true; } return false; } void DataUtil::setDuration(SessionAPI* sessionAPI, Session* session) { QStringList duration; duration = sessionAPI->duration().split(":"); int minutes = 0; if(duration.length() == 2) { minutes = duration.last().toInt(); minutes += duration.first().toInt()*60; } else { qWarning() << "Duration wrong: " << sessionAPI->duration() << " session ID: " << sessionAPI->sessionId(); } session->setMinutes(minutes); session->setEndTime(session->startTime().addSecs(minutes * 60)); } void DataUtil::setTrackAndType(SessionAPI* sessionAPI, Session* session, Conference* conference, const bool isUpdate) { SessionTrack* sessionTrack = nullptr; bool found = false; QString trackName; trackName = sessionAPI->track(); if(trackName.isEmpty()) { trackName = EMPTY_TRACK; } for (int tr = 0; tr < mDataManager->mAllSessionTrack.size(); ++tr) { sessionTrack = (SessionTrack*) mDataManager->mAllSessionTrack.at(tr); if(sessionTrack->name() == trackName) { found = true; break; } } if(!found) { sessionTrack = mDataManager->createSessionTrack(); conference->setLastSessionTrackId(conference->lastSessionTrackId()+1); sessionTrack->setTrackId(conference->lastSessionTrackId()); sessionTrack->setName(trackName); sessionTrack->setInAssets(isUpdate?false:true); mDataManager->insertSessionTrack(sessionTrack); } if (sessionTrack) { session->setSessionTrack(sessionTrack->trackId()); session->resolveSessionTrackAsDataObject(sessionTrack); } // SCHEDULE or what else // setting some boolean here makes it easier to distinguish in UI if (trackName == "Break" || (trackName == "Misc" && session->title().contains("Registration"))) { ScheduleItem* scheduleItem; if(isUpdate && session->hasScheduleItem()) { scheduleItem = session->scheduleItemAsDataObject(); } else { scheduleItem = mDataManager->createScheduleItem(); scheduleItem->setSessionId(session->sessionId()); session->setScheduleItem(scheduleItem->sessionId()); session->resolveScheduleItemAsDataObject(scheduleItem); scheduleItem->setSession(session->sessionId()); mDataManager->insertScheduleItem(scheduleItem); } if(session->title().contains("Evening event") || session->title().contains("SHOW EUROPE")) { scheduleItem->setIsEvent(true); } else { if(session->title().contains("Registration")) { scheduleItem->setIsRegistration(true); } else { if(session->title().contains("Lunch")) { scheduleItem->setIsLunch(true); } else { scheduleItem->setIsBreak(true); } } } } else { if(isUpdate && session->hasScheduleItem()) { // Session type changed, so remove any old schedule items mDataManager->deleteScheduleItemBySessionId(session->sessionId()); } if(session->title().contains("Lightning") || session->sessionType().contains("lightning_talk")) { session->setIsLightning(true); } else { if(session->title().contains("Keynote")) { session->setIsKeynote(true); } else { if(trackName == "Community") { session->setIsCommunity(true); } else { if(session->sessionDayAsDataObject()->conferenceDay().toString(YYYY_MM_DD) == "2017-06-18" && session->title().contains("Training")) { session->setIsTraining(true); } else { if(session->sessionType() == "meeting") { session->setIsMeeting(true); } else { if(session->title().contains("Unconference")) { session->setIsUnconference(true); } else { session->setIsSession(true); } } } } } } } } void DataUtil::prepareSessions() { const QString schedulePath = mDataManager->mDataAssetsPath + "conference/schedule.json"; qDebug() << "PREPARE SESSIONS "; QVariantMap map; map = readScheduleFile(schedulePath); if(map.isEmpty()) { qWarning() << "Schedule is no Map"; return; } map = map.value("schedule").toMap(); if(map.isEmpty()) { qWarning() << "No 'schedule' found"; return; } mNewApi = map.value("version").toString(); qDebug() << "VERSION: " + mNewApi; map = map.value("conference").toMap(); if(map.isEmpty()) { qWarning() << "No 'conference' found"; return; } qDebug() << "TITLE: " << map.value("title").toString(); Conference* conference; conference = (Conference*) mDataManager->allConference().first(); QVariantList dayList; dayList = map.value("days").toList(); if(dayList.isEmpty()) { qWarning() << "No 'days' found"; return; } mMultiSession.clear(); qDebug() << "DAYS: " << dayList.size(); for (int i = 0; i < dayList.size(); ++i) { QVariantMap dayMap; dayMap = dayList.at(i).toMap(); if(dayMap.isEmpty()) { qWarning() << "No 'DAY' found #" << i; continue; } QString dayDate; dayDate = dayMap.value("date").toString(); qDebug() << "processing DATE: " << dayDate; Day* day = findDayForServerDate(dayDate); if(!day) { qWarning() << "No Day* found for " << dayDate; continue; } bool found = false; QVariantMap roomMap; roomMap = dayMap.value("rooms").toMap(); QStringList roomKeys = roomMap.keys(); if(roomKeys.isEmpty()) { qWarning() << "No 'ROOMS' found for DAY # i"; continue; } for (int r = 0; r < roomKeys.size(); ++r) { QVariantList sessionList; sessionList = roomMap.value(roomKeys.at(r)).toList(); if(sessionList.isEmpty()) { qWarning() << "DAY: " << dayDate << " ROOM: " << roomKeys.at(r) << " ignored - No Sessions available"; continue; } Room* room = nullptr; found = false; for (int rl = 0; rl < mDataManager->mAllRoom.size(); ++rl) { room = (Room*) mDataManager->mAllRoom.at(rl); if(room->roomName() == roomKeys.at(r)) { found = true; break; } } if(!found) { qWarning() << "Room* not found for " << dayDate << " Room: " << roomKeys.at(r); // TODO add new Room continue; } for (int sl = 0; sl < sessionList.size(); ++sl) { QVariantMap sessionMap; sessionMap = sessionList.at(sl).toMap(); if(sessionMap.isEmpty()) { qWarning() << "No 'SESSION' Map DAY: " << dayDate << " ROOM: " << roomKeys.at(r); continue; } // adjust persons adjustPersons(sessionMap); // create and adjust links createAndAdjustLinks(sessionMap); SessionAPI* sessionAPI = mDataManager->createSessionAPI(); sessionAPI->fillFromForeignMap(sessionMap); // ignore unwanted Sessions if (checkIfIgnored(sessionAPI)) { continue; } Session* session = mDataManager->createSession(); session->fillFromMap(sessionAPI->toMap()); setDuration(sessionAPI, session); // refs // DAY session->setSessionDay(day->id()); // ROOM session->setRoom(room->roomId()); // TRACK TYPE SCHEDULE setTrackAndType(sessionAPI, session, conference, false); // SORT session->setSortKey(day->conferenceDay().toString(YYYY_MM_DD)+session->startTime().toString(HH_MM)); mMultiSession.insert(session->sortKey(), session); } // end for session of a room } // room keys } // for days list // insert sorted Sessions sortedSessionsIntoRoomDayTrackSpeaker(); } // sessions must be cleared before for Day Track, Room, Speaker // always if prepare Conference, explicitely if Update Schedule void DataUtil::sortedSessionsIntoRoomDayTrackSpeaker() { QMapIterator<QString, Session*> sessionIterator(mMultiSession); while (sessionIterator.hasNext()) { sessionIterator.next(); Session* session = sessionIterator.value(); mDataManager->insertSession(session); Room* room = mDataManager->findRoomByRoomId(session->room()); if(room != NULL) { room->addToSessions(session); } else { qWarning() << "ROOM is NULL for Session " << session->sessionId() << " #:" << session->room(); } Day* day = mDataManager->findDayById(session->sessionDay()); if(day != NULL) { day->addToSessions(session); } else { qWarning() << "DAY is NULL for Session " << session->sessionId() << " #:" << session->sessionDay(); } SessionTrack* sessionTrack = mDataManager->findSessionTrackByTrackId(session->sessionTrack()); if(sessionTrack != NULL) { sessionTrack->addToSessions(session); } else { qWarning() << "TRACK is NULL for Session " << session->sessionId() << " #:" << session->sessionTrack(); } for (int i = 0; i < session->presenterKeys().size(); ++i) { int pKey = session->presenterKeys().at(i).toInt(); Speaker* speaker = (Speaker*) mDataManager->findSpeakerBySpeakerId(pKey); if(speaker != NULL) { speaker->addToSessions(session); } else { qWarning() << "SPEAKER is NULL for Session " << session->sessionId() << " #:" << pKey; } } // for presenter } // while all sessions } QVariantList DataUtil::readSpeakerFile(const QString speakerPath) { QVariantList dataList; QFile readFile(speakerPath); if(!readFile.exists()) { qWarning() << "Speaker Path not found " << speakerPath; return dataList; } if (!readFile.open(QIODevice::ReadOnly)) { qWarning() << "Couldn't open file: " << speakerPath; return dataList; } QJsonDocument jda = QJsonDocument::fromJson(readFile.readAll()); readFile.close(); if(!jda.isArray()) { qWarning() << "Couldn't create JSON from file: " << speakerPath; return dataList; } qDebug() << "QJsonDocument for speaker with Array :)"; dataList = jda.toVariant().toList(); return dataList; } void DataUtil::calcSpeakerName(Speaker* speaker, SpeakerAPI* speakerAPI) { speaker->setName(speakerAPI->firstName()); if(speaker->name().length() > 0) { speaker->setName(speaker->name()+" "); } speaker->setName(speaker->name()+speakerAPI->lastName()); if(speaker->name().length() > 0) { if(speakerAPI->lastName().length() > 0) { speaker->setSortKey(speakerAPI->lastName().left(5).toUpper()); } else { speaker->setSortKey(speakerAPI->firstName().left(5).toUpper()); } speaker->setSortGroup(speaker->sortKey().left(1)); } else { speaker->setSortKey("*"); speaker->setSortGroup("*"); } } void DataUtil::prepareSpeaker() { const QString speakersPath = mDataManager->mDataAssetsPath + "conference/speaker.json"; qDebug() << "PREPARE SPEAKER "; QVariantList dataList; dataList = readSpeakerFile(speakersPath); if(dataList.size() == 0) { qWarning() << "Speaker List empty"; return; } mMultiSpeaker.clear(); for (int i = 0; i < dataList.size(); ++i) { SpeakerAPI* speakerAPI = mDataManager->createSpeakerAPI(); speakerAPI->fillFromForeignMap(dataList.at(i).toMap()); Speaker* speaker = mDataManager->createSpeaker(); speaker->setSpeakerId(speakerAPI->id()); calcSpeakerName(speaker, speakerAPI); speaker->setBio(speakerAPI->bio()); if(speakerAPI->avatar().length() > 0 && speakerAPI->avatar() != DEFAULT_SPEAKER_IMAGE_URL) { QString avatar = speakerAPI->avatar(); QStringList sl = avatar.split("?"); if(sl.size() > 1) { sl.removeLast(); avatar = sl.join("?"); } sl = avatar.split("."); if(sl.size() < 2) { qWarning() << "AVATAR wrong "+speakerAPI->avatar(); } else { avatar = avatar.replace("http://","https://"); SpeakerImage* speakerImage = mDataManager->createSpeakerImage(); speakerImage->setSpeakerId(speaker->speakerId()); speakerImage->setOriginImageUrl(avatar); speakerImage->setSuffix(sl.last()); mDataManager->insertSpeakerImage(speakerImage); speaker->resolveSpeakerImageAsDataObject(speakerImage); } } // using MultiMap to get Speakers sorted mMultiSpeaker.insert(speaker->sortKey(), speaker); } // end for all SpeakersAPI // insert sorted Speakers mDataManager->mAllSpeaker.clear(); QMapIterator<QString, Speaker*> speakerIterator(mMultiSpeaker); while (speakerIterator.hasNext()) { speakerIterator.next(); mDataManager->insertSpeaker(speakerIterator.value()); } } void DataUtil::prepareSpeakerImages() { const QString speakerImagesPath = mConferenceDataPath + "speakerImages/"; for (int i = 0; i < mDataManager->allSpeakerImage().size(); ++i) { SpeakerImage* speakerImage = (SpeakerImage*) mDataManager->allSpeakerImage().at(i); if (!speakerImage->downloadSuccess() && !speakerImage->downloadFailed()) { qDebug() << "loading..." << speakerImage->speakerId(); QString fileName; fileName = "speaker_"; fileName.append(QString::number(speakerImage->speakerId())); fileName.append('.'); fileName.append(speakerImage->suffix()); mImageLoader = new ImageLoader(speakerImage->originImageUrl(), speakerImagesPath+fileName, this); bool res = connect(mImageLoader, SIGNAL(loaded(QObject*, int, int)), this, SLOT(onSpeakerImageLoaded(QObject*, int, int))); if (!res) { Q_ASSERT(res); } res = connect(mImageLoader, SIGNAL(loadingFailed(QObject*, QString)), this, SLOT(onSpeakerImageFailed(QObject*, QString))); if (!res) { Q_ASSERT(res); } mImageLoader->loadSpeaker(speakerImage); return; } } // for all speaker images // N OW cache speaker images mDataManager->saveSpeakerImageToCache(); qDebug() << "SPEAKER IMAGES D O W N L O A D E D"; } void DataUtil::checkVersion() { mDataServer->requestVersion(); } void DataUtil::startUpdate() { bool dirOk = checkDirs(); if(!dirOk) { qWarning() << "Cannot create Directories"; emit updateFailed(tr("startUpdate - Cannot create Directories")); return; } mProgressInfotext = tr("Request Schedule and Speakers from Server"); emit progressInfo(mProgressInfotext); mDataServer->requestSchedule(); } void DataUtil::continueUpdate() { mProgressInfotext = tr("Save Favorites"); emit progressInfo(mProgressInfotext); // save F A V O R I T E S and bookmarks saveSessionFavorites(); // S P E A K E R mProgressInfotext = tr("Sync Speaker"); emit progressInfo(mProgressInfotext); const QString speakersPath = mConferenceDataPath + "speaker.json"; qDebug() << "PREPARE SPEAKER "; QVariantList dataList; dataList = readSpeakerFile(speakersPath); if(dataList.size() == 0) { qWarning() << "Speaker List empty"; emit updateFailed(tr("Update failed. No Speaker received.\nReloading current Data")); return; } mMultiSession.clear(); mMultiSpeaker.clear(); mMultiSpeakerImages.clear(); for (int i = 0; i < dataList.size(); ++i) { SpeakerAPI* speakerAPI = mDataManager->createSpeakerAPI(); speakerAPI->fillFromForeignMap(dataList.at(i).toMap()); Speaker* speaker = mDataManager->findSpeakerBySpeakerId(speakerAPI->id()); if(!speaker) { // NEW speaker qDebug() << "NEW SPEAKER"; mProgressInfotext.append("+"); speaker = mDataManager->createSpeaker(); speaker->setSpeakerId(speakerAPI->id()); } else { // update Speaker mProgressInfotext.append("."); } emit progressInfo(mProgressInfotext); calcSpeakerName(speaker, speakerAPI); speaker->setBio(speakerAPI->bio()); if(speakerAPI->avatar().length() > 0 && speakerAPI->avatar() != DEFAULT_SPEAKER_IMAGE_URL) { QString avatar = speakerAPI->avatar(); QStringList sl = avatar.split("?"); if(sl.size() > 1) { sl.removeLast(); avatar = sl.join("?"); } sl = avatar.split("."); if(sl.size() < 2) { qWarning() << "AVATAR wrong "+speakerAPI->avatar(); } else { // check if modified //avatar = avatar.replace("http://","https://"); if(speaker->hasSpeakerImage()) { if(speaker->speakerImageAsDataObject()->originImageUrl() != avatar) { qDebug() << "IMAGE Changed"; SpeakerImage* speakerImage = speaker->speakerImageAsDataObject(); speakerImage->setOriginImageUrl(avatar); speakerImage->setSuffix(sl.last()); mMultiSpeakerImages.insert(false, speakerImage); } } else { qDebug() << "IMAGE NEW"; SpeakerImage* speakerImage = mDataManager->createSpeakerImage(); speakerImage->setSpeakerId(speaker->speakerId()); speakerImage->setOriginImageUrl(avatar); speakerImage->setSuffix(sl.last()); speakerImage->setInAssets(false); speaker->resolveSpeakerImageAsDataObject(speakerImage); mMultiSpeakerImages.insert(false, speakerImage); } } // end if valid Avatar URL } // end check avatar if URL && not default // using MultiMap to get Speakers sorted mMultiSpeaker.insert(speaker->sortKey(), speaker); } // for speaker from server // qDebug() << "SPEAKERS: " << mDataManager->mAllSpeaker.size() << " --> " << mMultiSpeaker.size() << " IMG: " << mMultiSpeakerImages.size(); mProgressInfotext.append("\n").append(tr("Sync Speaker Images")); emit progressInfo(mProgressInfotext); updateSpeakerImages(); } void DataUtil::updateSpeakerImages() { if(mMultiSpeakerImages.size() > 0) { QList<SpeakerImage*> waitingForDownload = mMultiSpeakerImages.values(false); if(waitingForDownload.size() > 0) { mProgressInfotext.append("."); emit progressInfo(mProgressInfotext); // DO IT const QString speakerImagesPath = mConferenceDataPath + "speakerImages/"; SpeakerImage* speakerImage = waitingForDownload.first(); QString fileName; fileName = "speaker_"; fileName.append(QString::number(speakerImage->speakerId())); fileName.append('.'); fileName.append(speakerImage->suffix()); mImageLoader = new ImageLoader(speakerImage->originImageUrl(), speakerImagesPath+fileName, this); bool res = connect(mImageLoader, SIGNAL(loaded(QObject*, int, int)), this, SLOT(onSpeakerImageUpdateLoaded(QObject*, int, int))); if (!res) { Q_ASSERT(res); } res = connect(mImageLoader, SIGNAL(loadingFailed(QObject*, QString)), this, SLOT(onSpeakerImageUpdateFailed(QObject*, QString))); if (!res) { Q_ASSERT(res); } mImageLoader->loadSpeaker(speakerImage); return; } // waiting for download } // new images map // all done updateSessions(); } void DataUtil::updateAndAdjustLinks(QVariantMap &sessionMap) { QStringList linkKeys; QVariantList linksList; linksList = sessionMap.value("links").toList(); if (linksList.size() > 0) { for (int lvl = 0; lvl < linksList.size(); ++lvl) { QVariantMap map = linksList.at(lvl).toMap(); if(map.contains("url")) { QString linkUrl = map.value("url").toString(); SessionLink* sessionLink = nullptr; bool linkFound = false; for (int xsl = 0; xsl < mDataManager->allSessionLink().size(); ++xsl) { sessionLink = (SessionLink*) mDataManager->allSessionLink().at(xsl); if(sessionLink->url() == linkUrl) { linkFound = true; break; } } // end for all existing links if(!linkFound) { sessionLink = mDataManager->createSessionLink(); } sessionLink->setUrl(linkUrl); sessionLink->setTitle(map.value("title").toString()); if(!linkFound) { mDataManager->insertSessionLink(sessionLink); } linkKeys.append(sessionLink->uuid()); } // map contains url } // end for all links sessionMap.insert("links", linkKeys); } // end if linklist size } void DataUtil::updateSessions() { mProgressInfotext.append("\n").append(tr("Sync Sessions")); emit progressInfo(mProgressInfotext); mMultiSession.clear(); const QString schedulePath = mConferenceDataPath + "schedule.json"; QVariantMap map; map = readScheduleFile(schedulePath); if(map.isEmpty()) { qWarning() << "Schedule is no Map"; emit updateFailed(tr("Error: Received Map is empty.")); return; } map = map.value("schedule").toMap(); if(map.isEmpty()) { qWarning() << "No 'schedule' found"; emit updateFailed(tr("Error: Received Map missed 'schedule'.")); return; } map = map.value("conference").toMap(); if(map.isEmpty()) { qWarning() << "No 'conference' found"; emit updateFailed(tr("Error: Received Map missed 'conference'.")); return; } Conference* conference; if(mDataManager->allConference().isEmpty()) { emit updateFailed(tr("Error: Conference Not Found!")); return; } conference = (Conference*) mDataManager->allConference().first(); QVariantList dayList; dayList = map.value("days").toList(); if(dayList.isEmpty()) { qWarning() << "No 'days' found"; emit updateFailed(tr("Error: Received Map missed 'days'.")); return; } if(dayList.size() != 4) { qWarning() << "Wrong number of 'days' found"; emit updateFailed(tr("Error: # of 'days' expected: 4 - but got ")+QString::number(dayList.size())); return; } for (int i = 0; i < dayList.size(); ++i) { QVariantMap dayMap; dayMap = dayList.at(i).toMap(); if(dayMap.isEmpty()) { qWarning() << "No 'DAY' found #" << i; emit updateFailed(tr("Map for Day missed from Server")); continue; } QString dayDate; dayDate = dayMap.value("date").toString(); qDebug() << "processing DATE: " << dayDate; Day* day = findDayForServerDate(dayDate); if(!day) { qWarning() << "No Day* found for " << dayDate; emit updateFailed(tr("No Day* found for ")+dayDate); return; } bool found = false; QVariantMap roomMap; roomMap = dayMap.value("rooms").toMap(); QStringList roomKeys = roomMap.keys(); if(roomKeys.isEmpty()) { qWarning() << "No 'ROOMS' found for DAY # i"; emit updateFailed(tr("No 'ROOMS' found for DAY ") + dayDate); return; } for (int r = 0; r < roomKeys.size(); ++r) { QVariantList sessionList; sessionList = roomMap.value(roomKeys.at(r)).toList(); if(sessionList.isEmpty()) { qWarning() << "DAY: " << dayDate << " ROOM: " << roomKeys.at(r) << " ignored - No Sessions available"; continue; } Room* room = nullptr; found = false; for (int rl = 0; rl < mDataManager->mAllRoom.size(); ++rl) { room = (Room*) mDataManager->mAllRoom.at(rl); if(room->roomName() == roomKeys.at(r)) { found = true; break; } } if(!found) { qDebug() << "Room* not found for " << dayDate << " Room: " << roomKeys.at(r); room = mDataManager->createRoom(); conference->setLastRoomId(conference->lastRoomId()+1); room->setRoomId(conference->lastRoomId()); room->setInAssets(false); room->setRoomName(roomKeys.at(r)); mDataManager->insertRoom(room); mProgressInfotext.append("R"); progressInfo(mProgressInfotext); } for (int sl = 0; sl < sessionList.size(); ++sl) { QVariantMap sessionMap; sessionMap = sessionList.at(sl).toMap(); if(sessionMap.isEmpty()) { qWarning() << "No 'SESSION' Map DAY: " << dayDate << " ROOM: " << roomKeys.at(r); continue; } // adjust persons adjustPersons(sessionMap); // update and adjust SessionLink updateAndAdjustLinks(sessionMap); SessionAPI* sessionAPI = mDataManager->createSessionAPI(); sessionAPI->fillFromForeignMap(sessionMap); // ignore unwanted Sessions if (checkIfIgnored(sessionAPI)) { continue; } Session* session = mDataManager->findSessionBySessionId(sessionAPI->sessionId()); if(!session) { // NEW qDebug() << "NEW Session " << QString::number(sessionAPI->sessionId()); mProgressInfotext.append("+"); session = mDataManager->createSession(); session->setSessionId(sessionAPI->sessionId()); } else { // Update qDebug() << "Update Session " << QString::number(sessionAPI->sessionId()); mProgressInfotext.append("."); } emit progressInfo(mProgressInfotext); session->fillFromMap(sessionAPI->toMap()); setDuration(sessionAPI, session); // refs // DAY session->setSessionDay(day->id()); session->resolveSessionDayAsDataObject(day); // ROOM session->setRoom(room->roomId()); session->resolveRoomAsDataObject(room); // TRACK TYPE SCHEDULE isUpdate=true setTrackAndType(sessionAPI, session, conference, true); // SessionLinks // SORT session->setSortKey(day->conferenceDay().toString(YYYY_MM_DD)+session->startTime().toString(HH_MM)); mMultiSession.insert(session->sortKey(), session); } // end for sessions of a room of a day } // end for rooms of a day } // end for list of days from server qDebug() << "SESSIONS: " << mDataManager->mAllSession.size() << " --> " << mMultiSession.size(); // speaker, images, sessions, days, rooms, tracks --> cache // delete orphans mProgressInfotext.append("\n").append(tr("Schedule and Speaker successfully synchronized :)")); emit progressInfo(mProgressInfotext); finishUpdate(); } void DataUtil::finishUpdate() { mProgressInfotext.append("\n").append(tr("Now saving Conference Data to Cache")); emit progressInfo(mProgressInfotext); // Conference save last xxx Id's mDataManager->saveConferenceToCache(); qDebug() << "FINISH: Conference saved"; // Building not changed - always initialized from Prepare Conference // Floor not changed - always initialized from Prepare Conference // Room: clear sessions for update for (int r = 0; r < mDataManager->allRoom().size(); ++r) { Room* room = (Room*) mDataManager->allRoom().at(r); room->clearSessions(); } // to reset all correct resolveSessionsForRooms(); qDebug() << "FINISH: Rooms sessions cleared"; // SessionTrack: clear sessions for update for (int st = 0; st < mDataManager->allSessionTrack().size(); ++st) { SessionTrack* track = (SessionTrack*) mDataManager->allSessionTrack().at(st); track->clearSessions(); qDebug() << "clear sessions for Track " << track->name(); } // to reset all correct resolveSessionsForTracks(); qDebug() << "FINISH: Tracks sessions cleared"; // Day: clear sessions for update for (int d = 0; d < mDataManager->allDay().size(); ++d) { Day* day = (Day*) mDataManager->allDay().at(d); day->clearSessions(); } // to reset all correct resolveSessionsForSchedule(); qDebug() << "FINISH: Days sessions cleared"; // Speaker: insert sorted Speakers, clear Sessions mDataManager->mAllSpeaker.clear(); QMapIterator<QString, Speaker*> speakerIterator(mMultiSpeaker); while (speakerIterator.hasNext()) { speakerIterator.next(); Speaker* speaker = speakerIterator.value(); speaker->clearSessions(); resolveSessionsForSpeaker(speaker); mDataManager->insertSpeaker(speaker); } qDebug() << "FINISH: Sorted Speakers inserted"; // Check orphans for (int i = 0; i < mDataManager->mAllSession.size(); ++i) { Session* session = (Session*) mDataManager->mAllSession.at(i); bool sessionFound = false; QMapIterator<QString, Session*> sessionIterator(mMultiSession); while (sessionIterator.hasNext()) { sessionIterator.next(); Session* updatedSession = sessionIterator.value(); if(updatedSession->sessionId() == session->sessionId()) { sessionFound = true; break; } } if(!sessionFound) { session->deleteLater(); qDebug() << "Session removed: " << session->sessionId(); } } qDebug() << "FINISH: Session orphans deleted"; // Session: insert sorted Sessions // presenter, sessionLinks, day, room, track scheduleItem are updated mDataManager->mAllSession.clear(); // now insert sorted Sessions, update sessions for Day, Room, Tracks, Speaker sortedSessionsIntoRoomDayTrackSpeaker(); qDebug() << "FINISH: Rooms Days Tracks Speaker Sessions sorted"; mDataManager->saveSessionToCache(); qDebug() << "FINISH: Sessions saved"; // SessionLink mDataManager->saveSessionLinkToCache(); qDebug() << "FINISH: SessionLinks saved"; // ScheduleItem mDataManager->saveScheduleItemToCache(); qDebug() << "FINISH: ScheduleItems saved"; // SPEAKER mDataManager->saveSpeakerToCache(); qDebug() << "FINISH: Speaker saved"; // insert Speaker Images // do NOT mDataManager->mAllSpeakerImage.clear(); // mMultiSpeakerImages contains NEW or UPDATED Speaker Images ! QMapIterator<bool, SpeakerImage*> speakerImagesIterator(mMultiSpeakerImages); while (speakerImagesIterator.hasNext()) { speakerImagesIterator.next(); SpeakerImage* speakerImage = speakerImagesIterator.value(); if(!mDataManager->findSpeakerImageBySpeakerId(speakerImage->speakerId())) { // a NEW Speaker Image qDebug() << "detcted NEW Speaker Image: " << speakerImage->speakerId(); mDataManager->insertSpeakerImage(speakerImage); } else { qDebug() << "detcted UPDATED Speaker Image: " << speakerImage->speakerId(); } } mDataManager->saveSpeakerImageToCache(); qDebug() << "FINISH: Speaker Images saved"; // Track sort by Name QMultiMap<QString, SessionTrack*> sessionTrackSortMap; for (int i = 0; i < mDataManager->allSessionTrack().size(); ++i) { SessionTrack* sessionTrack = (SessionTrack*) mDataManager->allSessionTrack().at(i); sessionTrackSortMap.insert(sessionTrack->name(), sessionTrack); } qDebug() << "FINISH: Tracks sorted by Name"; mDataManager->mAllSessionTrack.clear(); QMapIterator<QString, SessionTrack*> sessionTrackIterator(sessionTrackSortMap); while (sessionTrackIterator.hasNext()) { sessionTrackIterator.next(); SessionTrack* sessionTrack = sessionTrackIterator.value(); mDataManager->insertSessionTrack(sessionTrack); } // save all Tracks with sorted Sessions mDataManager->saveSessionTrackToCache(); qDebug() << "FINISH: Tracks saved"; // Day: save all days with sorted Sessions mDataManager->saveDayToCache(); qDebug() << "FINISH: Days saved"; // Rooms: save all Rooms with sorted Sessions mDataManager->saveRoomToCache(); qDebug() << "FINISH: Rooms saved"; // SETTINGS update API mDataManager->mSettingsData->setApiVersion(mNewApi); mDataManager->mSettingsData->setLastUpdate(QDateTime::currentDateTime()); // mProgressInfotext.append("\n").append(tr("All done")); emit progressInfo(mProgressInfotext); qDebug() << "FINISH: All Done"; emit updateDone(); } // U T I L I T Y S to manage Conference data /** * Favorites are transient on Sessions * Sessions are read-only * So at startup the propertie will be set */ void DataUtil::setSessionFavorites() { for (int i = 0; i < mDataManager->mAllFavorite.size(); ++i) { Favorite* favorite = (Favorite*) mDataManager->mAllFavorite.at(i); Session* session = mDataManager->findSessionBySessionId(favorite->sessionId()); if(session != NULL) { session->setIsFavorite(true); } } } /** * Favorites are transient on Sessions * Sessions are read-only * So while caching data Favorites will be created */ void DataUtil::saveSessionFavorites() { mDataManager->mAllFavorite.clear(); for (int i = 0; i < mDataManager->mAllSession.size(); ++i) { Session* session = (Session*) mDataManager->mAllSession.at(i); if(session->isFavorite()) { Favorite* favorite = mDataManager->createFavorite(); favorite->setSessionId(session->sessionId()); mDataManager->insertFavorite(favorite); } } } /** * list of sessions for a Day are lazy * (only IDs stored in an Array) * for the Conference we always need all to create the schedule * so at startup or update this will be called */ void DataUtil::resolveSessionsForSchedule() { for (int i = 0; i < mDataManager->mAllDay.size(); ++i) { Day* day = (Day*) mDataManager->mAllDay.at(i); day->resolveSessionsKeys(mDataManager->listOfSessionForKeys(day->sessionsKeys())); } } /** * list of sessions for a Track are lazy * (only IDs stored in an Array) * this will be called as soon as Tracks are first time displayed */ void DataUtil::resolveSessionsForTracks() { for (int i = 0; i < mDataManager->mAllSessionTrack.size(); ++i) { SessionTrack* sessionTrack = (SessionTrack*) mDataManager->mAllSessionTrack.at(i); sessionTrack->resolveSessionsKeys(mDataManager->listOfSessionForKeys(sessionTrack->sessionsKeys())); } } void DataUtil::resolveSessionsForRooms() { for (int i = 0; i < mDataManager->mAllRoom.size(); ++i) { Room* room = (Room*) mDataManager->mAllRoom.at(i); room->resolveSessionsKeys(mDataManager->listOfSessionForKeys(room->sessionsKeys())); } } void DataUtil::resolveSessionsForSpeaker(Speaker* speaker) { speaker->resolveSessionsKeys(mDataManager->listOfSessionForKeys(speaker->sessionsKeys())); } QString DataUtil::scheduleTabName(int tabBarIndex) { if(mDataManager->mAllDay.size()<(tabBarIndex +1)) { return "??"; } Day* day = (Day*) mDataManager->mAllDay.at(tabBarIndex); //return day->conferenceDay().toString("ddd (dd)"); return QDate::shortDayName(day->conferenceDay().dayOfWeek()); } SessionLists *DataUtil::mySchedule() { return mSessionLists; } void DataUtil::refreshMySchedule() { mSessionLists->clearScheduledSessions(); for (int i = 0; i < mDataManager->allSession().size(); ++i) { Session* session = (Session*) mDataManager->allSession().at(i); if(!session->isDeprecated() && session->isFavorite()) { mSessionLists->addToScheduledSessions(session); } } qDebug() << "MY SCHEDLUE #:" << mSessionLists->scheduledSessionsCount(); emit myScheduleRefreshed(); } int DataUtil::findFirstSessionItem(int conferenceDayIndex, QString pickedTime) { if(conferenceDayIndex < 0 || conferenceDayIndex > (mDataManager->mAllDay.size()-1)) { qDebug() << "Day Index wrong: conferenceDayIndex"; return -1; } Day* day = (Day*) mDataManager->mAllDay.at(conferenceDayIndex); for (int i = 0; i < day->sessions().size(); ++i) { Session* session = day->sessions().at(i); QString theTime = session->sortKey().right(5); if(theTime >= pickedTime) { return i; } } return day->sessions().size(); } int DataUtil::findFirstSpeakerItem(QString letter) { for (int i = 0; i < mDataManager->mAllSpeaker.size(); ++i) { Speaker* speaker = (Speaker*) mDataManager->mAllSpeaker.at(i); if(speaker->sortGroup() >= letter) { return i; } } return mDataManager->mAllSpeaker.size(); } // Sortkey: day->conferenceDay().toString(YYYY_MM_DD)+session->startTime().toString("HH:mm") QString DataUtil::localWeekdayAndTime(QString sessionSortkey) { QDateTime sortTime = QDateTime::fromString(sessionSortkey, YYYY_MM_DD_HH_MM); QString weekDayAndTime = sortTime.toString(DAYNAME); weekDayAndTime.append(", "); QTime myTime = QTime::fromString(sessionSortkey.right(5)); weekDayAndTime.append(myTime.toString(Qt::SystemLocaleShortDate)); return weekDayAndTime; } QString DataUtil::apiInfo() { QString apiInfo = tr("API Version "); apiInfo.append(mDataManager->settingsData()->apiVersion()); apiInfo.append(("\n")).append(tr("Last Update ")); if(mDataManager->mSettingsData->hasLastUpdate()) { apiInfo.append(mDataManager->mSettingsData->lastUpdate().toString(Qt::SystemLocaleShortDate)); } else { apiInfo.append("n/a"); } return apiInfo; } // DOWNLOAD S P E A K E R I M A G E S // SLOT UPDATE CONFERENCE void DataUtil::onSpeakerImageUpdateLoaded(QObject *dataObject, int width, int height) { mImageLoader->deleteLater(); SpeakerImage* speakerImage = (SpeakerImage*) dataObject; qDebug() << "onSpeakerImage L O A D E D "; speakerImage->setDownloadSuccess(true); speakerImage->setDownloadFailed(false); speakerImage->setInAssets(false); speakerImage->setInData(true); prepareHighDpiImages(speakerImage, width, height); // set update flag int count = mMultiSpeakerImages.remove(false, speakerImage); if(count != 1) { qWarning() << "something went wrong: the SpeakerImage MUST exist in MultiMap"; } mMultiSpeakerImages.insert(true, speakerImage); // check for more updateSpeakerImages(); } void DataUtil::onSpeakerImageUpdateFailed(QObject *dataObject, QString message) { mImageLoader->deleteLater(); SpeakerImage* speakerImage = (SpeakerImage*) dataObject; qDebug() << "UPDATE: Cannot load Speaker Image: " << message << speakerImage->speakerId(); speakerImage->setDownloadSuccess(false); speakerImage->setDownloadFailed(true); speakerImage->setInAssets(false); speakerImage->setInData(false); // set update flag int count = mMultiSpeakerImages.remove(false, speakerImage); if(count != 1) { qWarning() << "something went wrong: the SpeakerImage MUST exist in MultiMap"; } mMultiSpeakerImages.insert(true, speakerImage); // check for more updateSpeakerImages(); } // SLOT PREPARE CONFERENCE void DataUtil::onSpeakerImageLoaded(QObject *dataObject, int width, int height) { mImageLoader->deleteLater(); SpeakerImage* speakerImage = (SpeakerImage*) dataObject; qDebug() << "loaded..." << speakerImage->speakerId() << " " << width << "x" << height; speakerImage->setDownloadSuccess(true); speakerImage->setDownloadFailed(false); speakerImage->setInAssets(true); speakerImage->setInData(false); prepareHighDpiImages(speakerImage, width, height); // more to load ? prepareSpeakerImages(); } void DataUtil::onSpeakerImageFailed(QObject *dataObject, QString message) { mImageLoader->deleteLater(); SpeakerImage* speakerImage = (SpeakerImage*) dataObject; qDebug() << "PREPARE: Cannot load Speaker Image: " << message << speakerImage->speakerId(); speakerImage->setDownloadSuccess(false); speakerImage->setDownloadFailed(true); speakerImage->setInAssets(false); speakerImage->setInData(false); // more to load ? prepareSpeakerImages(); } void DataUtil::prepareHighDpiImages(SpeakerImage* speakerImage, int width, int height) { const QString speakerImagesPath = mConferenceDataPath + "speakerImages/"; QString fileName; fileName = speakerImagesPath + "speaker_"; fileName.append(QString::number(speakerImage->speakerId())); QString originFileName; originFileName = fileName + "." + speakerImage->suffix(); const int size1 = 64; const int size2 = 128; const int size3 = 192; const int size4 = 256; if(width >= height) { if(width < size1) { speakerImage->setMaxScaleFactor(0); return; } QFile originFile(originFileName); if(!originFile.exists()) { qWarning() << "SpeakerImage Path not found " << originFileName; return; } if (!originFile.open(QIODevice::ReadOnly)) { qWarning() << "Couldn't open file: " << originFileName; return; } QImage originImage = QImage::fromData(originFile.readAll()); if(originImage.isNull()) { qWarning() << "Cannot construct Image from file: " << originFileName; return; } QImage scaledImage; if(width >= size1) { scaledImage = originImage.scaledToWidth(size1); scaledImage.save(originFileName); speakerImage->setMaxScaleFactor(1); } if(width >= size2) { scaledImage = originImage.scaledToWidth(size2); scaledImage.save(fileName+"@2x."+speakerImage->suffix()); speakerImage->setMaxScaleFactor(2); } if(width >= size3) { scaledImage = originImage.scaledToWidth(size3); scaledImage.save(fileName+"@3x."+speakerImage->suffix()); speakerImage->setMaxScaleFactor(3); } if(width >= size4) { scaledImage = originImage.scaledToWidth(size4); scaledImage.save(fileName+"@4x."+speakerImage->suffix()); speakerImage->setMaxScaleFactor(4); } } else { if(height < size1) { speakerImage->setMaxScaleFactor(0); return; } QFile originFile(originFileName); if(!originFile.exists()) { qWarning() << "SpeakerImage Path not found " << originFileName; return; } if (!originFile.open(QIODevice::ReadOnly)) { qWarning() << "Couldn't open file: " << originFileName; return; } QImage originImage = QImage::fromData(originFile.readAll()); if(originImage.isNull()) { qWarning() << "Cannot construct Image from file: " << originFileName; return; } QImage scaledImage; if(height >= size1) { scaledImage = originImage.scaledToHeight(size1); scaledImage.save(originFileName); speakerImage->setMaxScaleFactor(1); } if(height >= size2) { scaledImage = originImage.scaledToHeight(size2); scaledImage.save(fileName+"@2x."+speakerImage->suffix()); speakerImage->setMaxScaleFactor(2); } if(height >= size3) { scaledImage = originImage.scaledToHeight(size3); scaledImage.save(fileName+"@3x."+speakerImage->suffix()); speakerImage->setMaxScaleFactor(3); } if(height >= size4) { scaledImage = originImage.scaledToHeight(size4); scaledImage.save(fileName+"@4x."+speakerImage->suffix()); speakerImage->setMaxScaleFactor(4); } } } // S L O T S void DataUtil::onServerSuccess() { qDebug() << "S U C C E S S"; const QString schedulePath = mConferenceDataPath + "schedule.json"; qDebug() << "CHECK FOR UPDATE SESSIONS "; QVariantMap map; map = readScheduleFile(schedulePath); if(map.isEmpty()) { qWarning() << "Schedule is no Map"; emit checkForUpdateFailed(tr("Error: Received Map is empty.")); return; } map = map.value("schedule").toMap(); if(map.isEmpty()) { qWarning() << "No 'schedule' found"; emit checkForUpdateFailed(tr("Error: Received Map missed 'schedule'.")); return; } // now do the real work continueUpdate(); } void DataUtil::onVersionSuccess(QByteArray currentVersionBytes) { QJsonDocument jda; jda = QJsonDocument::fromJson(currentVersionBytes); if(!jda.isObject()) { onVersionFailed(tr("No JSON Object received for Version Check")); return; } QVariantMap versionMap = jda.toVariant().toMap(); if(versionMap.isEmpty()) { onVersionFailed(tr("Version Check: received Version Map is empty")); return; } if(!versionMap.contains("version")) { onVersionFailed(tr("Version Check: received Version Map missed Version Property")); return; } mNewApi = versionMap.value("version").toString(); if(mNewApi.isEmpty()) { onVersionFailed(tr("Error: Received Map missed 'version'.")); return; } qDebug() << "VERSION: " + mNewApi; QStringList versionList; versionList = mNewApi.split("."); if(versionList.size() != 2) { emit onVersionFailed(tr("Error: 'Version' wrong: ")+mNewApi); return; } if(mDataManager->mSettingsData->apiVersion().length() == 0) { emit updateAvailable(mNewApi); return; } QStringList oldVersionList; oldVersionList = mDataManager->mSettingsData->apiVersion().split("."); if(oldVersionList.size() != 2) { emit updateAvailable(mNewApi); return; } int oldValue = oldVersionList.at(0).toInt(); int newValue = versionList.at(0).toInt(); if(oldValue > newValue) { emit noUpdateRequired(); return; } oldValue = oldVersionList.at(0).toInt(); newValue = versionList.at(0).toInt(); if(oldValue < newValue) { emit updateAvailable(mNewApi); return; } oldValue = oldVersionList.at(1).toInt(); newValue = versionList.at(1).toInt(); if(oldValue < newValue) { emit updateAvailable(mNewApi); return; } emit noUpdateRequired(); } void DataUtil::onVersionFailed(const QString message) { qDebug() << "Version failed" << message; emit checkForUpdateFailed(message); } void DataUtil::onServerFailed(QString message) { qDebug() << "FAILED: " << message; emit updateFailed(message); }
[ [ [ 1, 63 ], [ 67, 68 ], [ 70, 215 ], [ 217, 218 ], [ 220, 221 ], [ 223, 224 ], [ 226, 227 ], [ 229, 230 ], [ 232, 233 ], [ 235, 236 ], [ 238, 239 ], [ 241, 242 ], [ 244, 245 ], [ 247, 248 ], [ 250, 251 ], [ 253, 254 ], [ 256, 257 ], [ 259, 260 ], [ 262, 263 ], [ 265, 266 ], [ 268, 269 ], [ 271, 272 ], [ 274, 275 ], [ 277, 278 ], [ 280, 281 ], [ 283, 284 ], [ 286, 455 ], [ 458, 458 ], [ 460, 460 ], [ 464, 464 ], [ 466, 466 ], [ 468, 468 ], [ 470, 470 ], [ 475, 486 ], [ 488, 493 ], [ 495, 500 ], [ 502, 507 ], [ 509, 549 ], [ 551, 596 ], [ 602, 604 ], [ 606, 608 ], [ 610, 612 ], [ 614, 616 ], [ 618, 638 ], [ 640, 705 ], [ 707, 792 ], [ 794, 1080 ], [ 1082, 1153 ], [ 1155, 1202 ], [ 1208, 1253 ], [ 1255, 1894 ] ], [ [ 64, 66 ], [ 69, 69 ], [ 216, 216 ], [ 219, 219 ], [ 222, 222 ], [ 225, 225 ], [ 228, 228 ], [ 231, 231 ], [ 234, 234 ], [ 237, 237 ], [ 240, 240 ], [ 243, 243 ], [ 246, 246 ], [ 249, 249 ], [ 252, 252 ], [ 255, 255 ], [ 258, 258 ], [ 261, 261 ], [ 264, 264 ], [ 267, 267 ], [ 270, 270 ], [ 273, 273 ], [ 276, 276 ], [ 279, 279 ], [ 282, 282 ], [ 285, 285 ], [ 456, 457 ], [ 459, 459 ], [ 461, 463 ], [ 465, 465 ], [ 467, 467 ], [ 469, 469 ], [ 471, 474 ], [ 487, 487 ], [ 494, 494 ], [ 501, 501 ], [ 508, 508 ], [ 550, 550 ], [ 597, 601 ], [ 605, 605 ], [ 609, 609 ], [ 613, 613 ], [ 617, 617 ], [ 706, 706 ], [ 1081, 1081 ], [ 1203, 1207 ] ], [ [ 639, 639 ], [ 793, 793 ], [ 1154, 1154 ], [ 1254, 1254 ] ] ]
6f9e2a1251e0d80527ebef9b1764f62a60cc7984
c26e9d3f92d95f7ce9d0fd5ef2c18dd95ec209a5
/hackerrank/graph/murderer.cpp
1fb9dd65652537e7209bab94ed2d7f66c6acb818
[]
no_license
crystal95/Competetive-Programming-at-different-platforms
c9ad1684f6258539309d07960ed6abfa7d1a16d0
92d283171b0ae0307e9ded473c6eea16f62cb60e
refs/heads/master
2021-01-09T21:44:28.175506
2016-03-27T21:26:26
2016-03-27T21:26:26
54,848,617
0
0
null
null
null
null
UTF-8
C++
false
false
1,083
cpp
using namespace std; #include <stdio.h> #include <stdlib.h> #include <string.h> #include <vector> #include <iostream> #include <queue> #include <algorithm> #include <unordered_set> typedef long long int ll; typedef pair<int,int> ii; void bfs(vector<vector<int> > &adj,int s,vector<int> &dis,int n) { int i ; unordered_set<int> unvisited; for(i=1;i<=n;i++) unvisited.insert(i); queue<int> q; q.push(s); unvisited.erase(s); while(!q.empty()) { int tmp=q.front(); q.pop(); for(auto it=unvisited.begin();it!=unvisited.end();++it) { if(find(adj[tmp].begin(),adj[tmp].end(),*it)==adj[tmp].end()) { q.push(*it); dis[*it]=dis[tmp]+1; unvisited.erase(*it); } } } } int main() { int T; cin>>T; while(T--) { int i,n,m,u,v,s,w,start; cin>>n>>m; vector<vector<int > > adj(n+1); vector<int> dis(n+1,0); for(i=0;i<m;i++) { cin>>u>>v; adj[u].push_back(v); adj[v].push_back(u); } cin>>start; bfs(adj,start,dis,n); for(i=1;i<=n;i++) { if(start!=i) cout<<dis[i]<<" "; } cout<<endl; } return 0; }
[ [ [ 1, 69 ] ] ]
4e89d201e9071b02907197f3ed2bc6f329965e34
a764bdaf1b24a8257648537d14e6a9f02edd7af8
/src/Location.h
4bec0c1d8d57e464b5a7022d5e47f7715cc21eab
[ "MIT" ]
permissive
jonatajefferson/irp
ced568bb82dcfcd29da54c1e8f48a8ab43b6d6fd
7171a506550eac8b3a8683b2d4dba198969828b3
refs/heads/master
2021-01-17T01:52:01.615145
2015-11-25T18:21:14
2015-11-25T18:21:14
null
0
0
null
null
null
null
UTF-8
C++
false
false
990
h
#ifndef LOCATION_H #define LOCATION_H #include <vector> class Base; class Customer; class Source; class Location { public: Location(); Location(int index, std::vector<Base*> &neighborsBases, std::vector<Customer*> &neighborsCustomers, std::vector<Source*> &neighborsSources); enum Type{BASE, CUSTOMER, SOURCE}; virtual ~Location(); int getIndex(); std::vector<Base*> getNeighborsBases() const; std::vector<Customer*> getNeighborsCustomers() const; std::vector<Source*> getNeighborsSources() const; void setIndex(int); void setNeighborsBases(std::vector<Base*>); void setNeighborsCustomers(std::vector<Customer*>); void setNeighborsSources(std::vector<Source*>); protected: int index_; std::vector<Base*> neighborsBases_; std::vector<Customer*> neighborsCustomers_; std::vector<Source*> neighborsSources_; Type type_; }; #endif // LOCATION_H
[ [ [ 1, 20 ], [ 22, 34 ] ], [ [ 21, 21 ] ] ]
da305b7fa058459e59591d534b6f8ccafc370f33
e542234cbf0eea3883b934ee67f97326377de02f
/EnemySnipper.hpp
194187a1b40c4a3a73a79907b77035df6c48f895
[ "MIT" ]
permissive
kaitokidi/WhoTookMyHat
8e66e510e10451a3499a2fa361c8892e8f7b818f
dc4ebdbe880a10cb681bf2749095f4bbbbe51f88
refs/heads/master
2021-04-19T00:56:37.700324
2016-10-27T22:29:11
2016-10-27T22:29:11
51,254,343
4
0
null
null
null
null
UTF-8
C++
false
false
459
hpp
#ifndef ENEMYSNIPPER_HPP #define ENEMYSNIPPER_HPP #include "Enemy.hpp" #include "Player.hpp" #include "EnemyShooter.hpp" class EnemySnipper : public Enemy, public EnemyShooter { public: //TODO virtual void init(); EnemySnipper(std::list < Enemy* >* e, Player* p); virtual void update(float deltaTime, Background* bg); virtual void movement(float deltaTime, Background *bg); protected: Player* _player; }; #endif // ENEMYSNIPPER_HPP
[ [ [ 1, 19 ] ] ]
8cd8538339e5a1170a27aef802a5f18cacfeeeab
6115a9fffbc4e0d94a8aae1bffe79557ae059a09
/FinalProject/avltreeindex.h
2f774eea408d83aa6352573bdd3f0f40ebf8690f
[]
no_license
natesotoole1/SearchEngine
74bc40a3b438758699a9f3a662a61c9f72125a96
b3623634acda01f9135e80cd7d00deae3d8f756c
refs/heads/master
2021-01-16T22:08:15.300799
2016-04-12T12:39:08
2016-04-12T12:39:08
45,565,794
0
0
null
null
null
null
UTF-8
C++
false
false
2,139
h
#ifndef AVLTreeIndex_H #define AVLTreeIndex_H #include <iostream> #include <fstream> #include <string> #include <cstdio> #include "indexinterface.h" #include "term.h" // git using namespace std; /*! \brief * AVL Node implementation for the AVL Tree structure. */ // Node declaration struct AVL_Node { Term* data;///< Term pointer where all the data is held //struct AVL_Node root; struct AVL_Node *left; ///< left child struct AVL_Node *right; ///< right child int height; ///< height of tree }; /*! \brief * AVLTreeIndex.h has AVL Trees public and private classes in them. */ // Class declaration class AVLTreeIndex { public: AVLTreeIndex(); ///< constructor void insert(Term*); ///< public insert function that calls the private function AVL_Node* balance(AVL_Node*&); ///< figures out when to rotate child or not int height(AVL_Node *&); ///< returns the height of the tree int diff(AVL_Node *&); ///< returns the difference in height int max(int, int); ///< gets the max height AVL_Node* rotateRightChild(AVL_Node*&); ///< rotate right child AVL_Node* rotateLeftChild(AVL_Node*&); ///< rotate left child AVL_Node* doubleLeftChild(AVL_Node*&); ///< rotate left child than rotate right child AVL_Node* doubleRightChild(AVL_Node*&); ///< rotate right child than rotate left child Term* find(string); ///< public find function that is called from the interface and than passes it to private function void createPersistence(int, ofstream&); ///< public call to create persistence than calls the private function void clearTree(); ///< public call to clear index than calls the private function private: AVL_Node* root; ///< root of the tree void insert(AVL_Node*& ,Term*); ///< inserts node if null than checks balance to see if it is needed to rotate void createPersistence(AVL_Node*& , int, ofstream&); ///< creates the persistence from each individual avl tree void continue_search(AVL_Node*& curr, string word); ///< finds word called by query void clearTree(AVL_Node*); /// <clear the tree }; #endif // AVLTreeINDEX_H
[ [ [ 1, 63 ] ] ]
31c05ddd07b9d79686913c8c08a00eaf1395abbb
6fdd703d48a01bb73bf658c8d3aac0d98f965967
/src_cpp/elfgames/go/train/data_loader.h
472fb3d536934f874a4ab6fd4147fce6d3ed1d0d
[ "BSD-3-Clause" ]
permissive
roughsoft/ELF
27f762aad66f4946411f2fdae71a45fabd028730
751eb1cf85aac15e3c3c792a47afa1ac64ea810c
refs/heads/master
2020-03-25T19:54:55.579846
2018-08-08T21:34:11
2018-08-08T21:34:11
null
0
0
null
null
null
null
UTF-8
C++
false
false
3,596
h
/** * Copyright (c) 2018-present, Facebook, Inc. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ #pragma once #include "../common/record.h" #include "elf/distributed/shared_reader.h" #include "elf/distributed/shared_rw_buffer2.h" struct Stats { std::atomic<int> client_size; std::atomic<int> buffer_size; std::atomic<int> failed_count; std::atomic<int> msg_count; std::atomic<uint64_t> total_msg_size; Stats() : client_size(0), buffer_size(0), failed_count(0), msg_count(0), total_msg_size(0) {} std::string info() const { std::stringstream ss; ss << "#msg: " << buffer_size << " #client: " << client_size << ", "; ss << "Msg count: " << msg_count << ", avg msg size: " << (float)(total_msg_size) / msg_count << ", failed count: " << failed_count; return ss.str(); } void feed(const elf::shared::InsertInfo& insert_info) { if (!insert_info.success) { failed_count++; } else { buffer_size += insert_info.delta; msg_count++; total_msg_size += insert_info.msg_size; } } }; class DataInterface { public: virtual void OnStart() {} virtual elf::shared::InsertInfo OnReceive( const std::string& identity, const std::string& msg) = 0; virtual bool OnReply(const std::string& identity, std::string* msg) = 0; }; class DataOnlineLoader { public: DataOnlineLoader(const elf::shared::Options& net_options) : logger_(elf::logging::getLogger("DataOnlineLoader-", "")) { auto curr_timestamp = time(NULL); const std::string database_name = "data-" + std::to_string(curr_timestamp) + ".db"; reader_.reset(new elf::shared::Reader(database_name, net_options)); std::cout << reader_->info() << std::endl; } void start(DataInterface* interface) { auto proc_func = [&, interface]( elf::shared::Reader* reader, const std::string& identity, const std::string& msg) -> bool { (void)reader; try { auto info = interface->OnReceive(identity, msg); stats_.feed(info); /* if (options_.verbose) { std::cout << "Content from " << identity << ", msg_size: " << msg.size() << ", " << stats_.info() << std::endl; } */ if (stats_.msg_count % 1000 == 0) { std::cout << elf_utils::now() << ", last_identity: " << identity << ", " << stats_.info() << std::endl; } return info.success; } catch (...) { logger_->error("Data malformed! String is {}", msg); return false; } }; auto replier_func = [&, interface]( elf::shared::Reader* reader, const std::string& identity, std::string* msg) -> bool { (void)reader; interface->OnReply(identity, msg); if (logger_->should_log(spdlog::level::level_enum::debug)) { logger_->debug( "Replier: about to send: recipient {}; msg {}; reader {}", identity, *msg, reader_->info()); } return true; }; reader_->startReceiving( proc_func, replier_func, [interface]() { interface->OnStart(); }); } ~DataOnlineLoader() {} private: std::unique_ptr<elf::shared::Reader> reader_; Stats stats_; std::shared_ptr<spdlog::logger> logger_; };
[ [ [ 1, 126 ] ] ]
759a015ca9170f3456ab0ac5f3a1626efca68ad7
483428f23277dc3fd2fad6588de334fc9b8355d2
/hpp/iOSDevice32/Release/uTPLb_MemoryStreamPool.hpp
bee8378fa9718a035cca20b9ad1bd10f11e6c5d4
[]
no_license
gzwplato/LockBox3-1
7084932d329beaaa8169b94729c4b05c420ebe44
89e300b47f8c1393aefbec01ffb89ddf96306c55
refs/heads/master
2021-05-10T18:41:18.748523
2015-07-04T09:48:06
2015-07-04T09:48:06
null
0
0
null
null
null
null
UTF-8
C++
false
false
2,375
hpp
// CodeGear C++Builder // Copyright (c) 1995, 2015 by Embarcadero Technologies, Inc. // All rights reserved // (DO NOT EDIT: machine generated header) 'uTPLb_MemoryStreamPool.pas' rev: 29.00 (iOS) #ifndef Utplb_memorystreampoolHPP #define Utplb_memorystreampoolHPP #pragma delphiheader begin #pragma option push #pragma option -w- // All warnings off #pragma option -Vx // Zero-length empty class member #pragma pack(push,8) #include <System.hpp> #include <SysInit.hpp> #include <System.Classes.hpp> //-- user supplied ----------------------------------------------------------- namespace Utplb_memorystreampool { //-- forward type declarations ----------------------------------------------- __interface IMemoryStreamPool; typedef System::DelphiInterface<IMemoryStreamPool> _di_IMemoryStreamPool; class DELPHICLASS TPooledMemoryStream; //-- type declarations ------------------------------------------------------- __interface INTERFACE_UUID("{ADB2D4BA-40F6-4249-923E-201D4719609B}") IMemoryStreamPool : public System::IInterface { virtual int __fastcall BayCount(void) = 0 ; virtual void __fastcall GetUsage(int Size, int &Current, int &Peak) = 0 ; virtual int __fastcall GetSize(int Idx) = 0 ; virtual System::Classes::TMemoryStream* __fastcall NewMemoryStream(int InitSize) = 0 ; }; #pragma pack(push,4) class PASCALIMPLEMENTATION TPooledMemoryStream : public System::Classes::TMemoryStream { typedef System::Classes::TMemoryStream inherited; protected: _di_IMemoryStreamPool FPool; int FCoVector; virtual void * __fastcall Realloc(int &NewCapacity); public: __fastcall TPooledMemoryStream(const _di_IMemoryStreamPool Pool1); public: /* TMemoryStream.Destroy */ inline __fastcall virtual ~TPooledMemoryStream(void) { } }; #pragma pack(pop) //-- var, const, procedure --------------------------------------------------- extern DELPHI_PACKAGE _di_IMemoryStreamPool __fastcall NewPool(void); } /* namespace Utplb_memorystreampool */ #if !defined(DELPHIHEADER_NO_IMPLICIT_NAMESPACE_USE) && !defined(NO_USING_NAMESPACE_UTPLB_MEMORYSTREAMPOOL) using namespace Utplb_memorystreampool; #endif #pragma pack(pop) #pragma option pop #pragma delphiheader end. //-- end unit ---------------------------------------------------------------- #endif // Utplb_memorystreampoolHPP
[ [ [ 1, 66 ] ] ]
55d577d1a75a9ab17fa7b5d2dfee420f67de653e
c4d0cc1b8f7a0c4eefb405e105ac9727e1a98aad
/FlashCards/src/StringWordSplitter.cpp
fdab3206d76415785a84cd483dcc64795aae68ce
[]
no_license
KNITcpp/FlashCards
513ed1f7fb2829692538636e0e6b65847bad8da9
7ac1c359d6a6f0aa5639bb64a39696b2f5eb63e2
refs/heads/master
2020-03-07T14:15:49.733326
2018-05-28T09:43:41
2018-05-28T09:43:41
127,522,390
0
0
null
null
null
null
UTF-8
C++
false
false
505
cpp
#include "StringWordSplitter.h" #include <string> #include <vector> StringWordSplitter::StringWordSplitter(std::wstring strToBeSplitted) { std::wstring singleWord; for(int i=0; i<strToBeSplitted.length(); ++i) { if(strToBeSplitted[i] == L' ') { if(singleWord.size()!=0) { words.push_back(singleWord); singleWord.clear(); } } else singleWord.push_back(strToBeSplitted[i]); } if(singleWord.size()!=0) //something left to push after loop words.push_back(singleWord); }
[ [ [ 1, 26 ] ] ]
aaa8f706eca185ad9f7dd72dda3930415ee4cc22
e4f29494a0ecb0a19b231a17e51127a7ddbfe387
/TcpDebug.ino
4c4d7c9df0d7cf9d84c51667ee552e72d3a97973
[]
no_license
EvertDekker/Nixieclock3V1
de9fb41a14decd21a2a86ba4914bc6c5b1839414
67a97d38f1895dbb285c541efe6988dcb04496fc
refs/heads/master
2020-05-29T15:43:43.041005
2019-05-29T13:26:52
2019-05-29T13:26:52
189,228,943
0
0
null
null
null
null
UTF-8
C++
false
false
436
ino
void init_telnet_debug(){ #ifdef TELNET if (MDNS.begin(hostn)) { Serial.println("* MDNS responder started. Hostname -> "); Serial.println(hostn); } MDNS.addService("telnet", "tcp", 23); // Initialize the telnet server of RemoteDebug Debug.begin(hostn); // Initiaze the telnet server Debug.setResetCmdEnabled(true); // Enable the reset command //Debug.showTime(true); // To show time #endif }
[ [ [ 1, 12 ] ] ]
378d41da667801b00bd623eb7fc43dcdb5cc28d6
2bd4fa284f4c891fa35b7465449ea04534ea01fb
/hdmaproifilter/src/perception/lib/base/registerer.cpp
6c5407d1b73c0605cbf0c3b88b4f854a302b290e
[]
no_license
Playfish/apollo_perception
cdd74e4a802159ceadc513e9f46ae1799e911ba1
6a50f529f0f6d789d2a06077480e79c9f4bc68c8
refs/heads/master
2021-09-14T13:42:07.159927
2018-05-14T13:51:20
2018-05-14T13:51:20
113,520,993
1
0
null
null
null
null
UTF-8
C++
false
false
1,536
cpp
/****************************************************************************** * Copyright 2017 The Apollo Authors. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *****************************************************************************/ #include "perception/lib/base/registerer.h" #include <string> #include <vector> namespace apollo { namespace perception { BaseClassMap& GlobalFactoryMap() { static BaseClassMap factory_map; return factory_map; } bool GetRegisteredClasses( const std::string& base_class_name, std::vector<std::string>* registered_derived_classes_names) { CHECK_NOTNULL(registered_derived_classes_names); BaseClassMap& map = GlobalFactoryMap(); auto iter = map.find(base_class_name); if (iter == map.end()) { AERROR << "class not registered:" << base_class_name; return false; } for (auto pair : iter->second) { registered_derived_classes_names->push_back(pair.first); } return true; } } // namespace perception } // namespace apollo
[ [ [ 1, 47 ] ] ]
d968c4cfa9c0b7cc62efc1236b19bd9c23b807d5
d78ab1e4cb8a669fbd4b5346683345c3926f4e07
/Engine/script/runtimescriptvalue.h
133267d203b3d4efedec67a08ef70fad569de9be
[ "LicenseRef-scancode-unknown-license-reference", "Artistic-2.0" ]
permissive
sonneveld/ags
4baca2321a1c1a13621322eb107d5338e9231fbf
539a40a25f4caa7b7cec678084cfcde252418c77
refs/heads/ags3--sdl2
2022-04-30T19:38:51.480211
2019-07-27T11:08:38
2019-11-03T06:53:44
40,235,193
2
0
NOASSERTION
2022-02-20T11:15:37
2015-08-05T08:54:39
C
UTF-8
C++
false
false
12,292
h
//============================================================================= // // Adventure Game Studio (AGS) // // Copyright (C) 1999-2011 Chris Jones and 2011-20xx others // The full list of copyright holders can be found in the Copyright.txt // file, which is part of this source code distribution. // // The AGS source code is provided under the Artistic License 2.0. // A copy of this license can be found in the file License.txt and at // http://www.opensource.org/licenses/artistic-license-2.0.php // //============================================================================= // // Runtime script value struct // //============================================================================= #ifndef __AGS_EE_SCRIPT__RUNTIMESCRIPTVALUE_H #define __AGS_EE_SCRIPT__RUNTIMESCRIPTVALUE_H #include "script/script_api.h" #include "util/memory.h" #include "ac/dynobj/cc_dynamicobject.h" struct ICCStaticObject; struct StaticArray; enum ScriptValueType { kScValUndefined, // to detect errors kScValInteger, // as strictly 32-bit integer (for integer math) kScValFloat, // as float (for floating point math), 32-bit kScValPluginArg, // an 32-bit value, passed to a script function when called // directly by plugin; is allowed to represent object pointer kScValStackPtr, // as a pointer to stack entry kScValData, // as a container for randomly sized data (usually array) kScValGlobalVar, // as a pointer to script variable; used only for global vars, // as pointer to local vars must have StackPtr type so that the // stack allocation could work kScValStringLiteral,// as a pointer to literal string (array of chars) kScValStaticObject, // as a pointer to static global script object kScValStaticArray, // as a pointer to static global array (of static or dynamic objects) kScValDynamicObject,// as a pointer to managed script object kScValPluginObject, // as a pointer to object managed by plugin (similar to // kScValDynamicObject, but has backward-compatible limitations) kScValStaticFunction,// as a pointer to static function kScValPluginFunction,// temporary workaround for plugins (unsafe function ptr) kScValObjectFunction,// as a pointer to object member function, gets object pointer as // first parameter kScValCodePtr, // as a pointer to element in byte-code array }; struct RuntimeScriptValue { public: RuntimeScriptValue() { Type = kScValUndefined; IValue = 0; Ptr = nullptr; MgrPtr = nullptr; Size = 0; } RuntimeScriptValue(int32_t val) { Type = kScValInteger; IValue = val; Ptr = nullptr; MgrPtr = nullptr; Size = 4; } ScriptValueType Type; // The 32-bit value used for integer/float math and for storing // variable/element offset relative to object (and array) address union { int32_t IValue; // access Value as int32 type float FValue; // access Value as float type }; // Pointer is used for storing... pointers - to objects, arrays, // functions and stack entries (other RSV) union { char *Ptr; // generic data pointer RuntimeScriptValue *RValue;// access ptr as a pointer to Runtime Value ScriptAPIFunction *SPfn; // access ptr as a pointer to Script API Static Function ScriptAPIObjectFunction *ObjPfn; // access ptr as a pointer to Script API Object Function }; // TODO: separation to Ptr and MgrPtr is only needed so far as there's // a separation between Script*, Dynamic* and game entity classes. // Once those classes are merged, it will no longer be needed. union { void *MgrPtr;// generic object manager pointer ICCStaticObject *StcMgr;// static object manager StaticArray *StcArr;// static array manager ICCDynamicObject *DynMgr;// dynamic object manager }; // The "real" size of data, either one stored in I/FValue, // or the one referenced by Ptr. Used for calculating stack // offsets. // Original AGS scripts always assumed pointer is 32-bit. // Therefore for stored pointers Size is always 4 both for x32 // and x64 builds, so that the script is interpreted correctly. int Size; inline bool IsValid() const { return Type != kScValUndefined; } inline bool IsNull() const { return Ptr == nullptr && IValue == 0; } inline bool GetAsBool() const { return !IsNull(); } inline char* GetPtrWithOffset() const { return Ptr + IValue; } inline RuntimeScriptValue &Invalidate() { Type = kScValUndefined; IValue = 0; Ptr = nullptr; MgrPtr = nullptr; Size = 0; return *this; } inline RuntimeScriptValue &SetUInt8(uint8_t val) { Type = kScValInteger; IValue = val; Ptr = nullptr; MgrPtr = nullptr; Size = 1; return *this; } inline RuntimeScriptValue &SetInt16(int16_t val) { Type = kScValInteger; IValue = val; Ptr = nullptr; MgrPtr = nullptr; Size = 2; return *this; } inline RuntimeScriptValue &SetInt32(int32_t val) { Type = kScValInteger; IValue = val; Ptr = nullptr; MgrPtr = nullptr; Size = 4; return *this; } inline RuntimeScriptValue &SetFloat(float val) { Type = kScValFloat; FValue = val; Ptr = nullptr; MgrPtr = nullptr; Size = 4; return *this; } inline RuntimeScriptValue &SetInt32AsBool(bool val) { return SetInt32(val ? 1 : 0); } inline RuntimeScriptValue &SetFloatAsBool(bool val) { return SetFloat(val ? 1.0F : 0.0F); } inline RuntimeScriptValue &SetPluginArgument(int32_t val) { Type = kScValPluginArg; IValue = val; Ptr = nullptr; MgrPtr = nullptr; Size = 4; return *this; } inline RuntimeScriptValue &SetStackPtr(RuntimeScriptValue *stack_entry) { Type = kScValStackPtr; IValue = 0; RValue = stack_entry; MgrPtr = nullptr; Size = 4; return *this; } inline RuntimeScriptValue &SetData(char *data, int size) { Type = kScValData; IValue = 0; Ptr = data; MgrPtr = nullptr; Size = size; return *this; } inline RuntimeScriptValue &SetGlobalVar(RuntimeScriptValue *glvar_value) { Type = kScValGlobalVar; IValue = 0; RValue = glvar_value; MgrPtr = nullptr; Size = 4; return *this; } // TODO: size? inline RuntimeScriptValue &SetStringLiteral(const char *str) { Type = kScValStringLiteral; IValue = 0; Ptr = const_cast<char *>(str); MgrPtr = nullptr; Size = 4; return *this; } inline RuntimeScriptValue &SetStaticObject(void *object, ICCStaticObject *manager) { Type = kScValStaticObject; IValue = 0; Ptr = (char*)object; StcMgr = manager; Size = 4; return *this; } inline RuntimeScriptValue &SetStaticArray(void *object, StaticArray *manager) { Type = kScValStaticArray; IValue = 0; Ptr = (char*)object; StcArr = manager; Size = 4; return *this; } inline RuntimeScriptValue &SetDynamicObject(void *object, ICCDynamicObject *manager) { Type = kScValDynamicObject; IValue = 0; Ptr = (char*)object; DynMgr = manager; Size = 4; return *this; } inline RuntimeScriptValue &SetPluginObject(void *object, ICCDynamicObject *manager) { Type = kScValPluginObject; IValue = 0; Ptr = (char*)object; DynMgr = manager; Size = 4; return *this; } inline RuntimeScriptValue &SetStaticFunction(ScriptAPIFunction *pfn) { Type = kScValStaticFunction; IValue = 0; SPfn = pfn; MgrPtr = nullptr; Size = 4; return *this; } inline RuntimeScriptValue &SetPluginFunction(void *pfn) { Type = kScValPluginFunction; IValue = 0; Ptr = (char*)pfn; MgrPtr = nullptr; Size = 4; return *this; } inline RuntimeScriptValue &SetObjectFunction(ScriptAPIObjectFunction *pfn) { Type = kScValObjectFunction; IValue = 0; ObjPfn = pfn; MgrPtr = nullptr; Size = 4; return *this; } inline RuntimeScriptValue &SetCodePtr(char *ptr) { Type = kScValCodePtr; IValue = 0; Ptr = ptr; MgrPtr = nullptr; Size = 4; return *this; } inline RuntimeScriptValue operator !() const { return RuntimeScriptValue().SetInt32AsBool(!GetAsBool()); } inline bool operator ==(const RuntimeScriptValue &rval) { return ((intptr_t)Ptr + (intptr_t)IValue) == ((intptr_t)rval.Ptr + (intptr_t)rval.IValue); } inline bool operator !=(const RuntimeScriptValue &rval) { return !(*this == rval); } // FIXME: find out all certain cases when we are reading a pointer and store it // as 32-bit value here. There should be a solution to distinct these cases and // store value differently, otherwise it won't work for 64-bit build. inline RuntimeScriptValue ReadValue() { RuntimeScriptValue rval; switch(this->Type) { case kScValStackPtr: { if (RValue->Type == kScValData) { rval.SetInt32(*(int32_t*)(RValue->GetPtrWithOffset() + this->IValue)); } else { rval = *RValue; } } break; case kScValGlobalVar: { if (RValue->Type == kScValData) { rval.SetInt32(AGS::Common::Memory::ReadInt32LE(RValue->GetPtrWithOffset() + this->IValue)); } else { rval = *RValue; } } break; case kScValStaticObject: case kScValStaticArray: { rval.SetInt32(this->StcMgr->ReadInt32(this->Ptr, this->IValue)); } break; case kScValDynamicObject: { rval.SetInt32(this->DynMgr->ReadInt32(this->Ptr, this->IValue)); } break; default: { // 64 bit: Memory reads are still 32 bit rval.SetInt32(*(int32_t*)this->GetPtrWithOffset()); } } return rval; } // Helper functions for reading or writing values from/to // object, referenced by this Runtime Value. // Copy implementation depends on value type. uint8_t ReadByte(); int16_t ReadInt16(); int32_t ReadInt32(); bool WriteByte(uint8_t val); bool WriteInt16(int16_t val); bool WriteInt32(int32_t val); bool WriteValue(const RuntimeScriptValue &rval); // Convert to most simple pointer type by resolving RValue ptrs and applying offsets; // non pointer types are left unmodified RuntimeScriptValue &DirectPtr(); // Similar to above, a slightly speed-optimised version for situations when we can // tell for certain that we are expecting a pointer to the object and not its (first) field. RuntimeScriptValue &DirectPtrObj(); // Resolve and return direct pointer to the referenced data; non pointer types return IValue intptr_t GetDirectPtr() const; }; #endif // __AGS_EE_SCRIPT__RUNTIMESCRIPTVALUE_H
[ [ [ 1, 2 ], [ 15, 20 ], [ 24, 31 ], [ 33, 35 ], [ 41, 45 ], [ 51, 59 ], [ 62, 68 ], [ 71, 87 ], [ 90, 114 ], [ 116, 130 ], [ 133, 139 ], [ 142, 148 ], [ 151, 157 ], [ 160, 166 ], [ 169, 183 ], [ 186, 193 ], [ 195, 197 ], [ 199, 199 ], [ 201, 202 ], [ 204, 206 ], [ 208, 208 ], [ 210, 210 ], [ 213, 216 ], [ 218, 220 ], [ 223, 261 ], [ 263, 265 ], [ 268, 270 ], [ 281, 283 ], [ 295, 312 ], [ 364, 385 ] ], [ [ 3, 14 ], [ 21, 21 ], [ 32, 32 ], [ 36, 40 ], [ 46, 50 ], [ 88, 89 ], [ 198, 198 ], [ 200, 200 ], [ 207, 207 ], [ 209, 209 ], [ 211, 211 ], [ 262, 262 ], [ 266, 266 ], [ 271, 275 ], [ 277, 280 ], [ 284, 284 ], [ 286, 293 ] ], [ [ 22, 23 ], [ 313, 363 ] ], [ [ 60, 61 ], [ 69, 70 ], [ 115, 115 ], [ 131, 132 ], [ 140, 141 ], [ 149, 150 ], [ 158, 159 ], [ 167, 168 ], [ 184, 185 ], [ 194, 194 ], [ 203, 203 ], [ 212, 212 ], [ 217, 217 ], [ 221, 222 ], [ 267, 267 ], [ 276, 276 ], [ 285, 285 ], [ 294, 294 ] ] ]
d43be44d339e4c748144208e5d4bd8fe9a5894e7
3368db882d23eba1fd8046d9e46583d7324d4dea
/Lesson 6/source/06.) Textures/win_OpenGLApp.cpp
2a8751f01791f7cd05950c39fb5a5f26b9865e4b
[]
no_license
Juniperbrew/MS-OpenGLTutorial-Win32
8313923fc34948aafd7bc71de8d99552f734a454
6f6908999f1d887e41e311c019ab96724a60ac24
refs/heads/master
2021-01-10T16:39:55.731220
2016-01-02T09:49:59
2016-01-02T09:49:59
48,902,337
0
0
null
null
null
null
UTF-8
C++
false
false
7,077
cpp
#include "common_header.h" #include "win_OpenGLApp.h" COpenGLWinApp appMain; char Keys::kp[256] = {0}; /*----------------------------------------------- Name: key Params: iKey - virtual key code Result: Return true if key is pressed. /*---------------------------------------------*/ int Keys::key(int iKey) { return (GetAsyncKeyState(iKey)>>15)&1; } /*----------------------------------------------- Name: onekey Params: iKey - virtual key code Result: Return true if key was pressed, but only once (the key must be released). /*---------------------------------------------*/ int Keys::onekey(int iKey) { if(key(iKey) && !kp[iKey]){kp[iKey] = 1; return 1;} if(!key(iKey))kp[iKey] = 0; return 0; } /*----------------------------------------------- Name: resetTimer Params: none Result: Resets application timer (for example after re-activation of application). /*---------------------------------------------*/ void COpenGLWinApp::resetTimer() { tLastFrame = clock(); fFrameInterval = 0.0f; } /*----------------------------------------------- Name: updateTimer Params: none Result: Updates application timer. /*---------------------------------------------*/ void COpenGLWinApp::updateTimer() { clock_t tCur = clock(); fFrameInterval = float(tCur-tLastFrame)/float(CLOCKS_PER_SEC); tLastFrame = tCur; } /*----------------------------------------------- Name: sof Params: fVal Result: Stands for speed optimized float. /*---------------------------------------------*/ float COpenGLWinApp::sof(float fVal) { return fVal*fFrameInterval; } /*----------------------------------------------- Name: initializeApp Params: a_sAppName Result: Initializes app with specified (unique) application identifier. /*---------------------------------------------*/ bool COpenGLWinApp::initializeApp(string a_sAppName) { sAppName = a_sAppName; hMutex = CreateMutex(NULL, 1, sAppName.c_str()); if(GetLastError() == ERROR_ALREADY_EXISTS) { MessageBox(NULL, "This application already runs!", "Multiple Instances Found.", MB_ICONINFORMATION | MB_OK); return 0; } return 1; } /*----------------------------------------------- Name: registerAppClass Params: a_hInstance - application instance handle Result: Registers application window class. /*---------------------------------------------*/ LRESULT CALLBACK globalMessageHandler(HWND hWnd, UINT uiMsg, WPARAM wParam, LPARAM lParam) { return appMain.msgHandlerMain(hWnd, uiMsg, wParam, lParam); } void COpenGLWinApp::registerAppClass(HINSTANCE a_hInstance) { WNDCLASSEX wcex; memset(&wcex, 0, sizeof(WNDCLASSEX)); wcex.cbSize = sizeof(WNDCLASSEX); wcex.style = CS_OWNDC; wcex.hbrBackground = (HBRUSH)GetStockObject(BLACK_BRUSH); wcex.hIcon = LoadIcon(hInstance, IDI_WINLOGO); wcex.hIconSm = LoadIcon(hInstance, IDI_WINLOGO); wcex.hCursor = LoadCursor(hInstance, IDC_ARROW); wcex.hInstance = hInstance; wcex.lpfnWndProc = globalMessageHandler; wcex.lpszClassName = sAppName.c_str(); wcex.lpszMenuName = NULL; RegisterClassEx(&wcex); } /*----------------------------------------------- Name: createWindow Params: sTitle - title of created window Result: Creates main application window. /*---------------------------------------------*/ bool COpenGLWinApp::createWindow(string sTitle) { if(MessageBox(NULL, "Would you like to run in fullscreen?", "Fullscreen", MB_ICONQUESTION | MB_YESNO) == IDYES) { DEVMODE dmSettings = {0}; EnumDisplaySettings(NULL, ENUM_CURRENT_SETTINGS, &dmSettings); // Get current display settings hWnd = CreateWindowEx(0, sAppName.c_str(), sTitle.c_str(), WS_POPUP | WS_CLIPSIBLINGS | WS_CLIPCHILDREN, // This is the commonly used style for fullscreen 0, 0, dmSettings.dmPelsWidth, dmSettings.dmPelsHeight, NULL, NULL, hInstance, NULL); } else hWnd = CreateWindowEx(0, sAppName.c_str(), sTitle.c_str(), WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN, 0, 0, CW_USEDEFAULT, CW_USEDEFAULT, NULL, NULL, hInstance, NULL); if(!oglControl.initOpenGL(hInstance, &hWnd, 3, 3, initScene, renderScene, releaseScene, &oglControl))return false; ShowWindow(hWnd, SW_SHOW); // Just to send WM_SIZE message again ShowWindow(hWnd, SW_SHOWMAXIMIZED); UpdateWindow(hWnd); return true; } /*----------------------------------------------- Name: appBody Params: none Result: Main application body infinite loop. /*---------------------------------------------*/ void COpenGLWinApp::appBody() { MSG msg; while(1) { if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) { if(msg.message == WM_QUIT)break; // If the message was WM_QUIT then exit application else { TranslateMessage(&msg); // Otherwise send message to appropriate window DispatchMessage(&msg); } } else if(bAppActive) { updateTimer(); oglControl.render(&oglControl); } else Sleep(200); // Do not consume processor power if application isn't active } } /*----------------------------------------------- Name: shutdown Params: none Result: Shuts down application and releases used memory. /*---------------------------------------------*/ void COpenGLWinApp::shutdown() { oglControl.releaseOpenGLControl(&oglControl); DestroyWindow(hWnd); UnregisterClass(sAppName.c_str(), hInstance); COpenGLControl::unregisterSimpleOpenGLClass(hInstance); ReleaseMutex(hMutex); } /*----------------------------------------------- Name: msgHandlerMain Params: whatever Result: Application messages handler. /*---------------------------------------------*/ LRESULT CALLBACK COpenGLWinApp::msgHandlerMain(HWND hWnd, UINT uiMsg, WPARAM wParam, LPARAM lParam) { PAINTSTRUCT ps; switch(uiMsg) { case WM_PAINT: BeginPaint(hWnd, &ps); EndPaint(hWnd, &ps); break; case WM_CLOSE: PostQuitMessage(0); break; case WM_ACTIVATE: { switch(LOWORD(wParam)) { case WA_ACTIVE: case WA_CLICKACTIVE: bAppActive = true; resetTimer(); break; case WA_INACTIVE: bAppActive = false; break; } break; } case WM_SIZE: oglControl.resizeOpenGLViewportFull(); oglControl.setProjection3D(45.0f, float(LOWORD(lParam))/float(HIWORD(lParam)), 0.001f, 1000.0f); break; default: return DefWindowProc(hWnd, uiMsg, wParam, lParam); } return 0; } /*----------------------------------------------- Name: getInstance Params: none Result: Returns application instance. /*---------------------------------------------*/ HINSTANCE COpenGLWinApp::getInstance() { return hInstance; } /*----------------------------------------------- Name: msgHandlerMain Params: whatever Result: Application messages handler. /*---------------------------------------------*/ int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR sCmdLine, int iShow) { if(!appMain.initializeApp("06_opengl_3_3")) return 0; appMain.registerAppClass(hInstance); if(!appMain.createWindow("06.) Textures - Tutorial by Michal Bubnar (www.mbsoftworks.sk)")) return 0; appMain.resetTimer(); appMain.appBody(); appMain.shutdown(); return 0; }
[ [ [ 1, 334 ] ] ]
8bfe178d65efb2f52470e306b87737b39f700ce6
f80d267d410b784458e61e4c4603605de368de9b
/TESTONE/exampleios/usr/local/include/fit_developer_field_description.hpp
a5af5c51d16055664f81433af69b821385dd83c5
[]
no_license
bleeckerj/Xcode-FIT-TEST
84bdb9e1969a93a6380a9c64dce0a0e715d81fe8
37490e3b1e913dc3dfabdae39b48bddea24f1023
refs/heads/master
2021-01-20T14:39:53.249495
2017-02-22T05:59:28
2017-02-22T05:59:28
82,766,547
0
0
null
null
null
null
UTF-8
C++
false
false
1,772
hpp
//////////////////////////////////////////////////////////////////////////////// // The following FIT Protocol software provided may be used with FIT protocol // devices only and remains the copyrighted property of Dynastream Innovations Inc. // The software is being provided on an "as-is" basis and as an accommodation, // and therefore all warranties, representations, or guarantees of any kind // (whether express, implied or statutory) including, without limitation, // warranties of merchantability, non-infringement, or fitness for a particular // purpose, are specifically disclaimed. // // Copyright 2017 Dynastream Innovations Inc. //////////////////////////////////////////////////////////////////////////////// // ****WARNING**** This file is auto-generated! Do NOT edit this file. // Profile Version = 20.24Release // Tag = production/akw/20.24.01-0-g5fa480b //////////////////////////////////////////////////////////////////////////////// #if !defined(FIT_DEVELOPER_FIELD_DESCRIPTION_HPP) #define FIT_DEVELOPER_FIELD_DESCRIPTION_HPP #include "fit_field_description_mesg.hpp" #include "fit_developer_data_id_mesg.hpp" #include <vector> namespace fit { class DeveloperFieldDescription { public: DeveloperFieldDescription() = delete; DeveloperFieldDescription(const DeveloperFieldDescription& other); DeveloperFieldDescription(const FieldDescriptionMesg& desc, const DeveloperDataIdMesg& developer); virtual ~DeveloperFieldDescription(); FIT_UINT32 GetApplicationVersion() const; FIT_UINT8 GetFieldDefinitionNumber() const; std::vector<FIT_UINT8> GetApplicationId() const; private: FieldDescriptionMesg* description; DeveloperDataIdMesg* developer; }; } // namespace fit #endif // defined(FIT_FIELD_DEFINITION_HPP)
[ [ [ 1, 46 ] ] ]
ec71eee9144a294508e930330ca1e438fb3fc919
32b88f828b33279cfe33420c2ed969131a7df987
/Code/Core/Mem/MemTracker.cpp
777a97039b84548fb8dbfdacb216b93ff26a076f
[ "LicenseRef-scancode-other-permissive", "LicenseRef-scancode-unknown-license-reference" ]
permissive
punitchandra/fastbuild
53b51f001350104629e71434bb5e521a1bb63cae
8a445d77343bc4881b33a5ebcf31a2ec8777ae2d
refs/heads/master
2021-01-15T13:23:26.995800
2017-08-21T15:05:32
2017-08-21T15:05:32
38,138,811
0
0
null
2015-06-26T23:30:24
2015-06-26T23:30:23
null
UTF-8
C++
false
false
7,281
cpp
// MemTracker.cpp //------------------------------------------------------------------------------ // Includes //------------------------------------------------------------------------------ #include "Core/PrecompiledHeader.h" #include "MemTracker.h" //------------------------------------------------------------------------------ #if defined( MEMTRACKER_ENABLED ) // Includes //------------------------------------------------------------------------------ #include "Core/Mem/MemPoolBlock.h" #include "Core/Process/Atomic.h" #include "Core/Process/Thread.h" #include "Core/Tracing/Tracing.h" // system #include <memory.h> // for memset // Static Data //------------------------------------------------------------------------------ /*static*/ uint32_t MemTracker::s_Id( 0 ); /*static*/ bool MemTracker::s_Enabled( true ); /*static*/ bool MemTracker::s_Initialized( false ); /*static*/ uint32_t MemTracker::s_AllocationCount( 0 ); /*static*/ uint64_t MemTracker::s_Mutex[]; /*static*/ MemTracker::Allocation ** MemTracker::s_AllocationHashTable = nullptr; /*static*/ MemPoolBlock * MemTracker::s_Allocations( nullptr ); // Thread-Local Data //------------------------------------------------------------------------------ THREAD_LOCAL uint32_t g_MemTrackerDisabledOnThisThread( 0 ); // Defines #define ALLOCATION_MINIMUM_ALIGN ( 0x4 ) // assume at least 4 byte alignment #define ALLOCATION_HASH_SHIFT ( 0x2 ) // shift off lower bits #define ALLOCATION_HASH_SIZE ( 0x100000 ) // one megabyte #define ALLOCATION_HASH_MASK ( 0x0FFFFF ) // mask off upper bits // Alloc //------------------------------------------------------------------------------ /*static*/ void MemTracker::Alloc( void * ptr, size_t size, const char * file, int line ) { if ( !s_Enabled ) { return; } // handle allocations during initialization if ( g_MemTrackerDisabledOnThisThread ) { return; } ++g_MemTrackerDisabledOnThisThread; if ( !s_Initialized ) { Init(); } const size_t hashIndex = ( ( (size_t)ptr >> ALLOCATION_HASH_SHIFT ) & ALLOCATION_HASH_MASK ); { MutexHolder mh( GetMutex() ); Allocation * a = (Allocation *)s_Allocations->Alloc( sizeof( Allocation ) ); ++s_AllocationCount; a->m_Id = ++s_Id; a->m_Ptr = ptr; a->m_Size = size; a->m_Next = s_AllocationHashTable[ hashIndex ]; a->m_File = file; a->m_Line = line; static size_t breakOnSize = (size_t)-1; static uint32_t breakOnId = 0; if ( ( size == breakOnSize ) || ( a->m_Id == breakOnId ) ) { BREAK_IN_DEBUGGER; } s_AllocationHashTable[ hashIndex ] = a; } --g_MemTrackerDisabledOnThisThread; } // Free //------------------------------------------------------------------------------ /*static*/ void MemTracker::Free( void * ptr ) { if ( !s_Enabled ) { return; } if ( !s_Initialized ) { return; } if ( g_MemTrackerDisabledOnThisThread ) { return; } const size_t hashIndex = ( ( (size_t)ptr >> ALLOCATION_HASH_SHIFT ) & ALLOCATION_HASH_MASK ); MutexHolder mh( GetMutex() ); Allocation * a = s_AllocationHashTable[ hashIndex ]; Allocation * prev = nullptr; while ( a ) { if ( a->m_Ptr == ptr ) { if ( prev == nullptr ) { s_AllocationHashTable[ hashIndex ] = a->m_Next; } else { prev->m_Next = a->m_Next; } ++g_MemTrackerDisabledOnThisThread; s_Allocations->Free( a ); --s_AllocationCount; --g_MemTrackerDisabledOnThisThread; break; } prev = a; a = a->m_Next; } } // DumpAllocations //------------------------------------------------------------------------------ /*static*/ void MemTracker::DumpAllocations() { if ( s_Enabled == false ) { OUTPUT( "DumpAllocations failed - MemTracker not enabled\n" ); return; } if ( s_Initialized == false ) { OUTPUT( "DumpAllocations : No allocations\n" ); return; } MutexHolder mh( GetMutex() ); if ( s_AllocationCount == 0 ) { OUTPUT( "DumpAllocations : No allocations\n" ); return; } uint64_t total = 0; uint64_t numAllocs = 0; // for each leak, we'll print a view of the memory unsigned char displayChar[256]; memset( displayChar, '.', sizeof( displayChar ) ); const unsigned char * okChars = (const unsigned char *)"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ~`1234567890-=!@#$^&*()_+[]{};:'\",<>/?|\\"; const unsigned char * ok = okChars; for ( ;; ) { unsigned char c = *ok; if ( c == 0 ) break; displayChar[ c ] = c; ++ok; } char memView[ 32 ] = { 0 }; OUTPUT( "--- DumpAllocations ------------------------------------------------\n" ); for ( size_t i=0; i<ALLOCATION_HASH_SIZE; ++i ) { Allocation * a = s_AllocationHashTable[ i ]; while ( a ) { uint32_t id = a->m_Id; uint64_t addr = (size_t)a->m_Ptr; uint64_t size = a->m_Size; // format a view of the memory contents const char * src = (const char *)addr; char * dst = memView; const size_t num = Math::Min< size_t >( (size_t)size, 31 ); for ( uint32_t j=0; j<num; ++j ) { unsigned char c = *src; *dst = displayChar[ c ]; ++src; ++dst; } *dst = 0; OUTPUT( "%s(%u): Id %u : %u bytes @ 0x%016llx (Mem: %s)\n", a->m_File, a->m_Line, id, size, addr, memView ); ++numAllocs; total += size; a = a->m_Next; } } OUTPUT( "--------------------------------------------------------------------\n" ); OUTPUT( "Total: %llu bytes in %llu allocs\n", total, numAllocs ); OUTPUT( "--------------------------------------------------------------------\n" ); } // Reset //------------------------------------------------------------------------------ /*static*/ void MemTracker::Reset() { MutexHolder mh( GetMutex() ); ++g_MemTrackerDisabledOnThisThread; // free all allocation tracking for ( size_t i=0; i<ALLOCATION_HASH_SIZE; ++i ) { Allocation * a = s_AllocationHashTable[ i ]; while ( a ) { s_Allocations->Free( a ); --s_AllocationCount; a = a->m_Next; } s_AllocationHashTable[ i ] = nullptr; } ASSERT( s_AllocationCount == 0 ); s_Id = 0; --g_MemTrackerDisabledOnThisThread; } // Init //------------------------------------------------------------------------------ /*static*/ void MemTracker::Init() { CTASSERT( sizeof( MemTracker::s_Mutex ) == sizeof( Mutex ) ); ASSERT( g_MemTrackerDisabledOnThisThread ); // first caller does init static uint32_t threadSafeGuard( 0 ); if ( AtomicIncU32( &threadSafeGuard ) != 1 ) { // subsequent callers wait for init while ( !s_Initialized ) {} return; } // construct primary mutex in-place INPLACE_NEW ( &GetMutex() ) Mutex; // init hash table s_AllocationHashTable = new Allocation*[ ALLOCATION_HASH_SIZE ]; memset( s_AllocationHashTable, 0, ALLOCATION_HASH_SIZE * sizeof( Allocation * ) ); // init pool for allocation structures s_Allocations = new MemPoolBlock( sizeof( Allocation ), __alignof( Allocation ) ); MemoryBarrier(); s_Initialized = true; } //------------------------------------------------------------------------------ #endif // MEMTRACKER_ENABLED //------------------------------------------------------------------------------
[ [ [ 1, 274 ] ] ]
95f7befcf665c6bd7d6cf9cdcc561666e56f2e88
cf88c1e3d9587f2bdc8cf40397bca3f0b5f11e7c
/Arrays/Array_Rearrangement/MaxLengthBitonicSubsequence.cpp
fb2e5de210006b85afeb4f3b2d78fe1f36e1b413
[]
no_license
shaival141/Practice_Old
f6193b4ae2365548d70c047180de429f9a9fdc1d
f02d55faf1c0a861093bf0e094747c64bdd81b34
refs/heads/master
2022-01-05T12:54:54.863035
2018-05-18T18:05:06
2018-05-18T18:05:06
null
0
0
null
null
null
null
UTF-8
C++
false
false
1,321
cpp
/* Dynamic Programming implementation of longest bitonic subsequence problem */ #include<stdio.h> #include<stdlib.h> /* lbs() returns the length of the Longest Bitonic Subsequence in arr[] of size n. The function mainly creates two temporary arrays lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1. lis[i] ==> Longest Increasing subsequence ending with arr[i] lds[i] ==> Longest decreasing subsequence starting with arr[i] */ int lbs( int arr[], int n ) { int i,j; int lis[n]; int lds[n]; for(i=0;i<n;i++) lis[i]=1; for(i=0;i<n;i++) lds[i]=1; for(i=1;i<n;i++) { for(j=0;j<i;j++) { if(arr[j]<arr[i] && lis[i]<lis[j]+1) lis[i]=lis[j]+1; } } for(i=n-1;i>=0;i--) { for(j=n-1;j>i;j--) { if(arr[j]<arr[i] && lds[i]<lds[j]+1) lds[i]=lds[j]+1; } } int max=0; for(i=0;i<n;i++) { if(lis[i]+lds[i]-1>max) { max =lis[i] + lds[i] - 1; } } return max; } /* Driver program to test above function */ int main() { int arr[] = {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15}; int n = sizeof(arr)/sizeof(arr[0]); printf("Length of LBS is %d\n", lbs( arr, n ) ); return 0; }
[ [ [ 1, 57 ] ] ]
3839e99ec45940f1c94baf2131e7849a8871b51c
4f37081ed62e44afa0b2465388a8adf9b5490b13
/ash/login/ui/login_user_view.h
4d27549c5a7f8e8dda6fd0bc769f65efd3439630
[ "BSD-3-Clause" ]
permissive
zowhair/chromium
05b9eed58a680941c3595d52c3c77b620ef2c3ac
d84d5ef83e401ec210fcb14a92803bf339e1ccce
refs/heads/master
2023-03-04T23:15:10.914156
2018-03-15T11:27:44
2018-03-15T11:27:44
125,359,706
1
0
null
2018-03-15T11:50:44
2018-03-15T11:50:43
null
UTF-8
C++
false
false
3,544
h
// Copyright 2017 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef ASH_LOGIN_UI_LOGIN_USER_VIEW_H_ #define ASH_LOGIN_UI_LOGIN_USER_VIEW_H_ #include "ash/ash_export.h" #include "ash/login/ui/login_display_style.h" #include "ash/public/interfaces/login_user_info.mojom.h" #include "base/macros.h" #include "ui/views/controls/button/button.h" #include "ui/views/view.h" namespace ash { class HoverNotifier; class LoginBubble; class LoginButton; // Display the user's profile icon, name, and a menu icon in various layout // styles. class ASH_EXPORT LoginUserView : public views::View, public views::ButtonListener { public: // TestApi is used for tests to get internal implementation details. class ASH_EXPORT TestApi { public: explicit TestApi(LoginUserView* view); ~TestApi(); LoginDisplayStyle display_style() const; const base::string16& displayed_name() const; views::View* user_label() const; views::View* tap_button() const; bool is_opaque() const; private: LoginUserView* const view_; }; using OnTap = base::RepeatingClosure; // Returns the width of this view for the given display style. static int WidthForLayoutStyle(LoginDisplayStyle style); LoginUserView(LoginDisplayStyle style, bool show_dropdown, bool show_domain, const OnTap& on_tap); ~LoginUserView() override; // Update the user view to display the given user information. void UpdateForUser(const mojom::LoginUserInfoPtr& user, bool animate); // Set if the view must be opaque. void SetForceOpaque(bool force_opaque); // Enables or disables tapping the view. void SetTapEnabled(bool enabled); const mojom::LoginUserInfoPtr& current_user() const { return current_user_; } // views::View: const char* GetClassName() const override; gfx::Size CalculatePreferredSize() const override; void Layout() override; // views::ButtonListener: void ButtonPressed(views::Button* sender, const ui::Event& event) override; private: class UserDomainInfoView; class UserImage; class UserLabel; class TapButton; // Called when hover state changes. void OnHover(bool has_hover); // Updates UI element values so they reflect the data in |current_user_|. void UpdateCurrentUserState(); // Updates view opacity based on input state and |force_opaque_|. void UpdateOpacity(); void SetLargeLayout(); void SetSmallishLayout(); // Executed when the user view is pressed. OnTap on_tap_; // The user that is currently being displayed (or will be displayed when an // animation completes). mojom::LoginUserInfoPtr current_user_; // Used to dispatch opacity update events. std::unique_ptr<HoverNotifier> hover_notifier_; LoginDisplayStyle display_style_; UserImage* user_image_ = nullptr; UserLabel* user_label_ = nullptr; LoginButton* user_dropdown_ = nullptr; TapButton* tap_button_ = nullptr; std::unique_ptr<LoginBubble> user_menu_; // Show the domain information for public account user. UserDomainInfoView* user_domain_ = nullptr; // True iff the view is currently opaque (ie, opacity = 1). bool is_opaque_ = false; // True if the view must be opaque (ie, opacity = 1) regardless of input // state. bool force_opaque_ = false; DISALLOW_COPY_AND_ASSIGN(LoginUserView); }; } // namespace ash #endif // ASH_LOGIN_UI_LOGIN_USER_VIEW_H_
[ [ [ 1, 123 ] ] ]
694381b4055f06ae7dad5f6a5f7b6abd76cc1bb2
4ca2b9af703d0a9066fdbf7ac45fd7c5f25a72ea
/proton-c/bindings/cpp/include/proton/codec/decoder.hpp
3dc6d570d2c4b11fdffda5c5c32b4e67cdd0ed71
[ "Apache-2.0", "BSD-3-Clause" ]
permissive
gberginc/qpid-proton
23847cc2a6b7014f021baff27089ea727bfa28e0
9eaca615c5f5aa97d89d1b87471d81bff7237df0
refs/heads/master
2021-01-16T17:58:30.964461
2017-08-10T12:27:43
2017-08-10T12:27:43
100,028,035
0
0
null
2017-08-11T12:13:02
2017-08-11T12:13:02
null
UTF-8
C++
false
false
7,621
hpp
#ifndef PROTON_CODEC_DECODER_HPP #define PROTON_CODEC_DECODER_HPP /* * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. * */ #include "../internal/data.hpp" #include "../internal/type_traits.hpp" #include "../types_fwd.hpp" #include "./common.hpp" #include <proton/type_compat.h> #include <utility> namespace proton { class annotation_key; class message_id; class scalar; class value; namespace internal { class value_base; } namespace codec { /// **Experimental** - Stream-like decoder from AMQP bytes to C++ /// values. /// /// For internal use only. /// /// @see @ref types_page for the recommended ways to manage AMQP data class decoder : public internal::data { public: /// Wrap a Proton C data object. The exact flag if set means /// decode only when there is an exact match between the AMQP and /// C++ type. If not set then perform automatic conversions. explicit decoder(const data& d, bool exact=false) : data(d), exact_(exact) {} /// Attach decoder to a proton::value. The decoder is rewound to /// the start of the data. PN_CPP_EXTERN explicit decoder(const internal::value_base&, bool exact=false); /// Decode AMQP data from a buffer and add it to the end of the /// decoders stream. PN_CPP_EXTERN void decode(const char* buffer, size_t size); /// Decode AMQP data from a std::string and add it to the end of /// the decoders stream. PN_CPP_EXTERN void decode(const std::string&); /// Return true if there are more value to extract at the current level. PN_CPP_EXTERN bool more(); /// Get the type of the next value that will be read by /// operator>>. /// /// @throw conversion_error if no more values. @see /// decoder::more(). PN_CPP_EXTERN type_id next_type(); /// @name Extract built-in types /// /// @throw conversion_error if the decoder is empty or has an /// incompatible type. /// /// @{ PN_CPP_EXTERN decoder& operator>>(bool&); PN_CPP_EXTERN decoder& operator>>(uint8_t&); PN_CPP_EXTERN decoder& operator>>(int8_t&); PN_CPP_EXTERN decoder& operator>>(uint16_t&); PN_CPP_EXTERN decoder& operator>>(int16_t&); PN_CPP_EXTERN decoder& operator>>(uint32_t&); PN_CPP_EXTERN decoder& operator>>(int32_t&); PN_CPP_EXTERN decoder& operator>>(wchar_t&); PN_CPP_EXTERN decoder& operator>>(uint64_t&); PN_CPP_EXTERN decoder& operator>>(int64_t&); PN_CPP_EXTERN decoder& operator>>(timestamp&); PN_CPP_EXTERN decoder& operator>>(float&); PN_CPP_EXTERN decoder& operator>>(double&); PN_CPP_EXTERN decoder& operator>>(decimal32&); PN_CPP_EXTERN decoder& operator>>(decimal64&); PN_CPP_EXTERN decoder& operator>>(decimal128&); PN_CPP_EXTERN decoder& operator>>(uuid&); PN_CPP_EXTERN decoder& operator>>(std::string&); PN_CPP_EXTERN decoder& operator>>(symbol&); PN_CPP_EXTERN decoder& operator>>(binary&); PN_CPP_EXTERN decoder& operator>>(message_id&); PN_CPP_EXTERN decoder& operator>>(annotation_key&); PN_CPP_EXTERN decoder& operator>>(scalar&); PN_CPP_EXTERN decoder& operator>>(internal::value_base&); PN_CPP_EXTERN decoder& operator>>(null&); ///@} /// Start decoding a container type, such as an ARRAY, LIST or /// MAP. This "enters" the container, more() will return false at /// the end of the container. Call finish() to "exit" the /// container and move on to the next value. PN_CPP_EXTERN decoder& operator>>(start&); /// Finish decoding a container type, and move on to the next /// value in the stream. PN_CPP_EXTERN decoder& operator>>(const finish&); /// @cond INTERNAL template <class T> struct sequence_ref { T& ref; sequence_ref(T& r) : ref(r) {} }; template <class T> struct associative_ref { T& ref; associative_ref(T& r) : ref(r) {} }; template <class T> struct pair_sequence_ref { T& ref; pair_sequence_ref(T& r) : ref(r) {} }; template <class T> static sequence_ref<T> sequence(T& x) { return sequence_ref<T>(x); } template <class T> static associative_ref<T> associative(T& x) { return associative_ref<T>(x); } template <class T> static pair_sequence_ref<T> pair_sequence(T& x) { return pair_sequence_ref<T>(x); } /// @endcond /// Extract any AMQP sequence (ARRAY, LIST or MAP) to a C++ /// sequence container of T if the elements types are convertible /// to T. A MAP is extracted as `[key1, value1, key2, value2...]`. template <class T> decoder& operator>>(sequence_ref<T> r) { start s; *this >> s; if (s.is_described) next(); r.ref.resize(s.size); for (typename T::iterator i = r.ref.begin(); i != r.ref.end(); ++i) *this >> *i; return *this; } /// Extract an AMQP MAP to a C++ associative container template <class T> decoder& operator>>(associative_ref<T> r) { using namespace internal; start s; *this >> s; assert_type_equal(MAP, s.type); r.ref.clear(); for (size_t i = 0; i < s.size/2; ++i) { typename remove_const<typename T::key_type>::type k; typename remove_const<typename T::mapped_type>::type v; *this >> k >> v; r.ref[k] = v; } return *this; } /// Extract an AMQP MAP to a C++ push_back sequence of pairs /// preserving encoded order. template <class T> decoder& operator>>(pair_sequence_ref<T> r) { using namespace internal; start s; *this >> s; assert_type_equal(MAP, s.type); r.ref.clear(); for (size_t i = 0; i < s.size/2; ++i) { typedef typename T::value_type value_type; typename remove_const<typename value_type::first_type>::type k; typename remove_const<typename value_type::second_type>::type v; *this >> k >> v; r.ref.push_back(value_type(k, v)); } return *this; } private: type_id pre_get(); template <class T, class U> decoder& extract(T& x, U (*get)(pn_data_t*)); bool exact_; friend class message; }; /// @cond INTERNAL /// XXX Document this template<class T> T get(decoder& d) { assert_type_equal(internal::type_id_of<T>::value, d.next_type()); T x; d >> x; return x; } /// @endcond /// operator>> for integer types that are not covered by the standard /// overrides. template <class T> typename internal::enable_if<internal::is_unknown_integer<T>::value, decoder&>::type operator>>(decoder& d, T& i) { using namespace internal; typename integer_type<sizeof(T), is_signed<T>::value>::type v; d >> v; // Extract as a known integer type i = v; // C++ conversion to the target type. return d; } } // codec } // proton #endif // PROTON_CODEC_DECODER_HPP
[ [ [ 1, 3 ], [ 5, 5 ], [ 22, 22 ], [ 47, 48 ], [ 50, 52 ], [ 55, 57 ], [ 60, 61 ], [ 64, 65 ], [ 68, 69 ], [ 75, 79 ], [ 83, 86 ], [ 115, 118 ], [ 121, 122 ], [ 125, 125 ], [ 133, 133 ], [ 135, 137 ], [ 148, 148 ], [ 190, 191 ], [ 198, 198 ], [ 200, 201 ], [ 213, 214 ] ], [ [ 4, 4 ], [ 6, 21 ], [ 23, 24 ], [ 29, 29 ], [ 32, 39 ], [ 42, 42 ], [ 44, 46 ], [ 49, 49 ], [ 54, 54 ], [ 58, 59 ], [ 63, 63 ], [ 66, 67 ], [ 70, 74 ], [ 80, 82 ], [ 87, 110 ], [ 112, 114 ], [ 119, 120 ], [ 123, 124 ], [ 126, 132 ], [ 134, 134 ], [ 138, 147 ], [ 149, 187 ], [ 189, 189 ], [ 192, 197 ], [ 199, 199 ], [ 202, 212 ] ], [ [ 25, 28 ], [ 30, 31 ], [ 53, 53 ], [ 188, 188 ] ], [ [ 40, 41 ], [ 43, 43 ], [ 62, 62 ], [ 111, 111 ] ] ]
594e71c07f5c14b0e47d84c3887fb2634517984c
7a5a713cc999fdc1f64457949b003980e288567a
/Classes/ExplodeSmoke.h
a878d13147d91a026074988ee4903c9dfe3be564
[]
no_license
highfence/ShootingGameProject
2b564d09ea02ae64fb65d85b59ecb6e0d170ec53
61e57136d52e8b1d980eec304dd474774f239f94
refs/heads/master
2021-01-20T12:28:31.574956
2017-04-05T06:49:42
2017-04-05T06:49:42
82,655,552
0
0
null
2017-03-16T10:04:44
2017-02-21T08:33:06
C++
UTF-8
C++
false
false
328
h
#pragma once #include "Effect.h" class ExplodeSmoke : public Effect { public : ExplodeSmoke() = delete; ExplodeSmoke(const _In_ Vec); ExplodeSmoke( const _In_ Vec, const _In_ FLOAT, const _In_ Vec); ~ExplodeSmoke(); private : void init(); void LoadInitialImg() override; void InitialDataSubstitude() override; };
[ [ [ 1, 20 ] ] ]
e1120ecc3bd0b1626b5a3a1c8eca3d090e2a14a8
8f961bc022f5ce587d854b7458909c3e0f1ef4bb
/framework/amorphous/Physics/Engines/PhysX/NxMathConv.hpp
b163b85dda141f7d07dd3f1265268ddae0095f82
[]
no_license
takashikumagai/amorphous
73f0bd8c5f5d947a71bbad696ce728f25c456aae
8e5f5ec9368757a639ed4cf7aeb02a4b201e6b42
refs/heads/master
2020-05-17T10:55:59.428403
2018-07-05T02:48:59
2018-07-05T02:48:59
183,671,422
0
0
null
null
null
null
UTF-8
C++
false
false
1,439
hpp
#ifndef __NxMathConv_H__ #define __NxMathConv_H__ #include "3DMath/Matrix34.hpp" #include "3DMath/AABB3.hpp" #include "NxPhysics.h" namespace amorphous { namespace physics { // PhysX to Framework conversions inline Vector3 ToVector3( const NxVec3& src ) { return Vector3( src.x, src.y, src.z ); } inline Matrix33 ToMatrix33( const NxMat33& src ) { return Matrix33( ToVector3( src.getColumn(0) ), ToVector3( src.getColumn(1) ), ToVector3( src.getColumn(2) ) ); } inline Matrix34 ToMatrix34( const NxMat34& src ) { return Matrix34( ToVector3(src.t), ToMatrix33(src.M) ); } inline AABB3 ToAABB3( const NxBounds3& src ) { return AABB3( ToVector3(src.min), ToVector3(src.max) ); } // Framework to PhysX conversions inline NxVec3 ToNxVec3( const Vector3& src ) { return NxVec3( src.x, src.y, src.z ); } inline NxMat33 ToNxMat33( const Matrix33& src ) { NxMat33 dest; dest.setColumn( 0, ToNxVec3(src.GetColumn(0)) ); dest.setColumn( 1, ToNxVec3(src.GetColumn(1)) ); dest.setColumn( 2, ToNxVec3(src.GetColumn(2)) ); return dest; } inline NxMat34 ToNxMat34( const Matrix34& src ) { NxMat34 dest; dest.t = ToNxVec3( src.vPosition ); dest.M = ToNxMat33( src.matOrient ); return dest; } inline NxBounds3 ToNxBounds3( const AABB3& src ) { NxBounds3 dest; dest.set( ToNxVec3(src.vMin), ToNxVec3(src.vMax) ); return dest; } } // namespace physics } // namespace amorphous #endif /* __NxMathConv_H__ */
[ "Takashi Kumagai@b80c8c75-5753-0c4f-8f2c-6ef837923b1e", "blue@b80c8c75-5753-0c4f-8f2c-6ef837923b1e" ]
[ [ [ 1, 5 ], [ 7, 9 ], [ 14, 16 ], [ 18, 40 ], [ 50, 71 ], [ 79, 81 ], [ 85, 86 ] ], [ [ 6, 6 ], [ 10, 13 ], [ 17, 17 ], [ 41, 49 ], [ 72, 78 ], [ 82, 84 ] ] ]
ca83a558bcc72c5055c6fbf661b26acbaf1aeb08
6701a2c3fb95baba0da5754b88d23f79a2b10f7f
/protocol/mcbp/libmcbp/mcbp_packet_printer.cc
6329b15ffaeaf2a08d698518c5c195e5ef3a5e8b
[]
no_license
teligent-ru/kv_engine
80630b4271d72df9c47b505a586f2e8275895d3e
4a1b741ee22ae3e7a46e21a423451c58186a2374
refs/heads/master
2018-11-07T20:52:54.132785
2018-01-15T16:34:10
2018-01-17T08:29:54
117,808,163
1
0
null
2018-01-17T08:34:05
2018-01-17T08:34:05
null
UTF-8
C++
false
false
4,594
cc
/* -*- Mode: C++; tab-width: 4; c-basic-offset: 4; indent-tabs-mode: nil -*- */ /* * Copyright 2017 Couchbase, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <getopt.h> #include <mcbp/mcbp.h> #include <platform/dirutils.h> #include <platform/memorymap.h> #include <platform/sized_buffer.h> #include <algorithm> #include <iostream> enum class Format { Raw, Gdb, Lldb }; Format parseFormat(std::string format) { std::transform(format.begin(), format.end(), format.begin(), toupper); if (format == "RAW") { return Format::Raw; } if (format == "GDB") { return Format::Gdb; } if (format == "LLDB") { return Format::Lldb; } throw std::invalid_argument("Unknown format: " + format); } int main(int argc, char** argv) { Format format{Format::Raw}; static struct option longopts[] = { {"format", required_argument, nullptr, 'f'}, {nullptr, 0, nullptr, 0}}; int cmd; while ((cmd = getopt_long(argc, argv, "f:", longopts, nullptr)) != -1) { switch (cmd) { case 'f': try { format = parseFormat(optarg); } catch (const std::invalid_argument& e) { std::cerr << e.what() << std::endl; return EXIT_FAILURE; } break; default: std::cerr << "Usage: " << cb::io::basename(argv[0]) << " [options] file1-n" << std::endl << std::endl << "\t--format=raw|gdb|lldb\tThe format for the input file" << std::endl << std::endl << "For gdb the expected output would be produced by " "executing: " << std::endl << std::endl << "(gdb) x /24xb c->rcurr" << std::endl << "0x7f43387d7e7a: 0x81 0x0d 0x00 0x00 0x00 0x00 0x00 0x00" << std::endl << "0x7f43387d7e82: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00" << std::endl << "0x7f43387d7e8a: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00" << std::endl << std::endl << "For lldb the expected output would be generated by " "executing: " << std::endl << std::endl << "(lldb) x -c 32 c->rbuf" << std::endl << "0x7f43387d7e7a: 81 0d 00 01 04 00 00 00 00 00 00 06 00 " "00 00 06 ................" << std::endl << "0x7f43387d7e7a: 14 bf f4 26 8a e0 00 00 00 00 00 00 61 " "61 81 0a ................" << std::endl << std::endl; return EXIT_FAILURE; } } if (optind == argc) { std::cerr << "No file specified" << std::endl; return EXIT_FAILURE; } while (optind < argc) { try { cb::byte_buffer buf; std::vector<uint8_t> data; cb::MemoryMappedFile map(argv[optind], cb::MemoryMappedFile::Mode::RDONLY); map.open(); buf = {static_cast<uint8_t*>(map.getRoot()), map.getSize()}; switch (format) { case Format::Raw: break; case Format::Gdb: data = cb::mcbp::gdb::parseDump(buf); buf = {data.data(), data.size()}; break; case Format::Lldb: data = cb::mcbp::lldb::parseDump(buf); buf = {data.data(), data.size()}; break; } cb::mcbp::dumpStream(buf, std::cout); } catch (const std::exception& error) { std::cerr << error.what() << std::endl; return EXIT_FAILURE; } ++optind; } return EXIT_SUCCESS; }
[ [ [ 1, 139 ] ] ]
160beafcd0375ee1abc289f6df9dc822b8749eb5
4b0a3fffa69840fac4fa77ba40f3aed8ae51442c
/FinalProject/workingfolder/Erin's Updates/bouncingcube/BouncingCube.h
a06731fe152c89b5848227598c4d455e34849b77
[]
no_license
hoffm386/graphics-final-project
732633bf55482051730e0087c025ab1d6e5253e7
584a16eda13572d6a92bad690da6b4a903eef084
refs/heads/master
2021-01-10T20:14:04.415740
2014-04-30T02:50:22
2014-04-30T02:50:22
null
0
0
null
null
null
null
UTF-8
C++
false
false
725
h
// BouncingCube.h : main header file for the BouncingCube application // #pragma once #ifndef __AFXWIN_H__ #error "include 'stdafx.h' before including this file for PCH" #endif #include "resource.h" // main symbols // CBouncingCubeApp: // See BouncingCube.cpp for the implementation of this class // class CBouncingCubeApp : public CWinAppEx { public: CBouncingCubeApp(); // Overrides public: virtual BOOL InitInstance(); virtual int ExitInstance(); // Implementation public: UINT m_nAppLook; BOOL m_bHiColorIcons; virtual void PreLoadState(); virtual void LoadCustomState(); virtual void SaveCustomState(); afx_msg void OnAppAbout(); DECLARE_MESSAGE_MAP() }; extern CBouncingCubeApp theApp;
[ [ [ 1, 43 ] ] ]
8ab716daca33856e610a208732527f0dd9de4e8e
70d18762f2443bb5df8df38967bcd38277573cdb
/arch/generic/kernel/gen_ke_arch64.cpp
1f2b16ecf52f14ac9a8389e3bec0a1176360b3fd
[]
no_license
15831944/evita-common-lisp
f829defc5386cd1988754c59f2056f0367c77ed7
cb2cbd3cc541878d25dcedb4abd88cf8e2c881d9
refs/heads/master
2021-05-27T16:35:25.208083
2013-12-01T06:21:32
2013-12-01T06:21:32
null
0
0
null
null
null
null
UTF-8
C++
false
false
6,776
cpp
////////////////////////////////////////////////////////////////////////////// // // evcl - kernel - arch 64 // kernel/ke_arch64.cpp // // This file is part of Evita Common Lisp. // // Copyright (C) 1996-2006 by Project Vogue. // Written by Yoshifumi "VOGUE" INOUE. ([email protected]) // // @(#)$Id: //proj/evcl3/mainline/arch/generic/kernel/gen_ke_arch64.cpp#3 $ // #if SIZEOF_VAL == 8 #include "../../../kernel/ke_arch.h" namespace Kernel { const uint64 Kernel::Arch64::k_rgfBit[64] = { 1ull << 0, 1ull << 1, 1ull << 2, 1ull << 3, 1ull << 4, 1ull << 5, 1ull << 6, 1ull << 7, 1ull << 8, 1ull << 9, 1ull << 10, 1ull << 11, 1ull << 12, 1ull << 13, 1ull << 14, 1ull << 15, 1ull << 16, 1ull << 17, 1ull << 18, 1ull << 19, 1ull << 20, 1ull << 21, 1ull << 22, 1ull << 23, 1ull << 24, 1ull << 25, 1ull << 26, 1ull << 27, 1ull << 28, 1ull << 29, 1ull << 30, 1ull << 31, 1ull << 32, 1ull << 33, 1ull << 34, 1ull << 35, 1ull << 36, 1ull << 37, 1ull << 38, 1ull << 39, 1ull << 40, 1ull << 41, 1ull << 42, 1ull << 43, 1ull << 44, 1ull << 45, 1ull << 46, 1ull << 47, 1ull << 48, 1ull << 49, 1ull << 50, 1ull << 51, 1ull << 52, 1ull << 53, 1ull << 54, 1ull << 55, 1ull << 56, 1ull << 57, 1ull << 58, 1ull << 59, 1ull << 60, 1ull << 61, 1ull << 62, 1ull << 63 }; // Kernel::Arch64::k_rgfBit ////////////////////////////////////////////////////////////////////// // // Mask For Bit Stream Leader and Trailer // // Bit Stream: // LLLL LLLL xxxx xxxx ... xxxx xxxx TTTT TTTT // // x = bits for processing // L = leader bits (not affect) // T = trailer bits (not affect) // // Note: Bit stream is stored in each 32bit word from LSB to MSB. // // // (loop for i below 64 do (format t "0x~16,'0Xull, // ~D~%" (1- (ash 1 i)) i)) const Arch64::BitEltT Arch64::k_rgnLeaderMask[64] = { 0x0000000000000000ull, // 0 0x0000000000000001ull, // 1 0x0000000000000003ull, // 2 0x0000000000000007ull, // 3 0x000000000000000Full, // 4 0x000000000000001Full, // 5 0x000000000000003Full, // 6 0x000000000000007Full, // 7 0x00000000000000FFull, // 8 0x00000000000001FFull, // 9 0x00000000000003FFull, // 10 0x00000000000007FFull, // 11 0x0000000000000FFFull, // 12 0x0000000000001FFFull, // 13 0x0000000000003FFFull, // 14 0x0000000000007FFFull, // 15 0x000000000000FFFFull, // 16 0x000000000001FFFFull, // 17 0x000000000003FFFFull, // 18 0x000000000007FFFFull, // 19 0x00000000000FFFFFull, // 20 0x00000000001FFFFFull, // 21 0x00000000003FFFFFull, // 22 0x00000000007FFFFFull, // 23 0x0000000000FFFFFFull, // 24 0x0000000001FFFFFFull, // 25 0x0000000003FFFFFFull, // 26 0x0000000007FFFFFFull, // 27 0x000000000FFFFFFFull, // 28 0x000000001FFFFFFFull, // 29 0x000000003FFFFFFFull, // 30 0x000000007FFFFFFFull, // 31 0x00000000FFFFFFFFull, // 32 0x00000001FFFFFFFFull, // 33 0x00000003FFFFFFFFull, // 34 0x00000007FFFFFFFFull, // 35 0x0000000FFFFFFFFFull, // 36 0x0000001FFFFFFFFFull, // 37 0x0000003FFFFFFFFFull, // 38 0x0000007FFFFFFFFFull, // 39 0x000000FFFFFFFFFFull, // 40 0x000001FFFFFFFFFFull, // 41 0x000003FFFFFFFFFFull, // 42 0x000007FFFFFFFFFFull, // 43 0x00000FFFFFFFFFFFull, // 44 0x00001FFFFFFFFFFFull, // 45 0x00003FFFFFFFFFFFull, // 46 0x00007FFFFFFFFFFFull, // 47 0x0000FFFFFFFFFFFFull, // 48 0x0001FFFFFFFFFFFFull, // 49 0x0003FFFFFFFFFFFFull, // 50 0x0007FFFFFFFFFFFFull, // 51 0x000FFFFFFFFFFFFFull, // 52 0x001FFFFFFFFFFFFFull, // 53 0x003FFFFFFFFFFFFFull, // 54 0x007FFFFFFFFFFFFFull, // 55 0x00FFFFFFFFFFFFFFull, // 56 0x01FFFFFFFFFFFFFFull, // 57 0x03FFFFFFFFFFFFFFull, // 58 0x07FFFFFFFFFFFFFFull, // 59 0x0FFFFFFFFFFFFFFFull, // 60 0x1FFFFFFFFFFFFFFFull, // 61 0x3FFFFFFFFFFFFFFFull, // 62 0x7FFFFFFFFFFFFFFFull, // 63 }; // k_rgnLeaderMask // (loop with x = (1- (ash 1 64)) for i below 64 for m = (1- (ash 1 i)) // do (format t " 0x~16,'0Xull, // ~D~%" (- x m) i) ) const Arch64::BitEltT Arch64::k_rgnTrailerMask[64] = { 0xFFFFFFFFFFFFFFFFull, // 0 0xFFFFFFFFFFFFFFFEull, // 1 0xFFFFFFFFFFFFFFFCull, // 2 0xFFFFFFFFFFFFFFF8ull, // 3 0xFFFFFFFFFFFFFFF0ull, // 4 0xFFFFFFFFFFFFFFE0ull, // 5 0xFFFFFFFFFFFFFFC0ull, // 6 0xFFFFFFFFFFFFFF80ull, // 7 0xFFFFFFFFFFFFFF00ull, // 8 0xFFFFFFFFFFFFFE00ull, // 9 0xFFFFFFFFFFFFFC00ull, // 10 0xFFFFFFFFFFFFF800ull, // 11 0xFFFFFFFFFFFFF000ull, // 12 0xFFFFFFFFFFFFE000ull, // 13 0xFFFFFFFFFFFFC000ull, // 14 0xFFFFFFFFFFFF8000ull, // 15 0xFFFFFFFFFFFF0000ull, // 16 0xFFFFFFFFFFFE0000ull, // 17 0xFFFFFFFFFFFC0000ull, // 18 0xFFFFFFFFFFF80000ull, // 19 0xFFFFFFFFFFF00000ull, // 20 0xFFFFFFFFFFE00000ull, // 21 0xFFFFFFFFFFC00000ull, // 22 0xFFFFFFFFFF800000ull, // 23 0xFFFFFFFFFF000000ull, // 24 0xFFFFFFFFFE000000ull, // 25 0xFFFFFFFFFC000000ull, // 26 0xFFFFFFFFF8000000ull, // 27 0xFFFFFFFFF0000000ull, // 28 0xFFFFFFFFE0000000ull, // 29 0xFFFFFFFFC0000000ull, // 30 0xFFFFFFFF80000000ull, // 31 0xFFFFFFFF00000000ull, // 32 0xFFFFFFFE00000000ull, // 33 0xFFFFFFFC00000000ull, // 34 0xFFFFFFF800000000ull, // 35 0xFFFFFFF000000000ull, // 36 0xFFFFFFE000000000ull, // 37 0xFFFFFFC000000000ull, // 38 0xFFFFFF8000000000ull, // 39 0xFFFFFF0000000000ull, // 40 0xFFFFFE0000000000ull, // 41 0xFFFFFC0000000000ull, // 42 0xFFFFF80000000000ull, // 43 0xFFFFF00000000000ull, // 44 0xFFFFE00000000000ull, // 45 0xFFFFC00000000000ull, // 46 0xFFFF800000000000ull, // 47 0xFFFF000000000000ull, // 48 0xFFFE000000000000ull, // 49 0xFFFC000000000000ull, // 50 0xFFF8000000000000ull, // 51 0xFFF0000000000000ull, // 52 0xFFE0000000000000ull, // 53 0xFFC0000000000000ull, // 54 0xFF80000000000000ull, // 55 0xFF00000000000000ull, // 56 0xFE00000000000000ull, // 57 0xFC00000000000000ull, // 58 0xF800000000000000ull, // 59 0xF000000000000000ull, // 60 0xE000000000000000ull, // 61 0xC000000000000000ull, // 62 0x8000000000000000ull, // 63 }; // k_rgnTrailerMask CASSERT(sizeof(Arch64::k_rgnLeaderMask) == sizeof(Arch64::k_rgnTrailerMask)); } // Kernel #endif // SIZEOF_VAL == 8
[ [ [ 1, 199 ] ] ]
ad1a3828949d014ce64f842d5f3e0ad0e9eaefc3
44289ecb892b6f3df043bab40142cf8530ac2ba4
/Sources/Elastos/Frameworks/Droid/DevSamples/MemoryDumper/CMemoryDumper.h
a23684f02fd71ed7bb224705c8bdf2e8968a621a
[ "Apache-2.0" ]
permissive
warrenween/Elastos
a6ef68d8fb699fd67234f376b171c1b57235ed02
5618eede26d464bdf739f9244344e3e87118d7fe
refs/heads/master
2021-01-01T04:07:12.833674
2017-06-17T15:34:33
2017-06-17T15:34:33
97,120,576
2
1
null
2017-07-13T12:33:20
2017-07-13T12:33:20
null
UTF-8
C++
false
false
2,368
h
//========================================================================= // Copyright (C) 2012 The Elastos Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //========================================================================= #ifndef __ELASTOS_MEMORYDEUMPER_CMEMORYDUMPER_H__ #define __ELASTOS_MEMORYDEUMPER_CMEMORYDUMPER_H__ #include "elastos/droid/ext/frameworkext.h" #include <elastos/core/Object.h> #include <elastos/utility/etl/List.h> using Elastos::Core::Object; using Elastos::Utility::Etl::List; namespace Elastos { namespace MemoryDumper { class CMemoryDumper { public: static CARAPI SendDumpRequest(); static CARAPI OutputBackTrace( /* [in] */ const String& diffFile, /* [in] */ Int32 pid); private: class MapInfoManager : public Object { public: struct MapInfo { struct MapInfo* next; unsigned start; unsigned end; char name[]; }; MapInfoManager( /* [in] */ Int32 pid); ~MapInfoManager(); MapInfo* miList; CARAPI InitMapInfo( /* [in] */ Int32 pid); void DeinitMapInfo(); const char *Map2Name( /* [in] */ unsigned pc, /* [in] */ const char* def); const MapInfo *Pc2Mapinfo( /* [in] */ unsigned pc, /* [out] */ unsigned *rel_pc); private: MapInfo* ParseMapsLine( /* [in] */ char* line); }; static CARAPI ProcessAllocEntry( /* [in] */ char* oneLine, /* [in] */ Int32 pid); static CARAPI Print( /* [in] */ List<String>* list, /* [in] */ Int32 pid); }; } } #endif // __ELASTOS_MEMORYDEUMPER_CMEMORYDUMPER_H__
[ [ [ 1, 16 ], [ 34, 34 ] ], [ [ 17, 17 ], [ 20, 21 ], [ 23, 24 ], [ 26, 33 ], [ 35, 40 ], [ 44, 88 ] ], [ [ 18, 19 ], [ 22, 22 ], [ 25, 25 ], [ 41, 43 ], [ 89, 89 ] ] ]
583d34be535e307cea59286df8c350b922d68244
4dabe3dca7a679a5ba7c79cd4e0384657657dec2
/views/console/proposedCombinationView.cpp
71f0f78cfcc080d0bf61444707db3121b212baf5
[]
no_license
carlosv5/MasterMind
47285e4a3b191294bc07650873fb13e46459e42d
b45c61a264c936191e8db23f27234b91943e7638
refs/heads/master
2020-04-20T12:26:51.642639
2019-05-11T19:05:23
2019-05-11T19:05:23
150,888,071
0
0
null
null
null
null
UTF-8
C++
false
false
2,741
cpp
#include <assert.h> #include <iostream> #include "proposedCombinationView.hpp" #include "../../controllers/colocateController.hpp" #include "../../models/proposedCombination.hpp" using namespace std; ProposedCombinationView::ProposedCombinationView(){}; ProposedCombination ProposedCombinationView::readProposedCombination(ProposedCombination proposedCombination, int SIZE_COMBINATION){ showColorOptions(); std::cout << "--Insert your colors (XXXX)--" << std::endl; std::string combinationString; getline(std::cin, combinationString); char * combination = proposedCombination.getCombination(); for (int i = 0; i < SIZE_COMBINATION; i++) { char *colorArray = new char[Color::numberOfColors]; Color::values(colorArray); bool isAColor = false; for (int j = 0; j < Color::numberOfColors; j++) { if (combinationString[i] == colorArray[j]) { isAColor = true; } } assert(isAColor); char colorToInsert = combinationString[i]; combination[i] = colorToInsert; } return proposedCombination; } void ProposedCombinationView::showColorOptions() { std::cout << "You can use these colors:" << std::endl; char *colorArray = new char[Color::numberOfColors]; Color::values(colorArray); for (int i = 0; i < Color::numberOfColors; i++) { std::cout << colorArray[i] << " "; } std::cout << std::endl; delete (colorArray); } void ProposedCombinationView::printResults(ProposedCombination * proposedCombinations, int turn) { std::cout << "Results:" << std::endl; for (int i = 0; i < turn + 1; i++){ for (int j = 0; j < proposedCombinations[0].getSize(); j++) { std::cout << "|" << proposedCombinations[i].getCombination()[j] << "|" << " "; } std::cout << "Results:|" << proposedCombinations[i].getResults()[INDEX_BLACK_RESULT] << " Blacks|" << proposedCombinations[i].getResults()[INDEX_WHITE_RESULT] << "Whites|" << " " << std::endl; } } void ProposedCombinationView::printPreviewCombinations(ProposedCombination * proposedCombinations, int turn) { std::cout << "The board is:" << std::endl; for (int i = 0; i < turn; i++){ for (int j = 0; j < proposedCombinations[0].getSize(); j++) { std::cout << "|" << proposedCombinations[i].getCombination()[j] << "|" << " "; } std::cout << "Results:|" << proposedCombinations[i].getResults()[INDEX_BLACK_RESULT] << " Blacks|" << proposedCombinations[i].getResults()[INDEX_WHITE_RESULT] << "Whites|" << " " << std::endl; } }
[ [ [ 1, 79 ] ] ]
f2fd573fb8ac9dde4919620147f9c6d1cc0536a0
d47ad8721876e05cc92a48ea772981dd2541d27c
/FPMLib/lib/bfc/autores.h
78620a35bff0d40b0b1f790be9dc42de2b418042
[]
no_license
cjld/ANNO-video
5ac5f604d43e00a3ee8b2a40050413ffd8334c3e
e8ad4f1d617f8b2393db5241a40f98c156127e52
refs/heads/master
2021-01-25T06:45:24.164963
2017-06-12T15:54:19
2017-06-12T15:54:19
93,606,386
2
0
null
null
null
null
UTF-8
C++
false
false
5,150
h
#ifndef _FF_BFC_AUTORES_H #define _FF_BFC_AUTORES_H #include <utility> #include <iterator> #include"ffdef.h" _FF_BEG //To help implement reference-counter in @AutoRes. template<typename ValT> class ReferenceCounter { typedef std::pair<int,ValT> _CounterT; private: _CounterT *_pdata; void _inc() const { ++_pdata->first; } void _dec() const { --_pdata->first; } public: ReferenceCounter() :_pdata(new _CounterT(1,ValT())) { } ReferenceCounter(const ValT& val) :_pdata(new _CounterT(1,val)) { } ReferenceCounter(const ReferenceCounter& right) :_pdata(right._pdata) { this->_inc(); } ReferenceCounter& operator=(const ReferenceCounter& right) { if(_pdata!=right._pdata) { if(this->IsLast()) delete _pdata; else this->_dec(); _pdata=right._pdata; right._inc(); } return *this; } //whether current reference is the last one. bool IsLast() const { return _pdata->first==1; } //get the value stored with the counter. const ValT& Value() const { return _pdata->second; } ValT& Value() { return _pdata->second; } //swap two counters. void Swap(ReferenceCounter& right) { std::swap(this->_pdata,right._pdata); } ~ReferenceCounter() { if(this->IsLast()) delete _pdata; else this->_dec(); } }; //auto-resource, which is the base to implement AutoPtr,AutoArrayPtr and AutoComPtr. template<typename PtrT,typename RetPtrT,typename ReleaseOpT> class AutoRes { enum{_F_DETACHED=0x01}; struct _ValT { PtrT ptr; ReleaseOpT rel_op; int flag; public: _ValT() :ptr(PtrT()),flag(0) { } _ValT(const PtrT & _ptr,const ReleaseOpT & _rel_op, int _flag=0) :ptr(_ptr),rel_op(_rel_op),flag(_flag) { } void release() { if((flag&_F_DETACHED)==0) rel_op(ptr); } }; typedef ReferenceCounter<_ValT> _CounterT; protected: _CounterT _counter; void _release() { //release the referenced object with the stored operator. _counter.Value().release(); } public: AutoRes() { } explicit AutoRes(PtrT ptr,const ReleaseOpT& op=ReleaseOpT()) :_counter(_ValT(ptr,op)) { } AutoRes& operator=(const AutoRes& right) { if(this!=&right) { if(_counter.IsLast()) this->_release(); _counter=right._counter; } return *this; } RetPtrT operator->() const { return &*_counter.Value().ptr; } typename std::iterator_traits<RetPtrT>::reference operator*() const { return *_counter.Value().ptr; } void Swap(AutoRes& right) { _counter.Swap(right._counter); } //detach the referenced object from @*this. RetPtrT Detach() { _counter.Value().flag|=_F_DETACHED; return &*_counter.Value().ptr; } operator PtrT() { return _counter.Value().ptr; } ~AutoRes() throw() { if(_counter.IsLast()) this->_release(); } }; //operator to delete a single object. class DeleteObj { public: template<typename _PtrT> void operator()(_PtrT ptr) { delete ptr; } }; template<typename _ObjT> class AutoPtr :public AutoRes<_ObjT*,_ObjT*,DeleteObj> { public: explicit AutoPtr(_ObjT* ptr=NULL) :AutoRes<_ObjT*,_ObjT*,DeleteObj>(ptr) { } }; //operator to delete array of objects. class DeleteArray { public: template<typename _PtrT> void operator()(_PtrT ptr) { delete[]ptr; } }; template<typename _ObjT> class AutoArrayPtr :public AutoRes<_ObjT*,_ObjT*,DeleteArray> { public: explicit AutoArrayPtr(_ObjT* ptr=NULL) :AutoRes<_ObjT*,_ObjT*,DeleteArray>(ptr) { } //_ObjT& operator[](int i) const //{ // return this->_counter.Value().ptr[i]; //} }; class OpCloseFile { public: void operator()(const FILE *fp) { if(fp) fclose((FILE*)fp); } }; class AutoFilePtr :public AutoRes<FILE*,FILE*,OpCloseFile> { public: explicit AutoFilePtr(FILE *fp=NULL) :AutoRes<FILE*,FILE*,OpCloseFile>(fp) { } }; //operator to release COM object. class ReleaseObj { public: template<typename _PtrT> void operator()(_PtrT ptr) { if(ptr) ptr->Release(); } }; template<typename _ObjT> class AutoComPtr :public AutoRes<_ObjT*,_ObjT*,ReleaseObj> { public: explicit AutoComPtr(_ObjT* ptr=NULL) :AutoRes<_ObjT*,_ObjT*,ReleaseObj>(ptr) { } }; class DestroyObj { public: template<typename _PtrT> void operator()(_PtrT ptr) { if(ptr) ptr->Destroy(); } }; template<typename _ObjT> class AutoDestroyPtr :public AutoRes<_ObjT*,_ObjT*,DestroyObj> { public: explicit AutoDestroyPtr(_ObjT* ptr=NULL) :AutoRes<_ObjT*,_ObjT*,DestroyObj>(ptr) { } }; template<typename _ServerPtrT> class ReleaseClientOp { private: _ServerPtrT m_pServer; public: ReleaseClientOp(_ServerPtrT pServer=_ServerPtrT()) :m_pServer(pServer) { } template<typename _ClientPtrT> void operator()(_ClientPtrT ptr) { if(m_pServer) m_pServer->ReleaseClient(ptr); } }; template<typename _ServerPtrT,typename _ClientPtrT> class AutoClientPtr :public AutoRes<_ClientPtrT,_ClientPtrT,ReleaseClientOp<_ServerPtrT> > { typedef AutoRes<_ClientPtrT,_ClientPtrT,ReleaseClientOp<_ServerPtrT> > _MyBaseT; public: explicit AutoClientPtr(_ServerPtrT pServer=_ServerPtrT(),_ClientPtrT pClient=_ClientPtrT()) :_MyBaseT(pClient,ReleaseClientOp<_ServerPtrT>(pServer)) { } }; _FF_END #endif
[ [ [ 1, 315 ] ] ]
483636595ef27a032fb65294e55c02e76cef77eb
89421a99baeeb9a368104340ad4efa5f68e2268b
/cpp/Fem1d/Fem1d.cpp
1795d3ce24e60bc2e100e31feb3145252abc3cbc
[]
no_license
mtsodf/ppgi_elem
c16c510c3f78c1e0eb363a36178f79be60818c0a
910155619cb94423eb47dfe793f64be01e750c5a
refs/heads/master
2021-09-06T07:20:18.995847
2018-02-03T18:24:21
2018-02-03T18:24:21
105,206,139
0
0
null
null
null
null
UTF-8
C++
false
false
9,068
cpp
#include "Fem1d.h" #include "../definitions.h" #include <stdlib.h> #include "../LinearAlgebra/Jacobi.h" #include "../LinearAlgebra/Operations.h" #include <cmath> #include "../Utils/Utils.h" using namespace std; class UndefinedFuncForm: public exception { virtual const char* what() const throw() { return "Undefined func form"; } }; real FuncForm(real qsi, char func){ if(func == 0) return (1.0 - qsi)/2.0; if(func == 1) return (1.0 + qsi)/2.0; UndefinedFuncForm ex; throw ex; } real DFuncForm(real qsi, char func){ if(func == 0) return -1.0/2.0; if(func == 1) return 1.0/2.0; UndefinedFuncForm ex; throw ex; } void LocalMatrix(real alpha, real beta, real he, real* lm){ real w; w = sqrt(3.0)/3.0; for (size_t i = 0; i < 2; i++) { for (size_t j = 0; j < 2; j++) { lm[2*i+j] = (he/2)*beta*(FuncForm(-w,i)*FuncForm(-w,j)) + (2/he)*alpha*(DFuncForm(-w,i)*DFuncForm(-w,j)); lm[2*i+j] += (he/2)*beta*(FuncForm( w,i)*FuncForm( w,j)) + (2/he)*alpha*(DFuncForm( w,i)*DFuncForm( w,j)); } } } void GlobalMatrix(int n, real alpha, real beta, real *K, int boundary){ real * hs; real h = 1.0/n; hs = (real*) malloc(sizeof(real)*n); for (size_t i = 0; i < n; i++) { hs[i] = h; } GlobalMatrix(n, alpha, beta, hs, K, boundary); } void GlobalMatrix(int n, real alpha, real beta, real* hs, real *K, int boundary){ real lm[4]; int ndofs = n + 1; for (size_t i = 0; i < n; i++) { LocalMatrix(alpha, beta, hs[i], lm); K[DIM(i,i,ndofs)] += lm[0]; K[DIM(i,i+1,ndofs)] += lm[1]; K[DIM(i+1,i,ndofs)] += lm[2]; K[DIM(i+1,i+1,ndofs)] += lm[3]; } if(boundary == DIRICHLET || boundary == DIRICHLET_NEUMANN){ K[DIM(0,0,ndofs)] = 1.0; K[DIM(0,1,ndofs)] = 0.0; K[DIM(1,0,ndofs)] = 0.0; } if(boundary == DIRICHLET || boundary == NEUMANN_DIRICHLET){ K[DIM(ndofs-1,ndofs-2,ndofs)] = 0.0; K[DIM(ndofs-2,ndofs-1,ndofs)] = 0.0; K[DIM(ndofs-1,ndofs-1,ndofs)] = 1.0; } } void RhsLocal(real he, real f1, real f2, real *Fe){ real w = sqrt(3)/3.0; Fe[0] = f1*(he/2)*(FuncForm(-w,0) * FuncForm(-w,0) + FuncForm(w,0) * FuncForm(w,0)); Fe[0] += f2*(he/2)*(FuncForm(-w,0) * FuncForm(-w,1) + FuncForm(w,0) * FuncForm(w,1)); Fe[1] = f1*(he/2)*(FuncForm(-w,1) * FuncForm(-w,0) + FuncForm(w,1) * FuncForm(w,0)); Fe[1] += f2*(he/2)*(FuncForm(-w,1) * FuncForm(-w,1) + FuncForm(w,1) * FuncForm(w,1)); } void RhsGlobal(int n, real h, real *fs, real *F, real p, real q, real alpha, real beta, int boundary){ real *hs = (real*) malloc(n*sizeof(real)); for (size_t i = 0; i < n; i++) { hs[i] = h; } RhsGlobal(n, hs, fs, F, p, q, alpha, beta, boundary); free(hs); } void RhsGlobal(int n, real *hs, real *fs, real *F, real p, real q, real alpha, real beta, int boundary){ int ndofs = n + 1; for (size_t i = 0; i < ndofs; i++) { F[i] = 0.0; } real Fe[2]; for (size_t i = 0; i < n; i++) { RhsLocal(hs[i], fs[i], fs[i+1], Fe); F[i] += Fe[0]; F[i+1] += Fe[1]; } if(boundary == DIRICHLET || boundary == DIRICHLET_NEUMANN){ F[0] = p; real w = sqrt(3)/3.0; real he = hs[0]; F[1] -= p*((he/2)*beta*(FuncForm(-w,0)*FuncForm(-w,1)) + (2/he)*alpha*(DFuncForm(-w,0)*DFuncForm(-w,1))); F[1] -= p*((he/2)*beta*(FuncForm( w,0)*FuncForm( w,1)) + (2/he)*alpha*(DFuncForm( w,0)*DFuncForm( w,1))); } if(boundary == DIRICHLET || boundary == NEUMANN_DIRICHLET){ real w = sqrt(3)/3.0; real he = hs[n-1]; F[ndofs - 1] = q; F[ndofs-2] -= q*((he/2)*beta*(FuncForm(-w,0)*FuncForm(-w,1)) + (2/he)*alpha*(DFuncForm(-w,0)*DFuncForm(-w,1))); F[ndofs-2] -= q*((he/2)*beta*(FuncForm( w,0)*FuncForm( w,1)) + (2/he)*alpha*(DFuncForm( w,0)*DFuncForm( w,1))); } if(boundary == NEUMANN || boundary == NEUMANN_DIRICHLET){ F[0] -= alpha*p; } if(boundary == NEUMANN || boundary == DIRICHLET_NEUMANN){ F[ndofs-1] += alpha*q; } } extern "C"{ real * Fem1dTest(int n, int entrada){ real *x, *F, *fs, *sol; real *K; real alpha, beta, p, q; int boundary; int unknowns = n + 1; real h = 1.0/n; zero(unknowns, &x); zero(unknowns, &F); zero(unknowns, &fs); zero(unknowns, &sol); zero(unknowns*unknowns, &K); x[0] = 0.0; for (size_t i = 1; i < unknowns; i++) { x[i] = x[i-1] + h; } /* ###################################################################### # Selecao da entrada ###################################################################### */ for (size_t i = 0; i < unknowns; i++) { switch (entrada) { case 0: alpha = 1.0; beta = 1.0; fs[i] = 4*M_PI*M_PI*sin(2*M_PI*x[i]) + sin(2*M_PI*x[i]); sol[i] = sin(2*M_PI*x[i]); boundary = DIRICHLET; p = 0.0; q = 0.0; break; case 1: alpha = 1.0; beta = 0.0; fs[i] = 2*alpha; boundary = DIRICHLET; p = 0.0; q = 0.0; break; case 2: alpha = 1.0; beta = 0.5; boundary = DIRICHLET; fs[i] = 0.5*x[i]; p = 0.0; q = 1.0; break; case 3: alpha = 0.0; beta = 1.0; boundary = DIRICHLET; fs[i] = beta*x[i]*(1-x[i]); p = 0.0; q = 0.0; break; case 4: alpha = 2.0; beta = 1.0; boundary = DIRICHLET; fs[i] = -7*exp(2*x[i]); p = 1.0; q = exp(2.0); break; case 5: alpha = 2.0; beta = 1.0; boundary = NEUMANN; fs[i] = -7*exp(2*x[i]); p = 2.0; q = 2*exp(2.0); break; case 6: alpha = 2.0; beta = 1.0; boundary = NEUMANN_DIRICHLET; fs[i] = -7*exp(2*x[i]); p = 2.0; q = exp(2.0); break; case 7: alpha = 2.0; beta = 1.0; boundary = DIRICHLET_NEUMANN; fs[i] = -7*exp(2*x[i]); p = 1.0; q = 2*exp(2.0); break; case 8: alpha = 1.0; beta = 1.0; boundary = NEUMANN; fs[i] = 4*M_PI*M_PI*sin(2*M_PI*x[i]) + sin(2*M_PI*x[i]); p = 2*M_PI; q = 2*M_PI; break; default: break; } } /* ###################################################################### # Criando Matriz Global ###################################################################### */ GlobalMatrix(n, alpha, beta, K, boundary); /* ###################################################################### # Criando Lado Direito ###################################################################### */ RhsGlobal(n, h, fs, F, p, q, alpha, beta, boundary); /* ###################################################################### # Solucao do Sistema Linear ###################################################################### */ real * calc; zero(unknowns, &calc); cg(unknowns, K, F, calc); free(x); free(F); free(fs); free(sol); free(K); return calc; } }
[ [ [ 1, 311 ] ] ]
fb140c6343d8cb845bec30e15d68b2741357c692
5668d876245e982c842409466b39e6660e5fc740
/servo_brazo_potenciometros_guardaposicion.ino
3ef4e592616b58aabc9c2a86ef50a4ec55730403
[]
no_license
RiquiMora/Brazo-Robotico-4DOF
5dea34ff7115e9e5e126d5e292b84d92cfcb2d4b
a472bd7ea25e75f91f6079aa184c3a1e47ec18b2
refs/heads/master
2020-03-19T02:04:27.984336
2018-05-31T15:05:30
2018-05-31T15:05:30
135,596,748
0
0
null
null
null
null
UTF-8
C++
false
false
7,326
ino
#include <Servo.h> Servo hombro, brazo, base, garra; int potpi = 0; int pot = 1; int potp = 2; int po = 3; int val; // variable to read the value from the analog pin int val1; int val2; int val3; const int max_root = 180; char valores; String codigo = ""; boolean mode = true; void setup() { Serial.begin(9600); base.attach(11); brazo.attach(10); hombro.attach(9); garra.attach(8); } void loop() { val = analogRead(potpi); // reads the value of the potentiometer (value between 0 and 1023) val = map(val, 0, 1023, 0, 180); // scale it to use it with the servo (value between 0 and 180) hombro.write(val); // sets the servo position according to the scaled value delay(15); // waits for the servo to get there val1 = analogRead(pot); // reads the value of the potentiometer (value between 0 and 1023) val1 = map(val1, 0, 1023, 0, 180); // scale it to use it with the servo (value between 0 and 180) brazo.write(val1); // sets the servo position according to the scaled value delay(15); // waits for the servo to get there val2 = analogRead(potp); // reads the value of the potentiometer (value between 0 and 1023) val2 = map(val2, 0, 1023, 0, 180); // scale it to use it with the servo (value between 0 and 180) base.write(val2); // sets the servo position according to the scaled value delay(15); // waits for the servo to get there val3 = analogRead(po); // reads the value of the potentiometer (value between 0 and 1023) val3 = map(val3, 0, 1023, 0, 180); // scale it to use it with the servo (value between 0 and 180) garra.write(val3); // sets the servo position according to the scaled value delay(15); // waits for the servo to get there String metodo="",init = ""; boolean tipo = false; int posicion = 0; base.write(60); brazo.write(60); hombro.write(60); garra.write(60); if(Serial.available() > 0) { codigo = ""; while(Serial.available() > 0) { valores = Decimal_to_ASCII(Serial.read()); Serial.print(valores); codigo = codigo + valores; } delay(2000); } Serial.println(codigo); delay(2000); for( int i=0; i < codigo.length(); i++) { if(tipo == false) { if(codigo.charAt(i) == '(') { tipo = true; continue; } metodo = metodo + codigo.charAt(i); } else { init = init + codigo.charAt(i); if(codigo.charAt(i) == ')') { continue; }else if(codigo.charAt(i) == ';'){ delay(2000); posicion = init.toInt(); if(metodo == "brazo") { posicion < 180 ? brazo.write(posicion) : brazo.write(180); Serial.println("brazo"); delay(2000); }else if(metodo == "base") { posicion < max_root ? base.write(posicion) : base.write(180); Serial.println("base"); delay(2000); }else if(metodo == "hombro") { posicion < max_root ? hombro.write(posicion) : hombro.write(180); Serial.println("hombro"); delay(2000); }else if(metodo == "garra") { posicion < max_root ? garra.write(posicion) : garra.write(180); Serial.println("garra"); delay(2000); } metodo = ""; tipo = false; init = ""; } } } } char Decimal_to_ASCII(int entrada){ char salida=' '; switch(entrada){ case 32: salida=' '; break; case 33: salida='!'; break; case 34: salida='"'; break; case 35: salida='#'; break; case 36: salida='$'; break; case 37: salida='%'; break; case 38: salida='&'; break; case 39: salida=' '; break; case 40: salida='('; break; case 41: salida=')'; break; case 42: salida='*'; break; case 43: salida='+'; break; case 44: salida=','; break; case 45: salida='-'; break; case 46: salida='.'; break; case 47: salida='/'; break; case 48: salida='0'; break; case 49: salida='1'; break; case 50: salida='2'; break; case 51: salida='3'; break; case 52: salida='4'; break; case 53: salida='5'; break; case 54: salida='6'; break; case 55: salida='7'; break; case 56: salida='8'; break; case 57: salida='9'; break; case 58: salida=':'; break; case 59: salida=';'; break; case 60: salida='<'; break; case 61: salida='='; break; case 62: salida='>'; break; case 63: salida='?'; break; case 64: salida='@'; break; case 65: salida='A'; break; case 66: salida='B'; break; case 67: salida='C'; break; case 68: salida='D'; break; case 69: salida='E'; break; case 70: salida='F'; break; case 71: salida='G'; break; case 72: salida='H'; break; case 73: salida='I'; break; case 74: salida='J'; break; case 75: salida='K'; break; case 76: salida='L'; break; case 77: salida='M'; break; case 78: salida='N'; break; case 79: salida='O'; break; case 80: salida='P'; break; case 81: salida='Q'; break; case 82: salida='R'; break; case 83: salida='S'; break; case 84: salida='T'; break; case 85: salida='U'; break; case 86: salida='V'; break; case 87: salida='W'; break; case 88: salida='X'; break; case 89: salida='Y'; break; case 90: salida='Z'; break; case 91: salida='['; break; case 92: salida=' '; break; case 93: salida=']'; break; case 94: salida='^'; break; case 95: salida='_'; break; case 96: salida='`'; break; case 97: salida='a'; break; case 98: salida='b'; break; case 99: salida='c'; break; case 100: salida='d'; break; case 101: salida='e'; break; case 102: salida='f'; break; case 103: salida='g'; break; case 104: salida='h'; break; case 105: salida='i'; break; case 106: salida='j'; break; case 107: salida='k'; break; case 108: salida='l'; break; case 109: salida='m'; break; case 110: salida='n'; break; case 111: salida='o'; break; case 112: salida='p'; break; case 113: salida='q'; break; case 114: salida='r'; break; case 115: salida='s'; break; case 116: salida='t'; break; case 117: salida='u'; break; case 118: salida='v'; break; case 119: salida='w'; break; case 120: salida='x'; break; case 121: salida='y'; break; case 122: salida='z'; break; case 123: salida='{'; break; case 124: salida='|'; break; case 125: salida='}'; break; case 126: salida='~'; break; } return salida; }
[ [ [ 1, 421 ] ] ]
18296b24c1a4c774d930261e017e37a0cf8d04fa
d0601b28a3060105e82c2a839d435c4329fe82a9
/OpenGL_Material/build-OpenGL_Material-Desktop_Qt_5_8_0_MSVC2015_64bit-Debug/debug/moc_mainwindow.cpp
51b68186ab06892d4bfefdfe122cf57267d5fcdf
[]
no_license
guoerba/opengl
9458b1b3827e24884bcd0a1b91d122ab6a252f8e
103da63ada1703a3f450cfde19f41b04e922187e
refs/heads/master
2020-07-10T15:40:49.828059
2019-08-25T13:52:58
2019-08-25T13:52:58
204,300,456
0
0
null
null
null
null
UTF-8
C++
false
false
2,706
cpp
/**************************************************************************** ** Meta object code from reading C++ file 'mainwindow.h' ** ** Created by: The Qt Meta Object Compiler version 67 (Qt 5.8.0) ** ** WARNING! All changes made in this file will be lost! *****************************************************************************/ #include "../../OpenGL_Material/mainwindow.h" #include <QtCore/qbytearray.h> #include <QtCore/qmetatype.h> #if !defined(Q_MOC_OUTPUT_REVISION) #error "The header file 'mainwindow.h' doesn't include <QObject>." #elif Q_MOC_OUTPUT_REVISION != 67 #error "This file was generated using the moc from 5.8.0. It" #error "cannot be used with the include files from this version of Qt." #error "(The moc has changed too much.)" #endif QT_BEGIN_MOC_NAMESPACE QT_WARNING_PUSH QT_WARNING_DISABLE_DEPRECATED struct qt_meta_stringdata_MainWindow_t { QByteArrayData data[1]; char stringdata0[11]; }; #define QT_MOC_LITERAL(idx, ofs, len) \ Q_STATIC_BYTE_ARRAY_DATA_HEADER_INITIALIZER_WITH_OFFSET(len, \ qptrdiff(offsetof(qt_meta_stringdata_MainWindow_t, stringdata0) + ofs \ - idx * sizeof(QByteArrayData)) \ ) static const qt_meta_stringdata_MainWindow_t qt_meta_stringdata_MainWindow = { { QT_MOC_LITERAL(0, 0, 10) // "MainWindow" }, "MainWindow" }; #undef QT_MOC_LITERAL static const uint qt_meta_data_MainWindow[] = { // content: 7, // revision 0, // classname 0, 0, // classinfo 0, 0, // methods 0, 0, // properties 0, 0, // enums/sets 0, 0, // constructors 0, // flags 0, // signalCount 0 // eod }; void MainWindow::qt_static_metacall(QObject *_o, QMetaObject::Call _c, int _id, void **_a) { Q_UNUSED(_o); Q_UNUSED(_id); Q_UNUSED(_c); Q_UNUSED(_a); } const QMetaObject MainWindow::staticMetaObject = { { &QMainWindow::staticMetaObject, qt_meta_stringdata_MainWindow.data, qt_meta_data_MainWindow, qt_static_metacall, Q_NULLPTR, Q_NULLPTR} }; const QMetaObject *MainWindow::metaObject() const { return QObject::d_ptr->metaObject ? QObject::d_ptr->dynamicMetaObject() : &staticMetaObject; } void *MainWindow::qt_metacast(const char *_clname) { if (!_clname) return Q_NULLPTR; if (!strcmp(_clname, qt_meta_stringdata_MainWindow.stringdata0)) return static_cast<void*>(const_cast< MainWindow*>(this)); return QMainWindow::qt_metacast(_clname); } int MainWindow::qt_metacall(QMetaObject::Call _c, int _id, void **_a) { _id = QMainWindow::qt_metacall(_c, _id, _a); if (_id < 0) return _id; return _id; } QT_WARNING_POP QT_END_MOC_NAMESPACE
[ [ [ 1, 92 ] ] ]
f46de1bd281fa3736931ddc5c85eb5849f2b7ee0
723b67f6a8b202dc5bb009427f60ffd9f185dba8
/devel/include/ros_arduino_msgs/ServoWriteResponse.h
ef1a29d38d970bae98cdea4932c90d41f162ce62
[]
no_license
Dhawgupta/catkin_ws
15edced50d3d69bf78851315658646cd671eb911
edab645f1a94c83925836b36d38ecf2ad8f42abc
refs/heads/master
2021-01-19T10:56:09.954495
2017-04-11T09:52:20
2017-04-11T09:52:20
87,917,514
0
0
null
null
null
null
UTF-8
C++
false
false
5,028
h
// Generated by gencpp from file ros_arduino_msgs/ServoWriteResponse.msg // DO NOT EDIT! #ifndef ROS_ARDUINO_MSGS_MESSAGE_SERVOWRITERESPONSE_H #define ROS_ARDUINO_MSGS_MESSAGE_SERVOWRITERESPONSE_H #include <string> #include <vector> #include <map> #include <ros/types.h> #include <ros/serialization.h> #include <ros/builtin_message_traits.h> #include <ros/message_operations.h> namespace ros_arduino_msgs { template <class ContainerAllocator> struct ServoWriteResponse_ { typedef ServoWriteResponse_<ContainerAllocator> Type; ServoWriteResponse_() { } ServoWriteResponse_(const ContainerAllocator& _alloc) { (void)_alloc; } typedef boost::shared_ptr< ::ros_arduino_msgs::ServoWriteResponse_<ContainerAllocator> > Ptr; typedef boost::shared_ptr< ::ros_arduino_msgs::ServoWriteResponse_<ContainerAllocator> const> ConstPtr; }; // struct ServoWriteResponse_ typedef ::ros_arduino_msgs::ServoWriteResponse_<std::allocator<void> > ServoWriteResponse; typedef boost::shared_ptr< ::ros_arduino_msgs::ServoWriteResponse > ServoWriteResponsePtr; typedef boost::shared_ptr< ::ros_arduino_msgs::ServoWriteResponse const> ServoWriteResponseConstPtr; // constants requiring out of line definition template<typename ContainerAllocator> std::ostream& operator<<(std::ostream& s, const ::ros_arduino_msgs::ServoWriteResponse_<ContainerAllocator> & v) { ros::message_operations::Printer< ::ros_arduino_msgs::ServoWriteResponse_<ContainerAllocator> >::stream(s, "", v); return s; } } // namespace ros_arduino_msgs namespace ros { namespace message_traits { // BOOLTRAITS {'IsFixedSize': True, 'IsMessage': True, 'HasHeader': False} // {'std_msgs': ['/opt/ros/kinetic/share/std_msgs/cmake/../msg'], 'ros_arduino_msgs': ['/home/dawg/catkin_ws/src/ros_arduino_bridge/ros_arduino_msgs/msg']} // !!!!!!!!!!! ['__class__', '__delattr__', '__dict__', '__doc__', '__eq__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_parsed_fields', 'constants', 'fields', 'full_name', 'has_header', 'header_present', 'names', 'package', 'parsed_fields', 'short_name', 'text', 'types'] template <class ContainerAllocator> struct IsFixedSize< ::ros_arduino_msgs::ServoWriteResponse_<ContainerAllocator> > : TrueType { }; template <class ContainerAllocator> struct IsFixedSize< ::ros_arduino_msgs::ServoWriteResponse_<ContainerAllocator> const> : TrueType { }; template <class ContainerAllocator> struct IsMessage< ::ros_arduino_msgs::ServoWriteResponse_<ContainerAllocator> > : TrueType { }; template <class ContainerAllocator> struct IsMessage< ::ros_arduino_msgs::ServoWriteResponse_<ContainerAllocator> const> : TrueType { }; template <class ContainerAllocator> struct HasHeader< ::ros_arduino_msgs::ServoWriteResponse_<ContainerAllocator> > : FalseType { }; template <class ContainerAllocator> struct HasHeader< ::ros_arduino_msgs::ServoWriteResponse_<ContainerAllocator> const> : FalseType { }; template<class ContainerAllocator> struct MD5Sum< ::ros_arduino_msgs::ServoWriteResponse_<ContainerAllocator> > { static const char* value() { return "d41d8cd98f00b204e9800998ecf8427e"; } static const char* value(const ::ros_arduino_msgs::ServoWriteResponse_<ContainerAllocator>&) { return value(); } static const uint64_t static_value1 = 0xd41d8cd98f00b204ULL; static const uint64_t static_value2 = 0xe9800998ecf8427eULL; }; template<class ContainerAllocator> struct DataType< ::ros_arduino_msgs::ServoWriteResponse_<ContainerAllocator> > { static const char* value() { return "ros_arduino_msgs/ServoWriteResponse"; } static const char* value(const ::ros_arduino_msgs::ServoWriteResponse_<ContainerAllocator>&) { return value(); } }; template<class ContainerAllocator> struct Definition< ::ros_arduino_msgs::ServoWriteResponse_<ContainerAllocator> > { static const char* value() { return "\n\ "; } static const char* value(const ::ros_arduino_msgs::ServoWriteResponse_<ContainerAllocator>&) { return value(); } }; } // namespace message_traits } // namespace ros namespace ros { namespace serialization { template<class ContainerAllocator> struct Serializer< ::ros_arduino_msgs::ServoWriteResponse_<ContainerAllocator> > { template<typename Stream, typename T> inline static void allInOne(Stream&, T) {} ROS_DECLARE_ALLINONE_SERIALIZER }; // struct ServoWriteResponse_ } // namespace serialization } // namespace ros namespace ros { namespace message_operations { template<class ContainerAllocator> struct Printer< ::ros_arduino_msgs::ServoWriteResponse_<ContainerAllocator> > { template<typename Stream> static void stream(Stream&, const std::string&, const ::ros_arduino_msgs::ServoWriteResponse_<ContainerAllocator>&) {} }; } // namespace message_operations } // namespace ros #endif // ROS_ARDUINO_MSGS_MESSAGE_SERVOWRITERESPONSE_H
[ [ [ 1, 178 ] ] ]
fc66a1678930bf9093bd076f90dd380635b60366
ceeddddcf3e99e909c4af5ff2b9fad4a8ecaeb2a
/branches/releases/1.3.NET/source/Irrlicht/CGUIColorSelectDialog.h
fed63371d4d75b6f6d20e164aab8c2e8f2527655
[ "Zlib", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-other-permissive" ]
permissive
jivibounty/irrlicht
d9d6993bd0aee00dce2397a887b7f547ade74fbb
c5c80cde40b6d14fe5661440638d36a16b41d7ab
refs/heads/master
2021-01-18T02:56:08.844268
2015-07-21T08:02:25
2015-07-21T08:02:25
39,405,895
0
0
null
2015-07-20T20:07:06
2015-07-20T20:07:06
null
UTF-8
C++
false
false
1,684
h
// Copyright (C) 2002-2007 Nikolaus Gebhardt // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #ifndef __C_GUI_COLOR_SELECT_DIALOG_H_INCLUDED__ #define __C_GUI_COLOR_SELECT_DIALOG_H_INCLUDED__ #include "IGUIColorSelectDialog.h" #include "IGUIButton.h" #include "IGUIEditBox.h" #include "IGUIScrollBar.h" #include "IGUIImage.h" #include "irrArray.h" namespace irr { namespace gui { class CGUIColorSelectDialog : public IGUIColorSelectDialog { public: //! constructor CGUIColorSelectDialog(const wchar_t* title, IGUIEnvironment* environment, IGUIElement* parent, s32 id); //! destructor virtual ~CGUIColorSelectDialog(); //! called if an event happened. virtual bool OnEvent(SEvent event); //! draws the element and its children virtual void draw(); private: //! sends the event that the file has been selected. void sendSelectedEvent(); //! sends the event that the file choose process has been canceld void sendCancelEvent(); core::position2d<s32> DragStart; bool Dragging; IGUIButton* CloseButton; IGUIButton* OKButton; IGUIButton* CancelButton; struct SBatteryItem { f32 Incoming; f32 Outgoing; IGUIEditBox * Edit; IGUIScrollBar *Scrollbar; }; core::array< SBatteryItem > Battery; struct SColorCircle { IGUIImage * Control; video::ITexture * Texture; }; SColorCircle ColorRing; void buildColorRing( const core::dimension2d<s32> & dim, s32 supersample, const u32 borderColor ); }; } // end namespace gui } // end namespace irr #endif
[ "hybrid@dfc29bdd-3216-0410-991c-e03cc46cb475" ]
[ [ [ 1, 76 ] ] ]
28ccee844626dc8f532b974e14b830d2f77d8276
fce00ed7da745340691c8c6cf47905ba4fe5a08e
/UchClient/FrmMain.cpp
632d7a2b262d04091ced8c1a66af203405b47a34
[ "Unlicense" ]
permissive
EAirPeter/Uch
bc9bae801721a9241afbfe8add293cf5dcf7a322
193ee52fb98d2d224cd22483b2523caf02805cfe
refs/heads/master
2021-07-24T15:06:17.555444
2017-11-05T14:25:50
2017-11-05T14:25:50
109,581,211
0
0
null
null
null
null
UTF-8
C++
false
false
6,153
cpp
#include "Common.hpp" #include "FrmFileRecv.hpp" #include "FrmFileSend.hpp" #include "FrmMain.hpp" #include "Ucl.hpp" #include <nana/gui/filebox.hpp> using namespace nana; FrmMain::FrmMain() : form(nullptr, {768, 480}, appear::decorate< appear::taskbar, appear::minimize, appear::maximize, appear::sizable >()) { caption(Title(L"Client")); events().destroy(std::bind(&FrmMain::X_OnDestroy, this, std::placeholders::_1)); events().user(std::bind(&FrmMain::X_OnUser, this, std::placeholders::_1)); events().unload([this] (const arg_unload &e) { msgbox mbx {nullptr, TitleU8(L"Exit"), msgbox::yes_no}; mbx.icon(msgbox::icon_question); mbx << L"Are you sure to exit Uch?"; if (mbx() != mbx.pick_yes) e.cancel = true; }); x_btnSend.caption(L"Send"); x_btnSend.events().click(std::bind(&FrmMain::X_OnSend, this)); x_btnSend.events().key_press([this] (const arg_keyboard &e) { if (e.key == keyboard::enter) X_OnSend(); }); x_btnFile.caption(L"Send File"); x_btnFile.events().click(std::bind(&FrmMain::X_OnFile, this)); x_btnFile.events().key_press([this] (const arg_keyboard &e) { if (e.key == keyboard::enter) X_OnFile(); }); x_btnExit.caption(L"Exit"); x_btnExit.events().click(std::bind(&FrmMain::close, this)); x_btnExit.events().key_press([this] (const arg_keyboard &e) { if (e.key == keyboard::enter) close(); }); x_txtMessage.multi_lines(false).tip_string(u8"Message:"); x_txtMessage.events().focus([this] (const arg_focus &e) { x_txtMessage.select(e.getting); }); x_txtMessage.events().key_press([this] (const arg_keyboard &e) { if (e.key == keyboard::enter) X_OnSend(); }); x_lbxUsers.enable_single(true, false); x_lbxUsers.append_header(L"Who", 110); x_lbxUsers.append({L"Online", L"Offline"}); x_lbxMessages.sortable(false); x_lbxMessages.append_header(L"When", 80); x_lbxMessages.append_header(L"How", 180); x_lbxMessages.append_header(L"What", 310); x_pl.div( "margin=[14,16]" " <weight=120 List> <weight=8>" " <vert" " <Msgs> <weight=7>" " <weight=25 Imsg> <weight=7>" " <weight=25 <> <weight=259 gap=8 Btns>>" " >" ); x_pl["List"] << x_lbxUsers; x_pl["Msgs"] << x_lbxMessages; x_pl["Imsg"] << x_txtMessage; x_pl["Btns"] << x_btnExit << x_btnFile << x_btnSend; x_pl.collocate(); Ucl::Bus().Register(*this); } void FrmMain::OnEvent(event::EvMessage &e) noexcept { constexpr static auto kszFmt = L"(%s) %s => %s"; x_lbxMessages.at(0).append({ FormattedTime(), FormatString(L"(%s) %s => %s", e.sCat.c_str(), e.sFrom.c_str(), e.sTo.c_str()), e.sWhat }); x_lbxMessages.scroll(true); } void FrmMain::OnEvent(event::EvListUon &e) noexcept { x_lbxUsers.at(1).model<std::recursive_mutex>( e.vecUon, [] (auto &c) { return AsWideString(c.front().text); }, [] (auto &s) { return std::vector<listbox::cell> {AsUtf8String(s)}; } ); } void FrmMain::OnEvent(event::EvListUff &e) noexcept { x_lbxUsers.at(2).model<std::recursive_mutex>( e.vecUff, [] (auto &c) { return AsWideString(c.front().text); }, [] (auto &s) { return std::vector<listbox::cell> {AsUtf8String(s)}; } ); } void FrmMain::OnEvent(event::EvFileReq &e) noexcept { user(std::make_unique<event::EvFileReq>(e).release()); } void FrmMain::X_OnSend() { auto vec = x_lbxUsers.selected(); if (vec.empty()) { msgbox mbx {nullptr, TitleU8(L"Send message"), msgbox::ok}; mbx.icon(msgbox::icon_error); mbx << L"Please select a recipient"; mbx(); return; } auto &idx = vec.front(); auto sUser = AsWideString(x_lbxUsers.at(idx.cat).at(idx.item).text(0)); switch (idx.cat) { case 1: // Online X_AddMessage({kszCatChat, kszSelf, sUser, x_txtMessage.caption_wstring()}); (*Ucl::Pmg())[sUser].PostPacket(protocol::EvpMessage { x_txtMessage.caption_wstring() }); break; case 2: // Offline X_AddMessage({kszCatFmsg, kszSelf, sUser, x_txtMessage.caption_wstring()}); Ucl::Con()->PostPacket(protocol::EvcMessageTo { sUser, x_txtMessage.caption_wstring() }); break; default: throw ExnIllegalState {}; } x_txtMessage.caption(String {}); } void FrmMain::X_OnFile() { auto vec = x_lbxUsers.selected(); if (vec.empty()) { msgbox mbx {TitleU8(L"Send file")}; mbx.icon(msgbox::icon_error); mbx << L"Please select a recipient"; mbx(); return; } auto &idx = vec.front(); if (idx.cat != 1) { msgbox mbx {TitleU8(L"Send file")}; mbx.icon(msgbox::icon_error); mbx << L"Please select an online user"; mbx(); return; } auto sUser = AsWideString(x_lbxUsers.at(idx.cat).at(idx.item).text(0)); filebox fbx {nullptr, true}; if (!fbx()) return; auto sPath = AsWideString(fbx.file()); UccPipl *pPipl; try { pPipl = &(*Ucl::Pmg())[sUser]; } catch (std::out_of_range) { msgbox mbx {TitleU8(L"Send file")}; mbx << L"The user if offline"; mbx(); return; } form_loader<FrmFileSend>() (*this, pPipl, sPath).show(); } void FrmMain::X_OnDestroy(const nana::arg_destroy &e) { Ucl::Con()->PostPacket(protocol::EvcExit {Ucl::Usr()}); Ucl::Con()->Shutdown(); Ucl::Pmg()->Shutdown(); Ucl::Bus().Unregister(*this); } void FrmMain::X_OnUser(const nana::arg_user &e) { std::unique_ptr<event::EvFileReq> up { reinterpret_cast<event::EvFileReq *>(e.param) }; try { form_loader<FrmFileRecv>() (*this, up->pPipl, up->eReq).show(); } catch (ExnIllegalState) {} } void FrmMain::X_AddMessage(event::EvMessage &&e) noexcept { OnEvent(e); }
[ [ [ 1, 201 ] ] ]
d906994d3f90133151039af0434882e3553ba719
1c02e13a776e5e8bc3e2a6182b5df4efb2c71d32
/core/unit_test/tstDeepCopy.hpp
b3fdab4da5ef0b61357d256cf996dae1b69884f0
[ "BSD-3-Clause" ]
permissive
junghans/Cabana
91b82827dd9fb8321bea9ea3750c196946a6aac0
7b9078f81bde68c949fd6ae913ce80eeaf0f8f8a
refs/heads/master
2021-06-14T09:57:01.658234
2019-01-04T22:24:45
2019-01-04T22:24:45
150,330,482
1
1
BSD-3-Clause
2019-01-07T16:24:20
2018-09-25T21:17:53
C++
UTF-8
C++
false
false
5,252
hpp
/**************************************************************************** * Copyright (c) 2018 by the Cabana authors * * All rights reserved. * * * * This file is part of the Cabana library. Cabana is distributed under a * * BSD 3-clause license. For the licensing terms see the LICENSE file in * * the top-level directory. * * * * SPDX-License-Identifier: BSD-3-Clause * ****************************************************************************/ #include <Cabana_DeepCopy.hpp> #include <Cabana_AoSoA.hpp> #include <Cabana_Types.hpp> #include <gtest/gtest.h> namespace Test { //---------------------------------------------------------------------------// // Check the data given a set of values. template<class aosoa_type> void checkDataMembers( aosoa_type aosoa, const float fval, const double dval, const int ival, const int dim_1, const int dim_2, const int dim_3 ) { auto slice_0 = aosoa.template slice<0>(); auto slice_1 = aosoa.template slice<1>(); auto slice_2 = aosoa.template slice<2>(); auto slice_3 = aosoa.template slice<3>(); for ( std::size_t idx = 0; idx < aosoa.size(); ++idx ) { // Member 0. for ( int i = 0; i < dim_1; ++i ) for ( int j = 0; j < dim_2; ++j ) for ( int k = 0; k < dim_3; ++k ) EXPECT_EQ( slice_0( idx, i, j, k ), fval * (i+j+k) ); // Member 1. EXPECT_EQ( slice_1( idx ), ival ); // Member 2. for ( int i = 0; i < dim_1; ++i ) EXPECT_EQ( slice_2( idx, i ), dval * i ); // Member 3. for ( int i = 0; i < dim_1; ++i ) for ( int j = 0; j < dim_2; ++j ) EXPECT_EQ( slice_3( idx, i, j ), dval * (i+j) ); } } //---------------------------------------------------------------------------// // Perform a deep copy test. template<class DstMemorySpace, class SrcMemorySpace, int DstVectorLength, int SrcVectorLength> void testDeepCopy() { // Data dimensions. const int dim_1 = 3; const int dim_2 = 2; const int dim_3 = 4; // Declare data types. using DataTypes = Cabana::MemberTypes<float[dim_1][dim_2][dim_3], int, double[dim_1], double[dim_1][dim_2] >; // Declare the AoSoA types. using DstAoSoA_t = Cabana::AoSoA<DataTypes,DstMemorySpace,DstVectorLength>; using SrcAoSoA_t = Cabana::AoSoA<DataTypes,SrcMemorySpace,SrcVectorLength>; // Create AoSoAs. int num_data = 357; DstAoSoA_t dst_aosoa( num_data ); SrcAoSoA_t src_aosoa( num_data ); // Initialize data with the rank accessors. float fval = 3.4; double dval = 1.23; int ival = 1; auto slice_0 = src_aosoa.template slice<0>(); auto slice_1 = src_aosoa.template slice<1>(); auto slice_2 = src_aosoa.template slice<2>(); auto slice_3 = src_aosoa.template slice<3>(); for ( std::size_t idx = 0; idx < src_aosoa.size(); ++idx ) { // Member 0. for ( int i = 0; i < dim_1; ++i ) for ( int j = 0; j < dim_2; ++j ) for ( int k = 0; k < dim_3; ++k ) slice_0( idx, i, j, k ) = fval * (i+j+k); // Member 1. slice_1( idx ) = ival; // Member 2. for ( int i = 0; i < dim_1; ++i ) slice_2( idx, i ) = dval * i; // Member 3. for ( int i = 0; i < dim_1; ++i ) for ( int j = 0; j < dim_2; ++j ) slice_3( idx, i, j ) = dval * (i+j); } // Deep copy Cabana::deep_copy( dst_aosoa, src_aosoa ); // Check values. checkDataMembers( dst_aosoa, fval, dval, ival, dim_1, dim_2, dim_3 ); } //---------------------------------------------------------------------------// // TESTS //---------------------------------------------------------------------------// TEST_F( TEST_CATEGORY, deep_copy_to_host_same_layout_test ) { testDeepCopy<Cabana::HostSpace,TEST_MEMSPACE,16,16>(); } //---------------------------------------------------------------------------// TEST_F( TEST_CATEGORY, deep_copy_from_host_same_layout_test ) { testDeepCopy<TEST_MEMSPACE,Cabana::HostSpace,16,16>(); } //---------------------------------------------------------------------------// TEST_F( TEST_CATEGORY, deep_copy_to_host_different_layout_test ) { testDeepCopy<Cabana::HostSpace,TEST_MEMSPACE,16,32>(); testDeepCopy<Cabana::HostSpace,TEST_MEMSPACE,64,8>(); } //---------------------------------------------------------------------------// TEST_F( TEST_CATEGORY, deep_copy_from_host_different_layout_test ) { testDeepCopy<TEST_MEMSPACE,Cabana::HostSpace,64,8>(); testDeepCopy<TEST_MEMSPACE,Cabana::HostSpace,16,32>(); } //---------------------------------------------------------------------------// } // end namespace Test
[ [ [ 1, 151 ] ] ]
22b4b85995b27b9bf5a3b2c844bcb56c4ab65e55
090243cf699213f32f870baf2902eb4211f825d6
/cf/621/D.cpp
27cba968aae8be25270c8a561e72debc59131184
[]
no_license
zhu-he/ACM-Source
0d4d0ac0668b569846b12297e7ed4abbb1c16571
02e3322e50336063d0d2dad37b2761ecb3d4e380
refs/heads/master
2021-06-07T18:27:19.702607
2016-07-10T09:20:48
2016-07-10T09:20:48
null
0
0
null
null
null
null
UTF-8
C++
false
false
625
cpp
#include <cstdio> #include <cmath> const char s[12][10] = {"x^y^z", "x^z^y", "(x^y)^z", "(x^z)^y", "y^x^z", "y^z^x", "(y^x)^z", "(y^z)^x", "z^x^y", "z^y^x", "(z^x)^y", "(z^y)^x"}; double d[12]; int main() { double x, y, z; scanf("%lf %lf %lf", &x, &y, &z); d[0] = pow(y, z) * log(x); d[1] = pow(z, y) * log(x); d[2] = d[3] = y * z * log(x); d[4] = pow(x, z) * log(y); d[5] = pow(z, x) * log(y); d[6] = d[7] = x * z * log(y); d[8] = pow(x, y) * log(z); d[9] = pow(y, x) * log(z); d[10] = d[11] = x * y * log(z); int mx = 0; for (int i = 1; i < 12; ++i) if (d[i] > d[mx]) mx = i; puts(s[mx]); return 0; }
[ [ [ 1, 26 ] ] ]
39fef5bcedac295c0ef9e8b56f71ce5a982fc908
814fd0bea5bc063a4e34ebdd0a5597c9ff67532b
/chrome/browser/chromeos/drive/file_task_executor.h
56f1d73681c2ef875beca64ba192b24f1dfae39d
[ "BSD-3-Clause" ]
permissive
rzr/chromium-crosswalk
1b22208ff556d69c009ad292bc17dca3fe15c493
d391344809adf7b4f39764ac0e15c378169b805f
refs/heads/master
2021-01-21T09:11:07.316526
2015-02-16T11:52:21
2015-02-16T11:52:21
38,887,985
0
0
NOASSERTION
2019-08-07T21:59:20
2015-07-10T15:35:50
C++
UTF-8
C++
false
false
2,578
h
// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef CHROME_BROWSER_CHROMEOS_DRIVE_FILE_TASK_EXECUTOR_H_ #define CHROME_BROWSER_CHROMEOS_DRIVE_FILE_TASK_EXECUTOR_H_ #include <string> #include <vector> #include "base/callback.h" #include "base/memory/weak_ptr.h" #include "chrome/browser/chromeos/drive/file_errors.h" #include "chrome/browser/chromeos/file_manager/file_tasks.h" #include "google_apis/drive/gdata_errorcode.h" namespace drive { class DriveServiceInterface; class FileSystemInterface; class ResourceEntry; // Delegate class for hooking fake instances and behaviors for testing. class FileTaskExecutorDelegate { public: virtual ~FileTaskExecutorDelegate() {} virtual FileSystemInterface* GetFileSystem() = 0; virtual DriveServiceInterface* GetDriveService() = 0; virtual void OpenBrowserWindow(const GURL& open_link) = 0; }; // This class implements an "executor" class that will execute tasks for // third party Drive apps that store data in Drive itself. To do that, it // needs to find the file resource IDs and pass them to a server-side function // that will authorize the app to open the given document and return a URL // for opening the document in that app directly. class FileTaskExecutor { public: // Creates FileTaskExecutor with delegate derived from |profile|. Used in // product environment. FileTaskExecutor(Profile* profile, const std::string& app_id); // Creates FileTaskExecutor with a specific delegate. FileTaskExecutor(scoped_ptr<FileTaskExecutorDelegate> delegate, const std::string& app_id); // Executes file tasks, runs |done| and deletes |this|. void Execute(const std::vector<storage::FileSystemURL>& file_urls, const file_manager::file_tasks::FileTaskFinishedCallback& done); private: ~FileTaskExecutor(); void OnFileEntryFetched(FileError error, scoped_ptr<ResourceEntry> entry); void OnAppAuthorized(const std::string& resource_id, google_apis::GDataErrorCode error, const GURL& open_link); // Calls |done_| with |success| status and deletes |this|. void Done(bool success); scoped_ptr<FileTaskExecutorDelegate> delegate_; std::string app_id_; int current_index_; file_manager::file_tasks::FileTaskFinishedCallback done_; base::WeakPtrFactory<FileTaskExecutor> weak_ptr_factory_; }; } // namespace drive #endif // CHROME_BROWSER_CHROMEOS_DRIVE_FILE_TASK_EXECUTOR_H_
[ "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98" ]
[ [ [ 1, 4 ], [ 7, 7 ], [ 16, 16 ], [ 18, 18 ], [ 22, 22 ], [ 33, 37 ], [ 39, 39 ], [ 43, 43 ], [ 51, 51 ], [ 54, 54 ], [ 56, 56 ], [ 59, 59 ], [ 61, 62 ], [ 65, 65 ], [ 69, 70 ], [ 72, 72 ] ], [ [ 5, 6 ], [ 11, 11 ], [ 13, 14 ], [ 17, 17 ], [ 21, 21 ], [ 66, 66 ], [ 71, 71 ], [ 73, 73 ] ], [ [ 8, 10 ] ], [ [ 12, 12 ], [ 38, 38 ], [ 42, 42 ], [ 48, 48 ], [ 52, 53 ], [ 55, 55 ], [ 60, 60 ], [ 64, 64 ], [ 67, 68 ] ], [ [ 15, 15 ], [ 19, 20 ], [ 23, 32 ], [ 40, 41 ], [ 44, 47 ], [ 50, 50 ], [ 63, 63 ] ], [ [ 49, 49 ] ], [ [ 57, 57 ] ], [ [ 58, 58 ] ] ]
3c562a4243e222e2a5d2afd6f33ac1002b5d77d5
e49020bee62e9a7006b7a603588aff026ac19402
/clang/lib/Basic/IdentifierTable.cpp
621bcc265020d77a202936efaba490ba1a2832a7
[ "NCSA" ]
permissive
angopher/llvm
10d540f4d38fd184506d9096fb02a288af8a1aa1
163def217817c90fb982a6daf384744d8472b92b
refs/heads/master
2020-06-10T09:59:52.274700
2018-05-10T23:14:40
2018-05-10T23:14:40
null
0
0
null
null
null
null
UTF-8
C++
false
false
23,406
cpp
//===- IdentifierTable.cpp - Hash table for identifier lookup -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the IdentifierInfo, IdentifierVisitor, and // IdentifierTable interfaces. // //===----------------------------------------------------------------------===// #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/CharInfo.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/OperatorKinds.h" #include "clang/Basic/Specifiers.h" #include "clang/Basic/TokenKinds.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include <cassert> #include <cstdio> #include <cstring> #include <string> using namespace clang; //===----------------------------------------------------------------------===// // IdentifierInfo Implementation //===----------------------------------------------------------------------===// IdentifierInfo::IdentifierInfo() { TokenID = tok::identifier; ObjCOrBuiltinID = 0; HasMacro = false; HadMacro = false; IsExtension = false; IsFutureCompatKeyword = false; IsPoisoned = false; IsCPPOperatorKeyword = false; NeedsHandleIdentifier = false; IsFromAST = false; ChangedAfterLoad = false; FEChangedAfterLoad = false; RevertedTokenID = false; OutOfDate = false; IsModulesImport = false; } //===----------------------------------------------------------------------===// // IdentifierTable Implementation //===----------------------------------------------------------------------===// IdentifierIterator::~IdentifierIterator() = default; IdentifierInfoLookup::~IdentifierInfoLookup() = default; namespace { /// A simple identifier lookup iterator that represents an /// empty sequence of identifiers. class EmptyLookupIterator : public IdentifierIterator { public: StringRef Next() override { return StringRef(); } }; } // namespace IdentifierIterator *IdentifierInfoLookup::getIdentifiers() { return new EmptyLookupIterator(); } IdentifierTable::IdentifierTable(IdentifierInfoLookup *ExternalLookup) : HashTable(8192), // Start with space for 8K identifiers. ExternalLookup(ExternalLookup) {} IdentifierTable::IdentifierTable(const LangOptions &LangOpts, IdentifierInfoLookup *ExternalLookup) : IdentifierTable(ExternalLookup) { // Populate the identifier table with info about keywords for the current // language. AddKeywords(LangOpts); } //===----------------------------------------------------------------------===// // Language Keyword Implementation //===----------------------------------------------------------------------===// // Constants for TokenKinds.def namespace { enum { KEYC99 = 0x1, KEYCXX = 0x2, KEYCXX11 = 0x4, KEYGNU = 0x8, KEYMS = 0x10, BOOLSUPPORT = 0x20, KEYALTIVEC = 0x40, KEYNOCXX = 0x80, KEYBORLAND = 0x100, KEYOPENCL = 0x200, KEYC11 = 0x400, KEYARC = 0x800, KEYNOMS18 = 0x01000, KEYNOOPENCL = 0x02000, WCHARSUPPORT = 0x04000, HALFSUPPORT = 0x08000, CHAR8SUPPORT = 0x10000, KEYCONCEPTS = 0x20000, KEYOBJC2 = 0x40000, KEYZVECTOR = 0x80000, KEYCOROUTINES = 0x100000, KEYMODULES = 0x200000, KEYCXX2A = 0x400000, KEYALLCXX = KEYCXX | KEYCXX11 | KEYCXX2A, KEYALL = (0x7fffff & ~KEYNOMS18 & ~KEYNOOPENCL) // KEYNOMS18 and KEYNOOPENCL are used to exclude. }; /// How a keyword is treated in the selected standard. enum KeywordStatus { KS_Disabled, // Disabled KS_Extension, // Is an extension KS_Enabled, // Enabled KS_Future // Is a keyword in future standard }; } // namespace /// Translates flags as specified in TokenKinds.def into keyword status /// in the given language standard. static KeywordStatus getKeywordStatus(const LangOptions &LangOpts, unsigned Flags) { if (Flags == KEYALL) return KS_Enabled; if (LangOpts.CPlusPlus && (Flags & KEYCXX)) return KS_Enabled; if (LangOpts.CPlusPlus11 && (Flags & KEYCXX11)) return KS_Enabled; if (LangOpts.CPlusPlus2a && (Flags & KEYCXX2A)) return KS_Enabled; if (LangOpts.C99 && (Flags & KEYC99)) return KS_Enabled; if (LangOpts.GNUKeywords && (Flags & KEYGNU)) return KS_Extension; if (LangOpts.MicrosoftExt && (Flags & KEYMS)) return KS_Extension; if (LangOpts.Borland && (Flags & KEYBORLAND)) return KS_Extension; if (LangOpts.Bool && (Flags & BOOLSUPPORT)) return KS_Enabled; if (LangOpts.Half && (Flags & HALFSUPPORT)) return KS_Enabled; if (LangOpts.WChar && (Flags & WCHARSUPPORT)) return KS_Enabled; if (LangOpts.Char8 && (Flags & CHAR8SUPPORT)) return KS_Enabled; if (LangOpts.AltiVec && (Flags & KEYALTIVEC)) return KS_Enabled; if (LangOpts.OpenCL && (Flags & KEYOPENCL)) return KS_Enabled; if (!LangOpts.CPlusPlus && (Flags & KEYNOCXX)) return KS_Enabled; if (LangOpts.C11 && (Flags & KEYC11)) return KS_Enabled; // We treat bridge casts as objective-C keywords so we can warn on them // in non-arc mode. if (LangOpts.ObjC2 && (Flags & KEYARC)) return KS_Enabled; if (LangOpts.ObjC2 && (Flags & KEYOBJC2)) return KS_Enabled; if (LangOpts.ConceptsTS && (Flags & KEYCONCEPTS)) return KS_Enabled; if (LangOpts.CoroutinesTS && (Flags & KEYCOROUTINES)) return KS_Enabled; if (LangOpts.ModulesTS && (Flags & KEYMODULES)) return KS_Enabled; if (LangOpts.CPlusPlus && (Flags & KEYALLCXX)) return KS_Future; return KS_Disabled; } /// AddKeyword - This method is used to associate a token ID with specific /// identifiers because they are language keywords. This causes the lexer to /// automatically map matching identifiers to specialized token codes. static void AddKeyword(StringRef Keyword, tok::TokenKind TokenCode, unsigned Flags, const LangOptions &LangOpts, IdentifierTable &Table) { KeywordStatus AddResult = getKeywordStatus(LangOpts, Flags); // Don't add this keyword under MSVCCompat. if (LangOpts.MSVCCompat && (Flags & KEYNOMS18) && !LangOpts.isCompatibleWithMSVC(LangOptions::MSVC2015)) return; // Don't add this keyword under OpenCL. if (LangOpts.OpenCL && (Flags & KEYNOOPENCL)) return; // Don't add this keyword if disabled in this language. if (AddResult == KS_Disabled) return; IdentifierInfo &Info = Table.get(Keyword, AddResult == KS_Future ? tok::identifier : TokenCode); Info.setIsExtensionToken(AddResult == KS_Extension); Info.setIsFutureCompatKeyword(AddResult == KS_Future); } /// AddCXXOperatorKeyword - Register a C++ operator keyword alternative /// representations. static void AddCXXOperatorKeyword(StringRef Keyword, tok::TokenKind TokenCode, IdentifierTable &Table) { IdentifierInfo &Info = Table.get(Keyword, TokenCode); Info.setIsCPlusPlusOperatorKeyword(); } /// AddObjCKeyword - Register an Objective-C \@keyword like "class" "selector" /// or "property". static void AddObjCKeyword(StringRef Name, tok::ObjCKeywordKind ObjCID, IdentifierTable &Table) { Table.get(Name).setObjCKeywordID(ObjCID); } /// AddKeywords - Add all keywords to the symbol table. /// void IdentifierTable::AddKeywords(const LangOptions &LangOpts) { // Add keywords and tokens for the current language. #define KEYWORD(NAME, FLAGS) \ AddKeyword(StringRef(#NAME), tok::kw_ ## NAME, \ FLAGS, LangOpts, *this); #define ALIAS(NAME, TOK, FLAGS) \ AddKeyword(StringRef(NAME), tok::kw_ ## TOK, \ FLAGS, LangOpts, *this); #define CXX_KEYWORD_OPERATOR(NAME, ALIAS) \ if (LangOpts.CXXOperatorNames) \ AddCXXOperatorKeyword(StringRef(#NAME), tok::ALIAS, *this); #define OBJC1_AT_KEYWORD(NAME) \ if (LangOpts.ObjC1) \ AddObjCKeyword(StringRef(#NAME), tok::objc_##NAME, *this); #define OBJC2_AT_KEYWORD(NAME) \ if (LangOpts.ObjC2) \ AddObjCKeyword(StringRef(#NAME), tok::objc_##NAME, *this); #define TESTING_KEYWORD(NAME, FLAGS) #include "clang/Basic/TokenKinds.def" if (LangOpts.ParseUnknownAnytype) AddKeyword("__unknown_anytype", tok::kw___unknown_anytype, KEYALL, LangOpts, *this); if (LangOpts.DeclSpecKeyword) AddKeyword("__declspec", tok::kw___declspec, KEYALL, LangOpts, *this); // Add the '_experimental_modules_import' contextual keyword. get("import").setModulesImport(true); } /// Checks if the specified token kind represents a keyword in the /// specified language. /// \returns Status of the keyword in the language. static KeywordStatus getTokenKwStatus(const LangOptions &LangOpts, tok::TokenKind K) { switch (K) { #define KEYWORD(NAME, FLAGS) \ case tok::kw_##NAME: return getKeywordStatus(LangOpts, FLAGS); #include "clang/Basic/TokenKinds.def" default: return KS_Disabled; } } /// Returns true if the identifier represents a keyword in the /// specified language. bool IdentifierInfo::isKeyword(const LangOptions &LangOpts) const { switch (getTokenKwStatus(LangOpts, getTokenID())) { case KS_Enabled: case KS_Extension: return true; default: return false; } } /// Returns true if the identifier represents a C++ keyword in the /// specified language. bool IdentifierInfo::isCPlusPlusKeyword(const LangOptions &LangOpts) const { if (!LangOpts.CPlusPlus || !isKeyword(LangOpts)) return false; // This is a C++ keyword if this identifier is not a keyword when checked // using LangOptions without C++ support. LangOptions LangOptsNoCPP = LangOpts; LangOptsNoCPP.CPlusPlus = false; LangOptsNoCPP.CPlusPlus11 = false; LangOptsNoCPP.CPlusPlus2a = false; return !isKeyword(LangOptsNoCPP); } tok::PPKeywordKind IdentifierInfo::getPPKeywordID() const { // We use a perfect hash function here involving the length of the keyword, // the first and third character. For preprocessor ID's there are no // collisions (if there were, the switch below would complain about duplicate // case values). Note that this depends on 'if' being null terminated. #define HASH(LEN, FIRST, THIRD) \ (LEN << 5) + (((FIRST-'a') + (THIRD-'a')) & 31) #define CASE(LEN, FIRST, THIRD, NAME) \ case HASH(LEN, FIRST, THIRD): \ return memcmp(Name, #NAME, LEN) ? tok::pp_not_keyword : tok::pp_ ## NAME unsigned Len = getLength(); if (Len < 2) return tok::pp_not_keyword; const char *Name = getNameStart(); switch (HASH(Len, Name[0], Name[2])) { default: return tok::pp_not_keyword; CASE( 2, 'i', '\0', if); CASE( 4, 'e', 'i', elif); CASE( 4, 'e', 's', else); CASE( 4, 'l', 'n', line); CASE( 4, 's', 'c', sccs); CASE( 5, 'e', 'd', endif); CASE( 5, 'e', 'r', error); CASE( 5, 'i', 'e', ident); CASE( 5, 'i', 'd', ifdef); CASE( 5, 'u', 'd', undef); CASE( 6, 'a', 's', assert); CASE( 6, 'd', 'f', define); CASE( 6, 'i', 'n', ifndef); CASE( 6, 'i', 'p', import); CASE( 6, 'p', 'a', pragma); CASE( 7, 'd', 'f', defined); CASE( 7, 'i', 'c', include); CASE( 7, 'w', 'r', warning); CASE( 8, 'u', 'a', unassert); CASE(12, 'i', 'c', include_next); CASE(14, '_', 'p', __public_macro); CASE(15, '_', 'p', __private_macro); CASE(16, '_', 'i', __include_macros); #undef CASE #undef HASH } } //===----------------------------------------------------------------------===// // Stats Implementation //===----------------------------------------------------------------------===// /// PrintStats - Print statistics about how well the identifier table is doing /// at hashing identifiers. void IdentifierTable::PrintStats() const { unsigned NumBuckets = HashTable.getNumBuckets(); unsigned NumIdentifiers = HashTable.getNumItems(); unsigned NumEmptyBuckets = NumBuckets-NumIdentifiers; unsigned AverageIdentifierSize = 0; unsigned MaxIdentifierLength = 0; // TODO: Figure out maximum times an identifier had to probe for -stats. for (llvm::StringMap<IdentifierInfo*, llvm::BumpPtrAllocator>::const_iterator I = HashTable.begin(), E = HashTable.end(); I != E; ++I) { unsigned IdLen = I->getKeyLength(); AverageIdentifierSize += IdLen; if (MaxIdentifierLength < IdLen) MaxIdentifierLength = IdLen; } fprintf(stderr, "\n*** Identifier Table Stats:\n"); fprintf(stderr, "# Identifiers: %d\n", NumIdentifiers); fprintf(stderr, "# Empty Buckets: %d\n", NumEmptyBuckets); fprintf(stderr, "Hash density (#identifiers per bucket): %f\n", NumIdentifiers/(double)NumBuckets); fprintf(stderr, "Ave identifier length: %f\n", (AverageIdentifierSize/(double)NumIdentifiers)); fprintf(stderr, "Max identifier length: %d\n", MaxIdentifierLength); // Compute statistics about the memory allocated for identifiers. HashTable.getAllocator().PrintStats(); } //===----------------------------------------------------------------------===// // SelectorTable Implementation //===----------------------------------------------------------------------===// unsigned llvm::DenseMapInfo<clang::Selector>::getHashValue(clang::Selector S) { return DenseMapInfo<void*>::getHashValue(S.getAsOpaquePtr()); } namespace clang { /// MultiKeywordSelector - One of these variable length records is kept for each /// selector containing more than one keyword. We use a folding set /// to unique aggregate names (keyword selectors in ObjC parlance). Access to /// this class is provided strictly through Selector. class MultiKeywordSelector : public DeclarationNameExtra, public llvm::FoldingSetNode { MultiKeywordSelector(unsigned nKeys) { ExtraKindOrNumArgs = NUM_EXTRA_KINDS + nKeys; } public: // Constructor for keyword selectors. MultiKeywordSelector(unsigned nKeys, IdentifierInfo **IIV) { assert((nKeys > 1) && "not a multi-keyword selector"); ExtraKindOrNumArgs = NUM_EXTRA_KINDS + nKeys; // Fill in the trailing keyword array. IdentifierInfo **KeyInfo = reinterpret_cast<IdentifierInfo **>(this+1); for (unsigned i = 0; i != nKeys; ++i) KeyInfo[i] = IIV[i]; } // getName - Derive the full selector name and return it. std::string getName() const; unsigned getNumArgs() const { return ExtraKindOrNumArgs - NUM_EXTRA_KINDS; } using keyword_iterator = IdentifierInfo *const *; keyword_iterator keyword_begin() const { return reinterpret_cast<keyword_iterator>(this+1); } keyword_iterator keyword_end() const { return keyword_begin()+getNumArgs(); } IdentifierInfo *getIdentifierInfoForSlot(unsigned i) const { assert(i < getNumArgs() && "getIdentifierInfoForSlot(): illegal index"); return keyword_begin()[i]; } static void Profile(llvm::FoldingSetNodeID &ID, keyword_iterator ArgTys, unsigned NumArgs) { ID.AddInteger(NumArgs); for (unsigned i = 0; i != NumArgs; ++i) ID.AddPointer(ArgTys[i]); } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, keyword_begin(), getNumArgs()); } }; } // namespace clang. unsigned Selector::getNumArgs() const { unsigned IIF = getIdentifierInfoFlag(); if (IIF <= ZeroArg) return 0; if (IIF == OneArg) return 1; // We point to a MultiKeywordSelector. MultiKeywordSelector *SI = getMultiKeywordSelector(); return SI->getNumArgs(); } IdentifierInfo *Selector::getIdentifierInfoForSlot(unsigned argIndex) const { if (getIdentifierInfoFlag() < MultiArg) { assert(argIndex == 0 && "illegal keyword index"); return getAsIdentifierInfo(); } // We point to a MultiKeywordSelector. MultiKeywordSelector *SI = getMultiKeywordSelector(); return SI->getIdentifierInfoForSlot(argIndex); } StringRef Selector::getNameForSlot(unsigned int argIndex) const { IdentifierInfo *II = getIdentifierInfoForSlot(argIndex); return II? II->getName() : StringRef(); } std::string MultiKeywordSelector::getName() const { SmallString<256> Str; llvm::raw_svector_ostream OS(Str); for (keyword_iterator I = keyword_begin(), E = keyword_end(); I != E; ++I) { if (*I) OS << (*I)->getName(); OS << ':'; } return OS.str(); } std::string Selector::getAsString() const { if (InfoPtr == 0) return "<null selector>"; if (getIdentifierInfoFlag() < MultiArg) { IdentifierInfo *II = getAsIdentifierInfo(); if (getNumArgs() == 0) { assert(II && "If the number of arguments is 0 then II is guaranteed to " "not be null."); return II->getName(); } if (!II) return ":"; return II->getName().str() + ":"; } // We have a multiple keyword selector. return getMultiKeywordSelector()->getName(); } void Selector::print(llvm::raw_ostream &OS) const { OS << getAsString(); } /// Interpreting the given string using the normal CamelCase /// conventions, determine whether the given string starts with the /// given "word", which is assumed to end in a lowercase letter. static bool startsWithWord(StringRef name, StringRef word) { if (name.size() < word.size()) return false; return ((name.size() == word.size() || !isLowercase(name[word.size()])) && name.startswith(word)); } ObjCMethodFamily Selector::getMethodFamilyImpl(Selector sel) { IdentifierInfo *first = sel.getIdentifierInfoForSlot(0); if (!first) return OMF_None; StringRef name = first->getName(); if (sel.isUnarySelector()) { if (name == "autorelease") return OMF_autorelease; if (name == "dealloc") return OMF_dealloc; if (name == "finalize") return OMF_finalize; if (name == "release") return OMF_release; if (name == "retain") return OMF_retain; if (name == "retainCount") return OMF_retainCount; if (name == "self") return OMF_self; if (name == "initialize") return OMF_initialize; } if (name == "performSelector" || name == "performSelectorInBackground" || name == "performSelectorOnMainThread") return OMF_performSelector; // The other method families may begin with a prefix of underscores. while (!name.empty() && name.front() == '_') name = name.substr(1); if (name.empty()) return OMF_None; switch (name.front()) { case 'a': if (startsWithWord(name, "alloc")) return OMF_alloc; break; case 'c': if (startsWithWord(name, "copy")) return OMF_copy; break; case 'i': if (startsWithWord(name, "init")) return OMF_init; break; case 'm': if (startsWithWord(name, "mutableCopy")) return OMF_mutableCopy; break; case 'n': if (startsWithWord(name, "new")) return OMF_new; break; default: break; } return OMF_None; } ObjCInstanceTypeFamily Selector::getInstTypeMethodFamily(Selector sel) { IdentifierInfo *first = sel.getIdentifierInfoForSlot(0); if (!first) return OIT_None; StringRef name = first->getName(); if (name.empty()) return OIT_None; switch (name.front()) { case 'a': if (startsWithWord(name, "array")) return OIT_Array; break; case 'd': if (startsWithWord(name, "default")) return OIT_ReturnsSelf; if (startsWithWord(name, "dictionary")) return OIT_Dictionary; break; case 's': if (startsWithWord(name, "shared")) return OIT_ReturnsSelf; if (startsWithWord(name, "standard")) return OIT_Singleton; break; case 'i': if (startsWithWord(name, "init")) return OIT_Init; default: break; } return OIT_None; } ObjCStringFormatFamily Selector::getStringFormatFamilyImpl(Selector sel) { IdentifierInfo *first = sel.getIdentifierInfoForSlot(0); if (!first) return SFF_None; StringRef name = first->getName(); switch (name.front()) { case 'a': if (name == "appendFormat") return SFF_NSString; break; case 'i': if (name == "initWithFormat") return SFF_NSString; break; case 'l': if (name == "localizedStringWithFormat") return SFF_NSString; break; case 's': if (name == "stringByAppendingFormat" || name == "stringWithFormat") return SFF_NSString; break; } return SFF_None; } namespace { struct SelectorTableImpl { llvm::FoldingSet<MultiKeywordSelector> Table; llvm::BumpPtrAllocator Allocator; }; } // namespace static SelectorTableImpl &getSelectorTableImpl(void *P) { return *static_cast<SelectorTableImpl*>(P); } SmallString<64> SelectorTable::constructSetterName(StringRef Name) { SmallString<64> SetterName("set"); SetterName += Name; SetterName[3] = toUppercase(SetterName[3]); return SetterName; } Selector SelectorTable::constructSetterSelector(IdentifierTable &Idents, SelectorTable &SelTable, const IdentifierInfo *Name) { IdentifierInfo *SetterName = &Idents.get(constructSetterName(Name->getName())); return SelTable.getUnarySelector(SetterName); } size_t SelectorTable::getTotalMemory() const { SelectorTableImpl &SelTabImpl = getSelectorTableImpl(Impl); return SelTabImpl.Allocator.getTotalMemory(); } Selector SelectorTable::getSelector(unsigned nKeys, IdentifierInfo **IIV) { if (nKeys < 2) return Selector(IIV[0], nKeys); SelectorTableImpl &SelTabImpl = getSelectorTableImpl(Impl); // Unique selector, to guarantee there is one per name. llvm::FoldingSetNodeID ID; MultiKeywordSelector::Profile(ID, IIV, nKeys); void *InsertPos = nullptr; if (MultiKeywordSelector *SI = SelTabImpl.Table.FindNodeOrInsertPos(ID, InsertPos)) return Selector(SI); // MultiKeywordSelector objects are not allocated with new because they have a // variable size array (for parameter types) at the end of them. unsigned Size = sizeof(MultiKeywordSelector) + nKeys*sizeof(IdentifierInfo *); MultiKeywordSelector *SI = (MultiKeywordSelector *)SelTabImpl.Allocator.Allocate( Size, alignof(MultiKeywordSelector)); new (SI) MultiKeywordSelector(nKeys, IIV); SelTabImpl.Table.InsertNode(SI, InsertPos); return Selector(SI); } SelectorTable::SelectorTable() { Impl = new SelectorTableImpl(); } SelectorTable::~SelectorTable() { delete &getSelectorTableImpl(Impl); } const char *clang::getOperatorSpelling(OverloadedOperatorKind Operator) { switch (Operator) { case OO_None: case NUM_OVERLOADED_OPERATORS: return nullptr; #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ case OO_##Name: return Spelling; #include "clang/Basic/OperatorKinds.def" } llvm_unreachable("Invalid OverloadedOperatorKind!"); } StringRef clang::getNullabilitySpelling(NullabilityKind kind, bool isContextSensitive) { switch (kind) { case NullabilityKind::NonNull: return isContextSensitive ? "nonnull" : "_Nonnull"; case NullabilityKind::Nullable: return isContextSensitive ? "nullable" : "_Nullable"; case NullabilityKind::Unspecified: return isContextSensitive ? "null_unspecified" : "_Null_unspecified"; } llvm_unreachable("Unknown nullability kind."); }
[ [ [ 1, 711 ] ] ]
a2217316639cd4eab47041d6423b923823df03c1
c89bbbf91d09899202c6a430b88a80c47171b504
/RdbCache.h
757ca49f71fe782b5ab5abbd4290467d5db55f1a
[ "GPL-2.0-or-later", "Apache-2.0" ]
permissive
diffbot/open-source-search-engine
7a7a410885059da09d79a8cb9a642c62c4798222
deb5c5b1327303e87c3b182d5396caaeb87191ad
refs/heads/master
2020-12-25T17:44:38.936899
2018-06-14T16:17:32
2018-06-14T16:17:32
12,497,126
25
11
Apache-2.0
2018-06-14T16:17:33
2013-08-30T22:59:19
C++
UTF-8
C++
false
false
12,591
h
// . Matt Wells, copyright Feb 2001 // . we use a big buffer, m_buf, into which we sequentially store records as // they are added to the cache // . each record we store in the big buffer has a header which consists // of a key_t, recordSize(int32_t), timestamp and the record data // . the header is as follows: // a collnum_t (use sizeof(collnum_t)) that identifies the collection // a 12 byte key_t (actually, it is now m_cks bytes) // a 4 bytes timestamp (seconds since the epoch, like time_t) // a 4 bytes data size // the data // . we have a hash table that maps a key_t to a ptr to a record header in the // big buffer // . what if we run out of room in the hash table? we delete the oldest // records in the big buffer so we can remove their ptrs from the hash table // . we keep an "tail" ptr into the hash table that point to the last // non-overwritten record in the big buffer // . when we run out of room in the big buffer we wrap our ptr to the start // and we remove any records from the hashtable that we overwrite using // the tail ptr // . when a record is read from the cache we also promote it by copying it to // the head of m_buf, m_bufOffset. since modern day pentiums do 2.5-6.4GB/s // this is ok, it will not be the bottleneck by far. if the record is // expired we do not promote it. The advantage is we don't have ANY memory // fragmentation and utilize 100% of the memory. Copying a 6 Megabyte // list takes like 2.4ms on a new pentium, so we should allow regular // allocating if the record size is 256k or more. Copying 256k only // takes .1 ms on the P4 2.60CGHz. This is on the TODO list. #ifndef RDBCACHE_H #define RDBCACHE_H // . TODO: // . if size of added rec is ABOVE this, then don't use our memory buffer // . because we copy a rec to the head of memory buffer (m_bufOffset) every // time that rec is accessed and doing that for big recs is more intensive // . the idea is that allocating/freeing memory for smaller recs is what // causes the memory fragmentation // . to stay under m_maxMem we should limit each memory buffer to 1M or so // and free the tailing memory buffer to make room for a large unbuffered rec //#define MEM_LIMIT (256*1024) #include <time.h> // time_t #include "Mem.h" // g_mem.calloc() #include "RdbList.h" extern bool g_cacheWritesEnabled; class RdbCache { public: friend class Rdb; // constructor & destructor RdbCache(); ~RdbCache(); void reset(); // . this just clears the contents of the cache for a particular coll // . used by g_collectiondb.delRec() call to Rdb::delColl() to // clear out the collection's stuff in the cache void clear ( collnum_t collnum ) ; bool isInitialized () { if ( m_ptrs ) return true; return false; }; // . we are allowed to keep a min mem of "minCacheSize" // . a fixedDataSize of -1 means the dataSize varies from rec to rec // . set "maxNumNodes" to -1 for it to be auto determined // . can only do this if fixedDataSize is not -1 bool init ( int32_t maxCacheMem , int32_t fixedDataSize , bool supportLists , int32_t maxCacheNodes , bool useHalfKeys , char *dbname , //bool loadFromDisk ); bool loadFromDisk , char cacheKeySize = 12 , char dataKeySize = 12 , int32_t numPtrsMax = -1 ); // . a quick hack for SpiderCache.cpp // . if your record is always a 4 byte int32_t call this // . returns -1 if not found, so don't store -1 in there then int64_t getLongLong ( collnum_t collnum , uint32_t key , int32_t maxAge , // in seconds bool promoteRecord ); // this puts a int32_t in there void addLongLong ( collnum_t collnum , uint32_t key , int64_t value , char **retRecPtr = NULL ) ; // . both key and data are int64_ts here // . returns -1 if not found int64_t getLongLong2 ( collnum_t collnum , uint64_t key , int32_t maxAge , // in seconds bool promoteRecord ); // this puts a int32_t in there void addLongLong2 ( collnum_t collnum , uint64_t key , int64_t value , char **retRecPtr = NULL ) ; // same routines for int32_ts now, but key is a int64_t int32_t getLong ( collnum_t collnum , uint64_t key , int32_t maxAge , // in seconds bool promoteRecord ); void addLong ( collnum_t collnum , uint64_t key , int32_t value , char **retRecPtr = NULL ) ; // . returns true if found, false if not found in cache // . sets *rec and *recSize iff found // . sets *cachedTime to time the rec was cached // . use maxAge of -1 to have no limit to the age of cached rec bool getRecord ( collnum_t collnum , //key_t cacheKey , char *cacheKey , char **rec , int32_t *recSize , bool doCopy , int32_t maxAge , // in seconds bool incCounts , time_t *cachedTime = NULL , bool promoteRecord = true ); bool getRecord ( char *coll , //key_t cacheKey , char *cacheKey , char **rec , int32_t *recSize , bool doCopy , int32_t maxAge , // in seconds bool incCounts , time_t *cachedTime = NULL , bool promoteRecord = true); bool getRecord ( collnum_t collnum , key_t cacheKey , char **rec , int32_t *recSize , bool doCopy , int32_t maxAge , // in seconds bool incCounts , time_t *cachedTime = NULL, bool promoteRecord = true) { return getRecord (collnum,(char *)&cacheKey,rec,recSize,doCopy, maxAge,incCounts,cachedTime, promoteRecord); }; bool getRecord ( char *coll , key_t cacheKey , char **rec , int32_t *recSize , bool doCopy , int32_t maxAge , // in seconds bool incCounts , time_t *cachedTime = NULL, bool promoteRecord = true) { return getRecord (coll,(char *)&cacheKey,rec,recSize,doCopy, maxAge,incCounts,cachedTime, promoteRecord); }; bool setTimeStamp ( collnum_t collnum , key_t cacheKey , int32_t newTimeStamp ) { return setTimeStamp ( collnum , (char *)&cacheKey , newTimeStamp ); }; bool setTimeStamp ( collnum_t collnum , char *cacheKey , int32_t newTimeStamp ); // . returns true if found, false if not found // . sets errno no error // . if "copyRecords" is true then COPIES into a new buffer // . maxAge constraint for ignoring the stale nodes // . promotes the returned list to the head of the linked list // . maxAge of -1 means no maxAge // . maxAge of 0 means do not check the cache // . uses "startKey" to get the list // . if "incCounts" is true and we hit we inc the hit count // . if "incCounts" is true and we miss we inc the miss count bool getList ( collnum_t collnum , //key_t cacheKey , //key_t startKey , char *cacheKey , char *startKey , RdbList *list , bool doCopy , int32_t maxAge , // in seconds bool incCounts ); // use this key for cache lookup of the list rather than form from // startKey/endKey bool addList ( collnum_t collnum , char *cacheKey , RdbList *list ); bool addList ( collnum_t collnum , key_t cacheKey , RdbList *list ) { return addList(collnum,(char *)&cacheKey,list); }; bool addList ( char *coll , char *cacheKey , RdbList *list ); bool addList ( char *coll , key_t cacheKey , RdbList *list ) { return addList(coll,(char *)&cacheKey,list); }; // . add a list of only 1 record // . return false on error and set g_errno, otherwise return true // . recOffset is proper offset into the buffer system bool addRecord ( collnum_t collnum , //key_t cacheKey , char *cacheKey , char *rec , int32_t recSize , int32_t timestamp = 0 , char **retRecPtr = NULL ) ; bool addRecord ( char *coll , //key_t cacheKey , char *cacheKey , char *rec , int32_t recSize , int32_t timestamp = 0 ); bool addRecord ( collnum_t collnum , key_t cacheKey , char *rec , int32_t recSize , int32_t timestamp = 0 ) { return addRecord(collnum,(char *)&cacheKey,rec,recSize, timestamp); }; bool addRecord ( char *coll , key_t cacheKey , char *rec , int32_t recSize , int32_t timestamp = 0 ) { return addRecord(coll,(char *)&cacheKey,rec,recSize, timestamp); }; void verify(); // . just checks to see if a record is in the cache // . does not promote record // . used by Msg34.cpp for disk load balancing bool isInCache ( collnum_t collnum , char *cacheKey , int32_t maxAge ); bool isInCache ( collnum_t collnum , key_t cacheKey , int32_t maxAge ) { return isInCache(collnum,(char *)&cacheKey,maxAge);}; // these include our mem AND our tree's mem combined int32_t getMemOccupied () { return m_memOccupied ; }; int32_t getMemAlloced () { return m_memAlloced ; }; //int32_t getRecOverhead () { // return 3*4 + m_tree.m_overhead; }; int32_t getMaxMem () { return m_maxMem; }; //int32_t getBaseMem () { // return m_baseMem + m_tree.m_baseMem; }; // cache stats int64_t getNumHits () { return m_numHits; }; int64_t getNumMisses () { return m_numMisses; }; int64_t getHitBytes () { return m_hitBytes; }; int32_t getNumUsedNodes () { return m_numPtrsUsed; }; int32_t getNumTotalNodes () { return m_numPtrsMax ; }; bool useDisk ( ) { return m_useDisk; }; bool load ( char *dbname ); bool save ( bool useThreads ); bool save_r ( ); bool save2_r ( int fd ); void threadDone ( ); bool load ( ); int32_t m_saveError; // called internally by save() bool saveSome_r ( int fd, int32_t *iptr , int32_t *off ) ; // remove a key range from the cache void removeKeyRange ( collnum_t collnum, char *startKey, char *endKey ); char *getDbname () { return m_dbname ; }; char *m_dbname; // private: bool addRecord ( collnum_t collnum , //key_t cacheKey , char *cacheKey , char *rec1 , int32_t recSize1 , char *rec2 , int32_t recSize2 , int32_t timestamp , char **retRecPtr = NULL ) ; bool deleteRec ( ); //void addKey ( collnum_t collnum , key_t key , char *ptr ) ; //void removeKey ( collnum_t collnum , key_t key , char *rec ) ; void addKey ( collnum_t collnum , char *key , char *ptr ) ; void removeKey ( collnum_t collnum , char *key , char *rec ) ; void markDeletedRecord(char *ptr); bool convertCache ( int32_t numPtrsMax , int32_t maxMem ) ; bool m_convert; int32_t m_convertNumPtrsMax; int32_t m_convertMaxMem; bool m_isSaving; // . mem stats -- just for arrays we contain -- not in tree // . memory that is allocated and in use, including dataSizes int32_t m_memOccupied; // total memory allocated including dataSizes of our records int32_t m_memAlloced; // allocated memory for m_next/m_prev/m_time arrays //int32_t m_baseMem; // don't let m_memAlloced exceed this int32_t m_maxMem; // . data is stored in m_bufs, an array of buffers // . we may have to use multiple bufs because we cannot allocate more // than 128 Megabytes without pthread_create() failing // . we can have up to 32 bufs of 128M each, that's 4 gigs, plenty char *m_bufs [32]; int32_t m_bufSizes [32]; // size of the alloc'd space int32_t m_numBufs; int32_t m_totalBufSize; // gbpwrite() assumes 32 bits int32_t m_offset; // where next rec is stored int32_t m_tail; // next rec to delete // the hash table, buckets are ptrs into an m_bufs[i] char **m_ptrs; int32_t m_numPtrsMax; int32_t m_numPtrsUsed; int32_t m_threshold; // use this for testing to make sure cache doesn't fuck up the content //int32_t *m_crcs; // cache hits and misses int64_t m_numHits; // includes partial hits & cached not-founds too //int64_t m_numPartialHits; int64_t m_numMisses; int64_t m_hitBytes; int32_t m_fixedDataSize; bool m_supportLists; bool m_useHalfKeys; bool m_useDisk; // load/save from disk? // have we wrapped yet? int8_t m_wrapped; // keySize of cache keys in bytes char m_cks; // keysize of lists for addList() and getList() char m_dks; // count the add ops int64_t m_adds; int64_t m_deletes; char m_needsSave; char m_corruptionDetected; int64_t m_maxColls; }; #endif
[ "mwells@titan.(none)", "[email protected]", "[email protected]" ]
[ [ [ 1, 5 ], [ 7, 30 ], [ 33, 75 ], [ 78, 78 ], [ 80, 85 ], [ 87, 88 ], [ 90, 90 ], [ 93, 94 ], [ 96, 96 ], [ 98, 99 ], [ 101, 101 ], [ 105, 106 ], [ 108, 108 ], [ 110, 111 ], [ 115, 116 ], [ 118, 122 ], [ 124, 127 ], [ 129, 129 ], [ 131, 138 ], [ 140, 140 ], [ 142, 148 ], [ 150, 150 ], [ 152, 161 ], [ 163, 163 ], [ 165, 173 ], [ 175, 181 ], [ 183, 200 ], [ 202, 220 ], [ 223, 228 ], [ 231, 234 ], [ 237, 242 ], [ 245, 252 ], [ 255, 257 ], [ 259, 259 ], [ 261, 261 ], [ 263, 263 ], [ 265, 265 ], [ 267, 268 ], [ 274, 278 ], [ 280, 281 ], [ 283, 284 ], [ 286, 301 ], [ 303, 303 ], [ 306, 314 ], [ 316, 316 ], [ 319, 323 ], [ 325, 325 ], [ 327, 327 ], [ 329, 329 ], [ 331, 336 ], [ 342, 344 ], [ 348, 348 ], [ 350, 351 ], [ 356, 356 ], [ 358, 362 ], [ 364, 371 ], [ 374, 377 ], [ 380, 382 ] ], [ [ 6, 6 ], [ 31, 32 ], [ 76, 77 ], [ 79, 79 ], [ 86, 86 ], [ 89, 89 ], [ 91, 92 ], [ 95, 95 ], [ 97, 97 ], [ 100, 100 ], [ 102, 104 ], [ 107, 107 ], [ 109, 109 ], [ 112, 114 ], [ 117, 117 ], [ 123, 123 ], [ 128, 128 ], [ 130, 130 ], [ 139, 139 ], [ 141, 141 ], [ 149, 149 ], [ 151, 151 ], [ 162, 162 ], [ 164, 164 ], [ 174, 174 ], [ 182, 182 ], [ 201, 201 ], [ 221, 222 ], [ 229, 230 ], [ 235, 236 ], [ 243, 244 ], [ 253, 254 ], [ 258, 258 ], [ 260, 260 ], [ 262, 262 ], [ 264, 264 ], [ 266, 266 ], [ 269, 273 ], [ 279, 279 ], [ 282, 282 ], [ 285, 285 ], [ 302, 302 ], [ 304, 305 ], [ 315, 315 ], [ 317, 318 ], [ 324, 324 ], [ 326, 326 ], [ 328, 328 ], [ 330, 330 ], [ 337, 341 ], [ 345, 347 ], [ 349, 349 ], [ 352, 355 ], [ 357, 357 ], [ 363, 363 ], [ 372, 373 ], [ 379, 379 ] ], [ [ 378, 378 ] ] ]
e1b1240b296621b5523630b31d65b88d88af048e
d8f1638d63e611ed1619755ca26de4ea96bf1d7b
/PC_Interface/Interface/Interface.ino
4fdf5155133640117e627d876a20a1401953a9b5
[]
no_license
schmitfe/Stimulator_FPGA
27b3e14bdb0330579ac6c8e2bada5dd41820bf74
1016d487b89ac5f1de4d3648e18f312f3439ba7e
refs/heads/master
2023-02-11T19:23:52.376766
2019-12-31T15:10:30
2019-12-31T15:10:30
199,415,384
0
0
null
null
null
null
UTF-8
C++
false
false
14,776
ino
/* Copyright (c) 2019 Stefan Kremser This software is licensed under the MIT License. See the license file for details. Source: github.com/spacehuhn/SimpleCLI */ /* Adapted by Felix Schmitt to create Interface for Stimulator. PLEASE NOTE: 115200 is the baud rate and Newline is enabled in the serial monitor */ // Inlcude Library Command Line #include <SimpleCLI.h> #include <SPI.h> #include "SdFat.h" #include "sdios.h" //#include "Pins.h" #include "JsonStreamingParser.h" #include "JsonListener.h" #include "Parser.h" #define Channels 2 //Defines number of Channels, not tested with more channels possible errors at the write functin //for channel adress, trig and // Create CLI Object SimpleCLI cli; // Commands Command cmdLs; Command cmdRm; Command cmdStore; Command cmdReset; Command cmdWF; Command cmdtrig; Command cmdHelp; Command cmdDesc; Command cmdAmpli; Command cmdInterIv; Command cmdInterPer; Command cmdWave; Command cmdDoutDebug; // set up variables using the SD utility library functions: // File system object. SdFat sd; // Directory file. SdFile root; // Use for file creation in folders. SdFile file; //----------Pins---------------// const unsigned int Ptrig[] = {49, 51, 53}; //Ptrig all, ch0 -x const unsigned int P_RESET = 68; const unsigned int P_RESET_CH = 69; const unsigned int PinsInterPeriod[] = {61, 60, 59, 58, 57, 56, 55, 54};//{54, 55, 56, 57, 58, 59, 60, 61}; const unsigned int PinsInterInterval[] = {10, 9, 8, 7, 6, 5, 4, 3}; //{3, 4, 5, 6, 7,8,9,10}; const unsigned int PinsAmplitude[] = {21, 20, 19, 18}; const unsigned int PWrite = 63; const unsigned int PWrite2 = 36; const unsigned int PWrite3 = 37; const unsigned int P_EnWrite = 62; const unsigned int PWaveAddr[] = {64}; const unsigned int PWriteConfig = {65}; const unsigned int PChanAdress[] = {66}; const unsigned int PChanAdress2[] = {38}; const unsigned int PChanAdress3[] = {39}; const unsigned int PDout[] = {25, 26, 27, 28, 14, 15, 29, 11}; // Has to be on same port of SAM, Arduino ports are not ordered! const unsigned int chipSelect = 52; //SD-Card //---------------buffers---------------------// char bufferJson[40]; //-------struct to store data of channels----// typedef struct { int amplitude; int iinterval; int iperiod; int waveadress; } SChannelSet; SChannelSet *ChannelSet = NULL; void setup() { //--------setup of pins---------------// int ii; for ( ii = 0; ii < sizeof(Ptrig) / sizeof(Ptrig[0]); ii = ii + 1 ) { pinMode(Ptrig[ii], OUTPUT); digitalWrite(Ptrig[ii], LOW); } for ( ii = 0; ii < sizeof(PinsInterPeriod) / sizeof(PinsInterPeriod[0]); ii = ii + 1 ) { pinMode(PinsInterPeriod[ii], OUTPUT); digitalWrite(PinsInterPeriod[ii], LOW); } for ( ii = 0; ii < sizeof(PinsInterInterval) / sizeof(PinsInterInterval[0]); ii = ii + 1 ) { pinMode(PinsInterInterval[ii], OUTPUT); digitalWrite(PinsInterInterval[ii], LOW); } for ( ii = 0; ii < sizeof(PWaveAddr) / sizeof(PWaveAddr[0]); ii = ii + 1 ) { pinMode(PWaveAddr[ii], OUTPUT); digitalWrite(PWaveAddr[ii], LOW); } for ( ii = 0; ii < sizeof(PinsAmplitude) / sizeof(PinsAmplitude[0]); ii = ii + 1 ) { pinMode(PinsAmplitude[ii], OUTPUT); digitalWrite(PinsAmplitude[ii], LOW); } for ( ii = 0; ii < sizeof(PChanAdress) / sizeof(PChanAdress[0]); ii = ii + 1 ) { pinMode(PChanAdress[ii], OUTPUT); digitalWrite(PChanAdress[ii], LOW); pinMode(PChanAdress2[ii], OUTPUT); digitalWrite(PChanAdress2[ii], LOW); pinMode(PChanAdress3[ii], OUTPUT); digitalWrite(PChanAdress3[ii], LOW); } for ( ii = 0; ii < sizeof(PDout) / sizeof(PDout[0]); ii = ii + 1 ) { pinMode(PDout[ii], OUTPUT); digitalWrite(PDout[ii], LOW); } pinMode(P_RESET, OUTPUT); digitalWrite(P_RESET, LOW); pinMode(P_RESET_CH, OUTPUT); digitalWrite(P_RESET_CH, LOW); pinMode(PWrite, OUTPUT); digitalWrite(PWrite, LOW); pinMode(PWrite2, OUTPUT); digitalWrite(PWrite, LOW); pinMode(PWrite3, OUTPUT); digitalWrite(PWrite, LOW); pinMode(P_EnWrite, OUTPUT); digitalWrite(P_EnWrite, LOW); pinMode(PWriteConfig, OUTPUT); digitalWrite(PWriteConfig, LOW); //--------setup of interface---------------// Serial.begin(115200); while (!Serial) { ; // wait for serial port to connect. Needed for native USB port only } Serial.println("\nInitializing SD card..."); // we'll use the initialization code from the utility libraries // since we're just testing if the card is working! // Initialize at the highest speed supported by the board that is // not over 50 MHz. Try a lower speed if SPI errors occur. if (!sd.begin(chipSelect, SD_SCK_MHZ(50))) { //should be 50 sd.initErrorHalt(); } //--------setup of channel settings---------------// ChannelSet = (SChannelSet*) malloc(sizeof * ChannelSet * (Channels + 1)); //Channel zero contains defaultvalues ChannelSet[0].amplitude = 1; ChannelSet[0].iinterval = 0; ChannelSet[0].iperiod = 0; ChannelSet[0].waveadress = 0; for ( ii = 1; ii < Channels + 1 ; ii = ii + 1 ) { ChannelSet[ii].amplitude = ChannelSet[0].amplitude; ChannelSet[ii].iinterval = ChannelSet[0].iinterval; ChannelSet[ii].iperiod = ChannelSet[0].iperiod; ChannelSet[ii].waveadress = ChannelSet[0].waveadress; } //--------creation of commands---------------// cmdLs = cli.addCmd("ls"); cmdRm = cli.addCmd("rm"); cmdRm.addPosArg("file"); cmdStore = cli.addCmd("store"); cmdStore.addPosArg("file"); cmdReset = cli.addCmd("reset"); cmdReset.addPosArg("ID"); cmdWF = cli.addCmd("WF"); cmdWF.addPosArg("file"); cmdWF.addPosArg("ID"); cmdtrig = cli.addCmd("trig"); cmdtrig.addPosArg("ID"); cmdDesc = cli.addCmd("descrip"); cmdDesc.addPosArg("file"); cmdAmpli = cli.addCmd("amp"); cmdAmpli.addPosArg("ID"); cmdAmpli.addPosArg("value"); cmdInterIv = cli.addCmd("iniv"); cmdInterIv.addPosArg("ID"); cmdInterIv.addPosArg("value"); cmdInterPer = cli.addCmd("inper"); cmdInterPer.addPosArg("ID"); cmdInterPer.addPosArg("value"); cmdWave = cli.addCmd("wave"); cmdWave.addPosArg("ID"); cmdWave.addPosArg("value"); cmdHelp = cli.addCommand("help"); cmdDoutDebug=cli.addCmd("ddeb"); //debuggig command cmdDoutDebug.addPosArg("value"); Serial.println("CLI: type help for commandlist"); } void loop() { //--------CLI loop---------------// if (Serial.available()) { String input = Serial.readStringUntil('\n'); if (input.length() > 0) { // Serial.print("# "); cli.parse(input); } } if (cli.available()) { Command c = cli.getCmd(); int argNum = c.countArgs(); /* Serial.print("> "); // Serial.print(c.getName()); // Serial.print(' '); for (int i = 0; i < argNum; ++i) { Argument arg = c.getArgument(i); // if(arg.isSet()) { Serial.print(arg.toString()); Serial.print(' '); } Serial.println(); */ //--------if input available find corresponding command---------------// if (c == cmdLs) { listFolder(); } else if (c == cmdRm) { RemoveDir (c.getArgument(0)); } else if (c == cmdStore) { SaveFile(c.getArgument(0)); } else if (c == cmdDesc) { description(c.getArgument(0)); } else if (c == cmdAmpli) { setAmplitude(c.getArgument(0), c.getArgument(1)); } else if (c == cmdInterIv) { setInterInterval(c.getArgument(0), c.getArgument(1)); } else if (c == cmdInterPer) { setInterPeriod(c.getArgument(0), c.getArgument(1)); } else if (c == cmdWave) { setWaveadress(c.getArgument(0), c.getArgument(1)); } else if (c == cmdReset) { reset(c.getArgument(0)); } else if (c == cmdWF) { loadWaveform(c.getArgument(0), c.getArgument(1)); } else if (c == cmdtrig) { Argument str = c.getArgument(0); trigger(str.getValue().toInt()); } else if (c == cmdHelp) { Serial.println("Help:"); Serial.println(cli.toString()); } else if(c == cmdDoutDebug){ Serial.println(c.getArgument(0).getValue()); WriteDoutDebug(c.getArgument(0)); } } if (cli.errored()) { CommandError cmdError = cli.getError(); Serial.print("ERROR: "); Serial.println(cmdError.toString()); if (cmdError.hasCommand()) { Serial.print("Did you mean \""); Serial.print(cmdError.getCommand().toString()); Serial.println("\"?"); } } } //--------functions to call in loop---------------// void storeChannel(Argument id) { unsigned long curTime; digitalWrite(PWriteConfig, LOW); curTime=micros(); Channeladress(id.getValue().toInt()); writePinArray(ChannelSet[id.getValue().toInt()].amplitude, PinsAmplitude, sizeof(PinsAmplitude) / sizeof(PinsAmplitude[0])); writePinArray(ChannelSet[id.getValue().toInt()].iperiod, PinsInterPeriod, sizeof(PinsInterPeriod) / sizeof(PinsInterPeriod[0])); writePinArray(ChannelSet[id.getValue().toInt()].iinterval, PinsInterInterval, sizeof(PinsInterInterval) / sizeof(PinsInterInterval[0])); writePinArray( ChannelSet[id.getValue().toInt()].waveadress, PWaveAddr, sizeof(PWaveAddr) / sizeof(PWaveAddr[0])); while(micros()-curTime <2); digitalWrite(PWriteConfig, HIGH); } void writePinArray(int value, const unsigned int *Pins, int NPins) { int ii; for(ii = 0; ii < NPins ; ii = ii + 1 ) { if( bitRead(value,ii)==1){ digitalWrite(Pins[NPins-1-ii],HIGH); } else{ digitalWrite(Pins[NPins-1-ii],LOW); } } } void setAmplitude(Argument id, Argument value) { ChannelSet[id.getValue().toInt()].amplitude = value.getValue().toInt(); storeChannel(id); } void setInterInterval(Argument id, Argument value) { ChannelSet[id.getValue().toInt()].iinterval = value.getValue().toInt(); storeChannel(id); } void setWaveadress(Argument id, Argument value) { ChannelSet[id.getValue().toInt()].waveadress = value.getValue().toInt(); storeChannel(id); } void setInterPeriod(Argument id, Argument value) { ChannelSet[id.getValue().toInt()].iperiod = value.getValue().toInt(); storeChannel(id); } void loadWaveform(Argument pathStr, Argument id) { bool WriteWFs = true; //Let parser write to FPGA String Description = ""; //reset(id); JsonStreamingParser parser; Listener listener(&WriteWFs, &Description, PWrite, PWrite2, PWrite3, PWriteConfig, PWaveAddr, 2); //bad way of introducing additional parameters parser.setListener(&listener); File myFile; if (!sd.chdir("/")) { Serial.println("Error: opening root!"); } sd.chdir("WF"); char path[12]; pathStr.getValue().toCharArray(path, 12); myFile = sd.open(path, FILE_READ); Channeladress(id.getValue().toInt()); digitalWrite(P_EnWrite, HIGH); unsigned long curTime; curTime = micros(); while (micros() - curTime < 500); while (myFile.available()) { parser.parse(myFile.read()); } myFile.close(); digitalWrite(P_EnWrite, LOW); Channeladress(0); WriteWFs = false; } void description(Argument pathStr) { bool WriteWFs = false; String Description = ""; JsonStreamingParser parser; Listener listener(&WriteWFs, &Description,PWrite, PWrite2, PWrite3, PWriteConfig, PWaveAddr, 2); //bad way of introducing additional parameters parser.setListener(&listener); File myFile; if (!sd.chdir("/")) { Serial.println("Error: opening root!"); } sd.chdir("WF"); char path[12]; pathStr.getValue().toCharArray(path, 12); myFile = sd.open(path, FILE_READ); WriteWFs = false; //Let parser write to FPGA while (myFile.available()) { parser.parse(myFile.read()); } myFile.close(); Serial.print("Description of " + pathStr.getValue() + " : "); Serial.println(Description); Description = ""; } void listFolder() { if (!sd.chdir("/")) { Serial.println("Error: opening root!"); } if (!sd.chdir("WF")) { sd.mkdir("WF"); sd.chdir("WF"); } sd.ls("/WF", LS_R); } void trigger(int id) { unsigned long curTime; digitalWrite(Ptrig[id], HIGH); curTime = micros(); while (micros() - curTime < 20); digitalWrite(Ptrig[id], LOW); } void reset(Argument id) { int ii = 0; unsigned long curTime; if (id.getValue().toInt() == 0) { digitalWrite(P_RESET, HIGH); curTime = micros(); while (micros() - curTime < 2); digitalWrite(P_RESET, LOW); for ( ii = 1; ii < Channels + 1 ; ii = ii + 1 ) { ChannelSet[ii].amplitude = ChannelSet[0].amplitude; ChannelSet[ii].iinterval = ChannelSet[0].iinterval; ChannelSet[ii].iperiod = ChannelSet[0].iperiod; ChannelSet[ii].waveadress = ChannelSet[0].waveadress; } } else { digitalWrite(P_RESET_CH, HIGH); curTime = micros(); ChannelSet[id.getValue().toInt()].amplitude = ChannelSet[0].amplitude; ChannelSet[id.getValue().toInt()].iinterval = ChannelSet[0].iinterval; ChannelSet[id.getValue().toInt()].iperiod = ChannelSet[0].iperiod; ChannelSet[id.getValue().toInt()].waveadress = ChannelSet[0].waveadress; while (micros() - curTime < 2); storeChannel(id); digitalWrite(P_RESET_CH, LOW); storeChannel(id); } } void Channeladress(int id) { int adress=0; if (id == 0) { digitalWrite(*PChanAdress, LOW); digitalWrite(*PChanAdress2, LOW); digitalWrite(*PChanAdress3, LOW); } else { writePinArray(id-1, PChanAdress, sizeof(PChanAdress) / sizeof(PChanAdress[0])); writePinArray(id-1, PChanAdress2, sizeof(PChanAdress2) / sizeof(PChanAdress2[0])); writePinArray(id-1, PChanAdress3, sizeof(PChanAdress3) / sizeof(PChanAdress3[0])); } } void RemoveDir (Argument str) { char path[12]; str.getValue().toCharArray(path, 12); if (!sd.chdir("/")) { Serial.println("Error: opening root!"); } sd.chdir("WF"); sd.remove(path); } void SaveFile (Argument str) { File myFile; char path[12]; uint8_t incomingByte; str.getValue().toCharArray(path, 12); if (!sd.chdir("/")) { Serial.println("Error: opening root!"); } sd.chdir("WF"); sd.remove(path); myFile = sd.open(path, FILE_WRITE); Serial.println("Please send File."); while (Serial.available() == 0); // read the incoming byte: incomingByte = Serial.read(); while (incomingByte != 10) { myFile.write(incomingByte); while (Serial.available() == 0); incomingByte = Serial.read(); } myFile.close(); Serial.println("File saved!"); } //Debug function to find right order of pins void WriteDoutDebug(Argument value) { unsigned long curTime; PIOD->PIO_SODR= value.getValue().toInt(); PIOD->PIO_CODR=~value.getValue().toInt()&0x00FF; digitalWrite(PWrite, LOW); curTime=micros(); while(micros()-curTime <20); digitalWrite(PWrite, HIGH); curTime=micros(); while(micros()-curTime <20); }
[ [ [ 1, 575 ] ] ]
23a5265142f9e8174c5821cc0d4c21e628db3217
d7d7dabc0002a09b87736f8d5163424cfe1c14cf
/source/Plugins/Process/Utility/UnwindLLDB.cpp
203d4c1f658b9ac86aba4481de175fbb9d53f78c
[ "NCSA" ]
permissive
Keno/lldb
c29df7c850db9dd3db614a8b5e9a1284ee842342
2d75775deee48874159a76f01ed48f8b4d2e2a1b
refs/heads/master
2020-02-26T15:34:38.678249
2013-12-29T17:25:48
2013-12-29T17:25:48
null
0
0
null
null
null
null
UTF-8
C++
false
false
10,884
cpp
//===-- UnwindLLDB.cpp -------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/Core/Module.h" #include "lldb/Core/Log.h" #include "lldb/Symbol/FuncUnwinders.h" #include "lldb/Symbol/Function.h" #include "lldb/Symbol/UnwindPlan.h" #include "lldb/Target/Thread.h" #include "lldb/Target/Target.h" #include "lldb/Target/Process.h" #include "lldb/Target/RegisterContext.h" #include "UnwindLLDB.h" #include "RegisterContextLLDB.h" using namespace lldb; using namespace lldb_private; UnwindLLDB::UnwindLLDB (Thread &thread) : Unwind (thread), m_frames(), m_unwind_complete(false) { } uint32_t UnwindLLDB::DoGetFrameCount() { if (!m_unwind_complete) { //#define DEBUG_FRAME_SPEED 1 #if DEBUG_FRAME_SPEED #define FRAME_COUNT 10000 TimeValue time_value (TimeValue::Now()); #endif if (!AddFirstFrame ()) return 0; ProcessSP process_sp (m_thread.GetProcess()); ABI *abi = process_sp ? process_sp->GetABI().get() : NULL; while (AddOneMoreFrame (abi)) { #if DEBUG_FRAME_SPEED if ((m_frames.size() % FRAME_COUNT) == 0) { TimeValue now(TimeValue::Now()); uint64_t delta_t = now - time_value; printf ("%u frames in %" PRIu64 ".%09llu ms (%g frames/sec)\n", FRAME_COUNT, delta_t / TimeValue::NanoSecPerSec, delta_t % TimeValue::NanoSecPerSec, (float)FRAME_COUNT / ((float)delta_t / (float)TimeValue::NanoSecPerSec)); time_value = now; } #endif } } return m_frames.size (); } bool UnwindLLDB::AddFirstFrame () { if (m_frames.size() > 0) return true; // First, set up the 0th (initial) frame CursorSP first_cursor_sp(new Cursor ()); RegisterContextLLDBSP reg_ctx_sp (new RegisterContextLLDB (m_thread, RegisterContextLLDBSP(), first_cursor_sp->sctx, 0, *this)); if (reg_ctx_sp.get() == NULL) goto unwind_done; if (!reg_ctx_sp->IsValid()) goto unwind_done; if (!reg_ctx_sp->GetCFA (first_cursor_sp->cfa)) goto unwind_done; if (!reg_ctx_sp->ReadPC (first_cursor_sp->start_pc)) goto unwind_done; // Everything checks out, so release the auto pointer value and let the // cursor own it in its shared pointer first_cursor_sp->reg_ctx_lldb_sp = reg_ctx_sp; m_frames.push_back (first_cursor_sp); return true; unwind_done: Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND)); if (log) { log->Printf ("th%d Unwind of this thread is complete.", m_thread.GetIndexID()); } m_unwind_complete = true; return false; } // For adding a non-zero stack frame to m_frames. bool UnwindLLDB::AddOneMoreFrame (ABI *abi) { // If we've already gotten to the end of the stack, don't bother to try again... if (m_unwind_complete) return false; Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND)); CursorSP cursor_sp(new Cursor ()); // Frame zero is a little different if (m_frames.size() == 0) return false; uint32_t cur_idx = m_frames.size (); RegisterContextLLDBSP reg_ctx_sp(new RegisterContextLLDB (m_thread, m_frames[cur_idx - 1]->reg_ctx_lldb_sp, cursor_sp->sctx, cur_idx, *this)); // We want to detect an unwind that cycles erronously and stop backtracing. // Don't want this maximum unwind limit to be too low -- if you have a backtrace // with an "infinitely recursing" bug, it will crash when the stack blows out // and the first 35,000 frames are uninteresting - it's the top most 5 frames that // you actually care about. So you can't just cap the unwind at 10,000 or something. // Realistically anything over around 200,000 is going to blow out the stack space. // If we're still unwinding at that point, we're probably never going to finish. if (cur_idx > 300000) { if (log) log->Printf ("%*sFrame %d unwound too many frames, assuming unwind has gone astray, stopping.", cur_idx < 100 ? cur_idx : 100, "", cur_idx); goto unwind_done; } if (reg_ctx_sp.get() == NULL) { if (log) log->Printf ("%*sFrame %d did not get a RegisterContext, stopping.", cur_idx < 100 ? cur_idx : 100, "", cur_idx); goto unwind_done; } if (!reg_ctx_sp->IsValid()) { if (log) { log->Printf("%*sFrame %d invalid RegisterContext for this frame, stopping stack walk", cur_idx < 100 ? cur_idx : 100, "", cur_idx); } goto unwind_done; } if (!reg_ctx_sp->GetCFA (cursor_sp->cfa)) { if (log) { log->Printf("%*sFrame %d did not get CFA for this frame, stopping stack walk", cur_idx < 100 ? cur_idx : 100, "", cur_idx); } goto unwind_done; } if (abi && !abi->CallFrameAddressIsValid(cursor_sp->cfa)) { if (log) { log->Printf("%*sFrame %d did not get a valid CFA for this frame, stopping stack walk", cur_idx < 100 ? cur_idx : 100, "", cur_idx); } goto unwind_done; } if (!reg_ctx_sp->ReadPC (cursor_sp->start_pc)) { if (log) { log->Printf("%*sFrame %d did not get PC for this frame, stopping stack walk", cur_idx < 100 ? cur_idx : 100, "", cur_idx); } goto unwind_done; } if (abi && !abi->CodeAddressIsValid (cursor_sp->start_pc)) { if (log) { log->Printf("%*sFrame %d did not get a valid PC, stopping stack walk", cur_idx < 100 ? cur_idx : 100, "", cur_idx); } goto unwind_done; } if (!m_frames.empty()) { // Infinite loop where the current cursor is the same as the previous one... if (m_frames.back()->start_pc == cursor_sp->start_pc && m_frames.back()->cfa == cursor_sp->cfa) { if (log) log->Printf ("th%d pc of this frame is the same as the previous frame and CFAs for both frames are identical -- stopping unwind", m_thread.GetIndexID()); goto unwind_done; } } cursor_sp->reg_ctx_lldb_sp = reg_ctx_sp; m_frames.push_back (cursor_sp); return true; unwind_done: if (log) { log->Printf ("th%d Unwind of this thread is complete.", m_thread.GetIndexID()); } m_unwind_complete = true; return false; } bool UnwindLLDB::DoGetFrameInfoAtIndex (uint32_t idx, addr_t& cfa, addr_t& pc) { if (m_frames.size() == 0) { if (!AddFirstFrame()) return false; } ProcessSP process_sp (m_thread.GetProcess()); ABI *abi = process_sp ? process_sp->GetABI().get() : NULL; while (idx >= m_frames.size() && AddOneMoreFrame (abi)) ; if (idx < m_frames.size ()) { cfa = m_frames[idx]->cfa; pc = m_frames[idx]->start_pc; return true; } return false; } lldb::RegisterContextSP UnwindLLDB::DoCreateRegisterContextForFrame (StackFrame *frame) { lldb::RegisterContextSP reg_ctx_sp; uint32_t idx = frame->GetConcreteFrameIndex (); if (idx == 0) { return m_thread.GetRegisterContext(); } if (m_frames.size() == 0) { if (!AddFirstFrame()) return reg_ctx_sp; } ProcessSP process_sp (m_thread.GetProcess()); ABI *abi = process_sp ? process_sp->GetABI().get() : NULL; while (idx >= m_frames.size()) { if (!AddOneMoreFrame (abi)) break; } const uint32_t num_frames = m_frames.size(); if (idx < num_frames) { Cursor *frame_cursor = m_frames[idx].get(); reg_ctx_sp = frame_cursor->reg_ctx_lldb_sp; } return reg_ctx_sp; } UnwindLLDB::RegisterContextLLDBSP UnwindLLDB::GetRegisterContextForFrameNum (uint32_t frame_num) { RegisterContextLLDBSP reg_ctx_sp; if (frame_num < m_frames.size()) reg_ctx_sp = m_frames[frame_num]->reg_ctx_lldb_sp; return reg_ctx_sp; } bool UnwindLLDB::SearchForSavedLocationForRegister (uint32_t lldb_regnum, lldb_private::UnwindLLDB::RegisterLocation &regloc, uint32_t starting_frame_num, bool pc_reg) { int64_t frame_num = starting_frame_num; if (frame_num >= m_frames.size()) return false; // Never interrogate more than one level while looking for the saved pc value. If the value // isn't saved by frame_num, none of the frames lower on the stack will have a useful value. if (pc_reg) { UnwindLLDB::RegisterSearchResult result; result = m_frames[frame_num]->reg_ctx_lldb_sp->SavedLocationForRegister (lldb_regnum, regloc); if (result == UnwindLLDB::RegisterSearchResult::eRegisterFound) return true; else return false; } while (frame_num >= 0) { UnwindLLDB::RegisterSearchResult result; result = m_frames[frame_num]->reg_ctx_lldb_sp->SavedLocationForRegister (lldb_regnum, regloc); // If we have unwind instructions saying that register N is saved in register M in the middle of // the stack (and N can equal M here, meaning the register was not used in this function), then // change the register number we're looking for to M and keep looking for a concrete location // down the stack, or an actual value from a live RegisterContext at frame 0. if (result == UnwindLLDB::RegisterSearchResult::eRegisterFound && regloc.type == UnwindLLDB::RegisterLocation::eRegisterInRegister && frame_num > 0) { result = UnwindLLDB::RegisterSearchResult::eRegisterNotFound; lldb_regnum = regloc.location.register_number; } if (result == UnwindLLDB::RegisterSearchResult::eRegisterFound) return true; if (result == UnwindLLDB::RegisterSearchResult::eRegisterIsVolatile) return false; frame_num--; } return false; }
[ [ [ 1, 10 ], [ 12, 14 ], [ 19, 19 ], [ 23, 27 ], [ 30, 33 ], [ 35, 35 ], [ 37, 37 ], [ 43, 44 ], [ 65, 71 ], [ 75, 76 ], [ 96, 98 ], [ 100, 104 ], [ 107, 110 ], [ 112, 112 ], [ 118, 124 ], [ 130, 145 ], [ 147, 150 ], [ 152, 153 ], [ 155, 160 ], [ 162, 162 ], [ 164, 169 ], [ 171, 171 ], [ 173, 178 ], [ 180, 180 ], [ 182, 187 ], [ 189, 189 ], [ 199, 208 ], [ 211, 212 ], [ 215, 218 ], [ 221, 223 ], [ 225, 231 ], [ 236, 246 ], [ 248, 249 ], [ 252, 260 ], [ 262, 263 ], [ 272, 272 ], [ 280, 281 ], [ 283, 284 ], [ 288, 333 ] ], [ [ 11, 11 ], [ 15, 18 ], [ 20, 22 ], [ 38, 42 ], [ 45, 55 ], [ 57, 57 ], [ 61, 64 ], [ 77, 81 ], [ 83, 84 ], [ 86, 87 ], [ 89, 90 ], [ 92, 95 ], [ 111, 111 ], [ 117, 117 ], [ 125, 129 ], [ 146, 146 ], [ 154, 154 ], [ 163, 163 ], [ 172, 172 ], [ 181, 181 ], [ 190, 196 ], [ 198, 198 ], [ 210, 210 ], [ 232, 235 ], [ 247, 247 ], [ 250, 251 ], [ 261, 261 ], [ 264, 271 ], [ 273, 279 ], [ 282, 282 ], [ 285, 287 ] ], [ [ 28, 29 ], [ 34, 34 ], [ 36, 36 ], [ 72, 74 ], [ 82, 82 ], [ 85, 85 ], [ 88, 88 ], [ 91, 91 ], [ 99, 99 ], [ 105, 106 ], [ 113, 116 ], [ 151, 151 ], [ 161, 161 ], [ 170, 170 ], [ 179, 179 ], [ 188, 188 ], [ 197, 197 ], [ 213, 214 ], [ 219, 220 ], [ 224, 224 ] ], [ [ 56, 56 ] ], [ [ 58, 60 ] ], [ [ 209, 209 ] ] ]
06cfb9ca96a61137a348fc2045f8693d23f03832
d160bb839227b14bb25e6b1b70c8dffb8d270274
/MCMS/Main/Processes/Resource/ResourceLib/ConfResources.cpp
6a1729f5225cd051689ecd1184f8de8e5b900429
[]
no_license
somesh-ballia/mcms
62a58baffee123a2af427b21fa7979beb1e39dd3
41aaa87d5f3b38bc186749861140fef464ddadd4
refs/heads/master
2020-12-02T22:04:46.442309
2017-07-03T06:02:21
2017-07-03T06:02:21
96,075,113
1
0
null
null
null
null
UTF-8
C++
false
false
38,433
cpp
#include "ConfResources.h" #include "StatusesGeneral.h" #include "ProcessBase.h" #include "TraceStream.h" #include "ResourceManager.h" #include "WrappersResource.h" #include "HelperFuncs.h" #include "VideoApiDefinitionsStrings.h" #include <algorithm> #include <functional> //////////////////////////////////////////////////////////////////////////// // CUdpRsrcDesc //////////////////////////////////////////////////////////////////////////// CUdpRsrcDesc::CUdpRsrcDesc(WORD rsrcPartyId, WORD servId, WORD subServId, WORD PQMid) { m_rsrcPartyId = rsrcPartyId; m_servId = servId; m_PQMid = PQMid; m_subServId = subServId; memset(&m_udp, 0, sizeof(UdpAddresses)); for (int i = 0; i < MAX_NUM_OF_ALLOCATED_PARTY_UDP_PORTS; i++) { m_rtp_channels[i] = 0; m_rtcp_channels[i] = 0; } } //////////////////////////////////////////////////////////////////////////// CUdpRsrcDesc::~CUdpRsrcDesc() { } //////////////////////////////////////////////////////////////////////////// bool operator==(const CUdpRsrcDesc& lhs,const CUdpRsrcDesc& rhs) { return ((lhs.m_rsrcPartyId == rhs.m_rsrcPartyId) && (lhs.m_type == rhs.m_type )); } //////////////////////////////////////////////////////////////////////////// bool operator<(const CUdpRsrcDesc& lhs,const CUdpRsrcDesc& rhs) { if (lhs.m_rsrcPartyId != rhs.m_rsrcPartyId) return (lhs.m_rsrcPartyId < rhs.m_rsrcPartyId); return (lhs.m_type < rhs.m_type); } //////////////////////////////////////////////////////////////////////////// void CUdpRsrcDesc::SetIpAddresses(ipAddressV4If ipAddressV4, const ipv6AddressArray& ipAddressV6) { CIPV4Wrapper v4wrapper(m_udp.IpV4Addr); v4wrapper.CopyData(ipAddressV4); CIPV6AraryWrapper v6wrapper(m_udp.IpV6AddrArray); v6wrapper.CopyData(ipAddressV6); } //////////////////////////////////////////////////////////////////////////// // CRsrcDesc //////////////////////////////////////////////////////////////////////////// CRsrcDesc::CRsrcDesc(DWORD connectionId, eLogicalResourceTypes type, DWORD rsrcConfId, WORD rsrcPartyId, WORD boxId , WORD bId, WORD subBid, WORD uid, WORD acceleratorId, WORD firstPortId, ECntrlType cntrl, WORD channelId, BOOL bIsUpdated /*= FALSE*/ ) { m_connectionId = connectionId; m_type = type; m_rsrcConfId = rsrcConfId; m_rsrcPartyId = rsrcPartyId; m_boxId = boxId; m_boardId = bId; m_subBoardId = subBid; m_unitId = uid; m_acceleratorId = acceleratorId; m_firstPortId = firstPortId; m_numPorts = 1; m_cntrl = cntrl; m_channelId = channelId; m_bIsUpdated = bIsUpdated; memset(&m_IpV4Addr, 0, sizeof(m_IpV4Addr)); } //////////////////////////////////////////////////////////////////////////// CRsrcDesc::~CRsrcDesc() { } //////////////////////////////////////////////////////////////////////////// bool operator==(const CRsrcDesc& lhs,const CRsrcDesc& rhs) { //net ports can be the same except for the board, portid, unit_id (=span id) and accelerator_id, so check this if (lhs.m_type == eLogical_net && rhs.m_type == eLogical_net) if (lhs.m_firstPortId != rhs.m_firstPortId || lhs.m_unitId != rhs.m_unitId || lhs.m_acceleratorId != rhs.m_acceleratorId || lhs.m_boardId != rhs.m_boardId) return FALSE; return ((lhs.m_rsrcPartyId == rhs.m_rsrcPartyId) && (lhs.m_type == rhs.m_type ) && (lhs.m_cntrl == rhs.m_cntrl)); } //////////////////////////////////////////////////////////////////////////// bool operator<(const CRsrcDesc& lhs,const CRsrcDesc& rhs) { if (lhs.m_rsrcPartyId != rhs.m_rsrcPartyId) return (lhs.m_rsrcPartyId < rhs.m_rsrcPartyId); else if (lhs.m_type != rhs.m_type) return (lhs.m_type < rhs.m_type); else if (lhs.m_type != eLogical_net) return (lhs.m_cntrl < rhs.m_cntrl); else //if it's net type { if (lhs.m_firstPortId != rhs.m_firstPortId) return (lhs.m_firstPortId < rhs.m_firstPortId); else if (lhs.m_acceleratorId != rhs.m_acceleratorId) return (lhs.m_acceleratorId < rhs.m_acceleratorId); else if (lhs.m_unitId != rhs.m_unitId) return (lhs.m_unitId < rhs.m_unitId); else return (lhs.m_boardId < rhs.m_boardId); } } //////////////////////////////////////////////////////////////////////////// void CRsrcDesc::SetIpAddresses(ipAddressV4If ipAddressV4) { CIPV4Wrapper v4wrapper(m_IpV4Addr); v4wrapper.CopyData(ipAddressV4); } //////////////////////////////////////////////////////////////////////////// eResourceTypes CRsrcDesc::GetPhysicalType() const { switch (m_type) { case eLogical_audio_encoder: return ePhysical_art; case eLogical_audio_decoder: return ePhysical_art; case eLogical_audio_controller: return ePhysical_audio_controller; case eLogical_video_encoder: case eLogical_video_encoder_content: case eLogical_COP_CIF_encoder: case eLogical_COP_VSW_encoder: case eLogical_COP_PCM_encoder: case eLogical_COP_HD720_encoder: case eLogical_COP_HD1080_encoder: case eLogical_COP_4CIF_encoder: return ePhysical_video_encoder; case eLogical_video_decoder: case eLogical_COP_Dynamic_decoder: case eLogical_COP_VSW_decoder: case eLogical_COP_LM_decoder: return ePhysical_video_decoder; case eLogical_rtp: return ePhysical_art; /*Not in use for now case eLogical_ip_signaling: return ePhysical_res_none; */ case eLogical_net: return ePhysical_rtm; case eLogical_ivr_controller: return ePhysical_ivr_controller; case eLogical_mux: return ePhysical_art; // OLGA - Soft MCU case eLogical_relay_rtp: case eLogical_relay_svc_to_avc_rtp: case eLogical_relay_video_encoder: return ePhysical_mrmp; case eLogical_relay_audio_encoder: case eLogical_relay_audio_decoder: case eLogical_legacy_to_SAC_audio_encoder: case eLogical_relay_avc_to_svc_rtp: case eLogical_relay_avc_to_svc_rtp_with_audio_encoder: return ePhysical_art; case eLogical_relay_avc_to_svc_video_encoder_1: case eLogical_relay_avc_to_svc_video_encoder_2: return ePhysical_video_encoder; default: return ePhysical_res_none; } } //////////////////////////////////////////////////////////////////////////// std::ostream& operator<<(std::ostream& os, CRsrcDesc& obj) { os << "\n ConnectionId :" << obj.m_connectionId << "\n ResourceType :" << obj.m_type << "\n ConfId :" << obj.m_rsrcConfId << "\n PartyId :" << obj.m_rsrcPartyId << "\n BoxId :" << obj.m_boxId << "\n BoardId :" << obj.m_boardId << "\n SubBoardId :" << obj.m_subBoardId << "\n UnitId :" << obj.m_unitId << "\n AcceleratorId :" << obj.m_acceleratorId << "\n FirstPortId :" << obj.m_firstPortId; return os; } //////////////////////////////////////////////////////////////////////////// // CConfRsrc //////////////////////////////////////////////////////////////////////////// CConfRsrc::CConfRsrc(DWORD monitorConfId, eSessionType sessionType, eLogicalResourceTypes encoderLogicalType, eConfMediaType confMediaType) { m_monitorConfId = monitorConfId; m_sessionType = sessionType; m_rsrcConfId = 0; //0 - not allocated. m_num_Parties = 0; m_pUdpRsrcDescList = new std::set<CUdpRsrcDesc>; m_encoderTypeCOP = encoderLogicalType; m_confMediaState = eMediaStateEmpty; m_confMediaType = confMediaType; m_mrcMcuId = 1; } //////////////////////////////////////////////////////////////////////////// CConfRsrc::CConfRsrc(const CConfRsrc& other) : CPObject(other), m_pUdpRsrcDescList(new std::set<CUdpRsrcDesc>(*(other.m_pUdpRsrcDescList))) { m_monitorConfId = other.m_monitorConfId; m_sessionType = other.m_sessionType; m_bondingPhones = other.m_bondingPhones; m_parties = other.m_parties; m_rsrcConfId = other.m_rsrcConfId; //0 - not allocated. m_num_Parties = other.m_num_Parties; m_encoderTypeCOP = other.m_encoderTypeCOP; m_confMediaState = other.m_confMediaState; m_confMediaType = other.m_confMediaType; m_mrcMcuId = other.m_mrcMcuId; m_pRsrcDescList = other.m_pRsrcDescList; } //////////////////////////////////////////////////////////////////////////// CConfRsrc::~CConfRsrc() { m_pUdpRsrcDescList->clear(); PDELETE( m_pUdpRsrcDescList); m_pUdpRsrcDescList = 0 ; } //////////////////////////////////////////////////////////////////////////// WORD operator==(const CConfRsrc& lhs,const CConfRsrc& rhs) { return (lhs.m_monitorConfId == rhs.m_monitorConfId); } //////////////////////////////////////////////////////////////////////////// bool operator<(const CConfRsrc& lhs,const CConfRsrc& rhs) { return (lhs.m_monitorConfId < rhs.m_monitorConfId); } //////////////////////////////////////////////////////////////////////////// STATUS CConfRsrc::AddUdpDesc(CUdpRsrcDesc* pUdpRsrcDesc) { PASSERT_AND_RETURN_VALUE(!pUdpRsrcDesc, STATUS_FAIL); std::set<CUdpRsrcDesc>::iterator _itr = m_pUdpRsrcDescList->find(*pUdpRsrcDesc); PASSERT_AND_RETURN_VALUE(_itr != m_pUdpRsrcDescList->end(), STATUS_FAIL); m_pUdpRsrcDescList->insert(*pUdpRsrcDesc); return STATUS_OK; } //////////////////////////////////////////////////////////////////////////// // The function only updates existing desc, not adding new one, if not found STATUS CConfRsrc::UpdateUdpDesc(WORD rsrcpartyId, CUdpRsrcDesc* pUdpRsrcDesc) { PASSERT_AND_RETURN_VALUE(!pUdpRsrcDesc, STATUS_FAIL); CUdpRsrcDesc desc(rsrcpartyId); std::set<CUdpRsrcDesc>::iterator _itr = m_pUdpRsrcDescList->find(desc); PASSERT_AND_RETURN_VALUE(_itr == m_pUdpRsrcDescList->end(), STATUS_FAIL); m_pUdpRsrcDescList->erase(_itr); m_pUdpRsrcDescList->insert(*pUdpRsrcDesc); return STATUS_OK; } //////////////////////////////////////////////////////////////////////////// STATUS CConfRsrc::RemoveUdpDesc(WORD rsrcpartyId) { std::set<CUdpRsrcDesc>::iterator i; CUdpRsrcDesc desc(rsrcpartyId); i = m_pUdpRsrcDescList->find(desc); if (i == m_pUdpRsrcDescList->end())//not exists { PASSERT(1); return STATUS_FAIL; } m_pUdpRsrcDescList->erase(i); return STATUS_OK; } //////////////////////////////////////////////////////////////////////////// const CUdpRsrcDesc* CConfRsrc::GetUdpDesc(WORD rsrcpartyId)const { std::set<CUdpRsrcDesc>::iterator i; CUdpRsrcDesc desc(rsrcpartyId); i = m_pUdpRsrcDescList->find(desc); if (i == m_pUdpRsrcDescList->end())//not exists { PASSERT(1); return NULL; } return (&(*i)); } //////////////////////////////////////////////////////////////////////////// STATUS CConfRsrc::AddDesc(CRsrcDesc* pRsrcDesc) { if (!pRsrcDesc || pRsrcDesc->GetRsrcConfId() != m_rsrcConfId) { DBGPASSERT(1); if (pRsrcDesc) TRACEINTOLVLERR << "ERROR: m_rsrcConfId = " << m_rsrcConfId << ", GetRsrcConfId()=" << pRsrcDesc->GetRsrcConfId(); return STATUS_FAIL; } if (m_pRsrcDescList.find(*pRsrcDesc) != m_pRsrcDescList.end()) {//desc already exists TRACEINTOLVLERR << "Failed, descriptor already exists" << *pRsrcDesc; PASSERT_AND_RETURN_VALUE(1, STATUS_FAIL); } m_pRsrcDescList.insert(*pRsrcDesc); return STATUS_OK; } //////////////////////////////////////////////////////////////////////////// STATUS CConfRsrc::RemoveDesc(WORD rsrcpartyId, eLogicalResourceTypes type, ECntrlType cntrl, WORD portId, WORD unitId, WORD acceleratorId, WORD boardId) { CRsrcDesc desc(0, type, 0, rsrcpartyId, 0, boardId, 0, unitId, acceleratorId, portId, cntrl); RSRC_DESC_MULTISET_ITR itr = m_pRsrcDescList.find(desc); if (itr == m_pRsrcDescList.end()) // not exists { TRACEINTOLVLERR << "Failed, descriptor not exist" << desc; PASSERT_AND_RETURN_VALUE(1, STATUS_FAIL); } m_pRsrcDescList.erase(itr); return STATUS_OK; } //////////////////////////////////////////////////////////////////////////// CRsrcDesc* CConfRsrc::GetDescFromConnectionId(DWORD connectionId) { RSRC_DESC_MULTISET_ITR itr; for (itr = m_pRsrcDescList.begin(); itr != m_pRsrcDescList.end(); itr++) { if ((itr->GetConnId() == connectionId)) { return ((CRsrcDesc*)(&(*itr))); } } return NULL; } //////////////////////////////////////////////////////////////////////////// const CRsrcDesc* CConfRsrc::GetDesc(WORD rsrcpartyId, eLogicalResourceTypes type, ECntrlType cntrl, WORD portId, WORD unitId, WORD acceleratorId, WORD boardId) { CRsrcDesc desc(0, type, 0, rsrcpartyId, 0, boardId, 0, unitId, acceleratorId, portId, cntrl); RSRC_DESC_MULTISET_ITR i = m_pRsrcDescList.find(desc); if (i == m_pRsrcDescList.end()) // not exists { // PASSERT(1); return NULL; } return (&(*i)); } //////////////////////////////////////////////////////////////////////////// const CRsrcDesc* CConfRsrc::GetDescByType(eLogicalResourceTypes type, ECntrlType cntrl) { RSRC_DESC_MULTISET_ITR itr; for (itr = m_pRsrcDescList.begin(); itr != m_pRsrcDescList.end(); itr++) { if (itr->GetType() == type && itr->GetCntrlType() == cntrl) { return ((CRsrcDesc*)(&(*itr))); } } return NULL; } //////////////////////////////////////////////////////////////////////////// int CConfRsrc::GetDescArray( CRsrcDesc**& pRsrcDescArray) { int arrSize = m_pRsrcDescList.size(); if( 0 == arrSize ) return 0; pRsrcDescArray = new CRsrcDesc*[arrSize]; RSRC_DESC_MULTISET_ITR itr; int i = 0; for (itr = m_pRsrcDescList.begin(); itr != m_pRsrcDescList.end(); itr++) { pRsrcDescArray[i] = (CRsrcDesc*)&(*itr); i++; } return i; } //////////////////////////////////////////////////////////////////////////// // Need to receive in pRsrcDescList memory of MAX_NUM_ALLOCATED_RSRCS_NET pointers (CRsrcDesc*) allocated for the output (and initialized to all NULLs) // Returns number of RsrcDescs found. WORD CConfRsrc::GetDescArrayPerResourceTypeByRsrcId(WORD rsrcpartyId,eLogicalResourceTypes type, CRsrcDesc** pRsrcDescArray, BYTE arrSize) const { RSRC_DESC_MULTISET_ITR itr; int i = 0; for (itr = m_pRsrcDescList.begin(); itr != m_pRsrcDescList.end(); itr++) { if ((itr->GetRsrcPartyId() == rsrcpartyId ) && ( (itr->GetType() == type) || (eLogical_res_none == type))) { if (i < arrSize) // For protection { pRsrcDescArray[i] = (CRsrcDesc*)&(*itr); i++; } else PASSERTMSG(1, "CConfRsrc::GetDescArrayPerResourceTypeByRsrcId - error in call to function"); } } return i; } //////////////////////////////////////////////////////////////////////////// const CPartyRsrc* CConfRsrc::GetPartyRsrcByRsrcPartyId(PartyRsrcID partyId) const { PARTIES::iterator _iiEnd = m_parties.end(); for (PARTIES::iterator _ii = m_parties.begin(); _ii != _iiEnd; ++_ii) { if (_ii->GetRsrcPartyId() == partyId) return &(*_ii); } return NULL; } //////////////////////////////////////////////////////////////////////////// WORD CConfRsrc::GetNumVideoPartiesPerBoard(WORD boardId) { WORD numVideoParties = 0; PARTIES::iterator _iiEnd = m_parties.end(); for (PARTIES::iterator _ii = m_parties.begin(); _ii != _iiEnd; ++_ii) { PartyRsrcID partyId = _ii->GetRsrcPartyId(); CPartyRsrc* pParty = const_cast<CPartyRsrc*>(GetPartyRsrcByRsrcPartyId(partyId)); if (pParty) { eVideoPartyType videoPartyType = pParty->GetVideoPartyType(); if (eVideo_party_type_none != videoPartyType) { CRsrcDesc* pDecDesc = const_cast<CRsrcDesc*>(GetDesc(partyId, eLogical_video_decoder)); if (pDecDesc) { if (boardId == pDecDesc->GetBoardId()) numVideoParties++; } } } } return numVideoParties; } //////////////////////////////////////////////////////////////////////////// // CPartyRsrc //////////////////////////////////////////////////////////////////////////// CPartyRsrc::CPartyRsrc(PartyMonitorID monitorPartyId, eNetworkPartyType networkPartyType, eVideoPartyType videoPartyType, WORD ARTChannels, ePartyRole partyRole,eHdVswTypesInMixAvcSvc hdVswTypeInMixAvcSvcMode) { m_monitorPartyId = monitorPartyId; m_networkPartyType = networkPartyType; m_videoPartyType = videoPartyType; m_resourcePartyType = e_Audio; m_partyRole = partyRole; m_rsrcPartyId = 0; //0 - not allocated. m_CSconnId = 0; #ifdef MS_LYNC_AVMCU_LINK // MS Lync m_partySigOrganizerConnId = 0; m_partySigFocusConnId = 0; m_partySigEventPackConnId = 0; #endif m_DialInReservedPorts = 0; m_ARTChannels = ARTChannels; m_roomPartyId = 0; //TIP Cisco m_tipPartyType = eTipNone; m_countPartyAsICEinMFW = FALSE; m_ssrcAudio = 0; m_tipNumOfScreens = 0; m_HdVswTypeInMixAvcSvcMode = hdVswTypeInMixAvcSvcMode; memset(m_ssrcContent, 0, sizeof(m_ssrcContent)); memset(m_ssrcVideo, 0, sizeof(m_ssrcVideo)); } //////////////////////////////////////////////////////////////////////////// CPartyRsrc::CPartyRsrc(const CPartyRsrc& other) : CPObject(other), m_monitorPartyId(other.m_monitorPartyId), m_rsrcPartyId(other.m_rsrcPartyId), m_roomPartyId(other.m_roomPartyId), m_tipPartyType(other.m_tipPartyType), m_tipNumOfScreens(other.m_tipNumOfScreens), m_networkPartyType(other.m_networkPartyType), m_videoPartyType(other.m_videoPartyType), m_resourcePartyType(other.m_resourcePartyType), m_partyRole(other.m_partyRole), m_ARTChannels(other.m_ARTChannels), m_CSconnId(other.m_CSconnId), #ifdef MS_LYNC_AVMCU_LINK // MS Lync m_partySigOrganizerConnId(other.m_partySigOrganizerConnId), m_partySigFocusConnId(other.m_partySigFocusConnId), m_partySigEventPackConnId(other.m_partySigEventPackConnId), #endif m_DialInReservedPorts(other.m_DialInReservedPorts), m_countPartyAsICEinMFW(other.m_countPartyAsICEinMFW), m_HdVswTypeInMixAvcSvcMode(other.m_HdVswTypeInMixAvcSvcMode) { m_ssrcAudio = other.m_ssrcAudio; for(WORD i=0;i<MAX_NUM_RECV_STREAMS_FOR_CONTENT;i++) m_ssrcContent[i] = other.m_ssrcContent[i]; for(WORD i=0;i<MAX_NUM_RECV_STREAMS_FOR_VIDEO;i++) m_ssrcVideo[i] = other.m_ssrcVideo[i]; } //////////////////////////////////////////////////////////////////////////// CPartyRsrc::~CPartyRsrc() { } //////////////////////////////////////////////////////////////////////////// void CPartyRsrc::SetARTChannels(WORD ARTChannels) { m_ARTChannels = ARTChannels; // bridge-809: assert only not in soft MCU - in soft MCU ARTChannels set to 0, not to limit soft ART capacity CSystemResources* pSyst = CHelperFuncs::GetSystemResources(); if (pSyst && !CHelperFuncs::IsSoftMCU(pSyst->GetProductType())) { DBGPASSERT(0 == ARTChannels); } } //////////////////////////////////////////////////////////////////////////// WORD operator==(const CPartyRsrc& lhs,const CPartyRsrc& rhs) { return (lhs.m_monitorPartyId == rhs.m_monitorPartyId); } //////////////////////////////////////////////////////////////////////////// bool operator<(const CPartyRsrc& lhs,const CPartyRsrc& rhs) { return (lhs.m_monitorPartyId < rhs.m_monitorPartyId); } //////////////////////////////////////////////////////////////////////////// STATUS CConfRsrc::AddParty(CPartyRsrc& party) { PASSERTSTREAM_AND_RETURN_VALUE(m_parties.find(party) != m_parties.end(), "MonitorPartyId:" << party.GetMonitorPartyId() << " - Already exist", STATUS_FAIL); TRACEINTO << "MonitorPartyId:" << party.GetMonitorPartyId() << ", PartyLogicalType:" << party.GetPartyResourceType(); m_parties.insert(party); m_num_Parties++; UpdateConfMediaStateByPartiesList(); return STATUS_OK; } //////////////////////////////////////////////////////////////////////////// BOOL CConfRsrc::CheckIfOneMorePartyCanBeAddedToConf2C(eVideoPartyType videoPartyType) { CSystemResources *pSystemResources = CHelperFuncs::GetSystemResources(); eSystemCardsMode systemCardsMode = pSystemResources ? pSystemResources->GetSystemCardsMode() : eSystemCardsMode_illegal; if (eVSW_video_party_type == videoPartyType) { if((eVSW_28_session == m_sessionType && m_num_Parties > MAX_PARTIES_IN_CONF_2C_VSW28) || (eVSW_56_session == m_sessionType && m_num_Parties > MAX_PARTIES_IN_CONF_2C_VSW56)) { return FALSE; } else if (eVSW_Auto_session == m_sessionType) { if ((eSystemCardsMode_breeze == systemCardsMode && m_num_Parties > 180)) return FALSE; } } else if (eCOP_party_type == videoPartyType) { DWORD max_cop_parties = 160; //on breeze CReservator* pReservator = CHelperFuncs::GetReservator(); if (pReservator) max_cop_parties = pReservator->GetDongleRestriction(); TRACEINTO << " CConfRsrc::CheckIfOneMorePartyCanBeAddedToConf2C : max_cop_parties = " << max_cop_parties; if ((eCOP_HD1080_session == m_sessionType || eCOP_HD720_50_session == m_sessionType) && m_num_Parties >= max_cop_parties)//192 return FALSE; } return TRUE; } //////////////////////////////////////////////////////////////////////////// WORD CConfRsrc::RemoveAllParties(BYTE force_kill_all_ports) { CResourceManager* pRsrcMngr = (CResourceManager*)(CProcessBase::GetProcess()->GetCurrentTask()); if (!pRsrcMngr) { PASSERT(1); return 0; } DEALLOC_PARTY_REQ_PARAMS_S* pdeallocateParams = new DEALLOC_PARTY_REQ_PARAMS_S; memset(pdeallocateParams, 0, sizeof(DEALLOC_PARTY_REQ_PARAMS_S)); DEALLOC_PARTY_IND_PARAMS_S* pResult = new DEALLOC_PARTY_IND_PARAMS_S; pdeallocateParams->numOfRsrcsWithProblems = 0; pdeallocateParams->monitor_conf_id = m_monitorConfId; pdeallocateParams->force_kill_all_ports = force_kill_all_ports; // make a copy of parties container PARTIES PartyRsrcList = m_parties; PARTIES::iterator itr = PartyRsrcList.begin(); DWORD monitorPartyId = 0; WORD numOfRemovedParties = 0; for (itr = PartyRsrcList.begin(); itr != PartyRsrcList.end(); itr++) { monitorPartyId = ((CPartyRsrc*)(&(*itr)))->GetMonitorPartyId(); TRACEINTO << "monitorPartyId=" << monitorPartyId; memset(pResult, 0, sizeof(DEALLOC_PARTY_IND_PARAMS_S)); pdeallocateParams->monitor_party_id = monitorPartyId; pRsrcMngr->DeAlloc(pdeallocateParams, pResult); if (pResult->status == STATUS_OK) ++numOfRemovedParties; } delete pdeallocateParams; delete pResult; return numOfRemovedParties; } //////////////////////////////////////////////////////////////////////////// STATUS CConfRsrc::RemoveParty(PartyMonitorID monitorPartyId) { CPartyRsrc party(monitorPartyId); PARTIES::iterator itr = m_parties.find(party); PASSERTSTREAM_AND_RETURN_VALUE(itr == m_parties.end(), "MonitorPartyId:" << monitorPartyId << " - Party not exist", STATUS_FAIL); m_parties.erase(itr); m_num_Parties--; UpdateConfMediaStateByPartiesList(); return STATUS_OK; } //////////////////////////////////////////////////////////////////////////// const CPartyRsrc* CConfRsrc::GetParty(PartyMonitorID monitorPartyId) const { CPartyRsrc party(monitorPartyId); PARTIES::iterator itr = m_parties.find(party); TRACECOND_AND_RETURN_VALUE(itr == m_parties.end(), "MonitorPartyId:" << monitorPartyId << " - Party not exist", NULL); return &(*itr); } //////////////////////////////////////////////////////////////////////////// STATUS CConfRsrc::AddTempBondingPhoneNumber(PartyRsrcID partyId, Phone* pPhone) { PASSERT_AND_RETURN_VALUE(!pPhone, STATUS_FAIL); Phone* phone = new Phone; strcpy_safe(phone->phone_number, pPhone->phone_number); m_bondingPhones.insert(BONDING_PHONES::value_type(partyId, phone)); return STATUS_OK; } //////////////////////////////////////////////////////////////////////////// STATUS CConfRsrc::RemoveTempBondingPhoneNumber(PartyRsrcID partyId) { BONDING_PHONES::iterator itr = m_bondingPhones.find(partyId); if (itr == m_bondingPhones.end()) return STATUS_FAIL; delete itr->second; m_bondingPhones.erase(itr); return STATUS_OK; } //////////////////////////////////////////////////////////////////////////// Phone* CConfRsrc::GetTempBondingPhoneNumberByRsrcPartyId(PartyRsrcID partyId) const { BONDING_PHONES::const_iterator itr = m_bondingPhones.find(partyId); if (itr == m_bondingPhones.end()) return NULL; return itr->second; } //////////////////////////////////////////////////////////////////////////// WORD CConfRsrc::IsBoardIdAllocatedToConf(WORD boardId) { //if board allocated o conf - // there is have to be at least on RsrcDesc of this board. //WORD bId = 2; RSRC_DESC_MULTISET_ITR itr; for (itr = m_pRsrcDescList.begin(); itr != m_pRsrcDescList.end(); itr++) { if (itr->GetBoardId() == boardId) return TRUE; } return FALSE; } //////////////////////////////////////////////////////////////////////////// void CConfRsrc::AddListOfPartiesDescriptorsOnBoard(WORD boardId, WORD subBoardId, std::map<std::string,CONF_PARTY_ID_S*>* listOfConfIdPartyIdPair) const { RSRC_DESC_MULTISET_ITR itr; CRsrcDesc rsrcdesc; std::string strKey; CONF_PARTY_ID_S* pConf_party_id_s = NULL; for (itr = m_pRsrcDescList.begin(); itr != m_pRsrcDescList.end(); itr++) { rsrcdesc = ((CRsrcDesc)(*itr)); if (rsrcdesc.GetBoardId() == boardId) { //if subboard is 1 (MFA), this means that the whole card will be taken out, including the RTM //so it doesn't matter on which subboard it is if (subBoardId == MFA_SUBBOARD_ID || rsrcdesc.GetSubBoardId() == subBoardId) { strKey = GetPartyKey(rsrcdesc.GetRsrcConfId() ,rsrcdesc.GetRsrcPartyId()); if (listOfConfIdPartyIdPair->find(strKey) == listOfConfIdPartyIdPair->end()) { pConf_party_id_s = new CONF_PARTY_ID_S(); pConf_party_id_s->monitor_conf_id = GetMonitorConfId(); CPartyRsrc* pParty = (CPartyRsrc*)(GetPartyRsrcByRsrcPartyId(rsrcdesc.GetRsrcPartyId())); if (pParty == NULL) { POBJDELETE(pConf_party_id_s); PASSERT(1); continue; } else { pConf_party_id_s->monitor_party_id = pParty->GetMonitorPartyId(); } (*listOfConfIdPartyIdPair)[strKey] = pConf_party_id_s; } } } } } //////////////////////////////////////////////////////////////////////////// std::string CConfRsrc::GetPartyKey(DWORD rsrcConfId, DWORD rsrcPartyId) const { std::ostringstream o; o << rsrcConfId << "_" << rsrcPartyId; return o.str(); } //////////////////////////////////////////////////////////////////////////// STATUS CConfRsrc::GetFreeVideoRsrcVSW(CRsrcDesc*& pEncDesc, CRsrcDesc*& pDecDesc) { WORD rsrcId = 0, enc_found = 0, dec_found = 0; RSRC_DESC_MULTISET_ITR itr; for (itr = m_pRsrcDescList.begin(); itr != m_pRsrcDescList.end(); itr++) { CRsrcDesc* pRsrcDesc = (CRsrcDesc*)&(*itr); BOOL isDecType = CHelperFuncs::IsLogicalVideoDecoderType( pRsrcDesc->GetType()); BOOL isEncType = CHelperFuncs::IsLogicalVideoEncoderType( pRsrcDesc->GetType()); if (pRsrcDesc->GetIsUpdated() || (!isDecType && !isEncType) || (isDecType && dec_found) || (isEncType && enc_found)) continue; rsrcId = pRsrcDesc->GetRsrcPartyId(); if (isDecType) { dec_found = rsrcId; pDecDesc = pRsrcDesc; } else { enc_found = rsrcId; pEncDesc = pRsrcDesc; } if (dec_found && enc_found && dec_found == enc_found) break; } if (!pEncDesc || !pDecDesc) return STATUS_FAIL; return STATUS_OK; } //////////////////////////////////////////////////////////////////////////// STATUS CConfRsrc::GetBoardUnitIdByRoomIdTIP(DWORD room_id, WORD& boardIdTIP, WORD& unitIdTIP) //TIP Cisco { PARTIES::iterator _iiEnd = m_parties.end(); for (PARTIES::iterator _ii = m_parties.begin(); _ii != _iiEnd; ++_ii) { if (_ii->GetRoomPartyId() == room_id) { const CRsrcDesc* pAudEncDesc = GetDesc(_ii->GetRsrcPartyId(), eLogical_audio_encoder); if (pAudEncDesc) { boardIdTIP = pAudEncDesc->GetBoardId(); unitIdTIP = pAudEncDesc->GetUnitId(); return STATUS_OK; } } } return STATUS_FAIL; } //////////////////////////////////////////////////////////////////////////// WORD CConfRsrc::GetBoardIdForRelayParty() //olga { PARTIES::iterator _it = std::find_if(m_parties.begin(), m_parties.end(), compareVideoPartyFunc()); if (_it != m_parties.end()) { const CRsrcDesc* pRtpDesc = GetDesc(_it->GetRsrcPartyId(), eLogical_rtp); if (pRtpDesc) return pRtpDesc->GetBoardId(); } TRACEINTO << "Relay party is not allocated on any board"; return 0; } //////////////////////////////////////////////////////////////////////////// bool CConfRsrc::CheckIfThereAreRelayParty() const { PARTIES::iterator _it = std::find_if(m_parties.begin(), m_parties.end(), compareVideoPartyFunc()); return (_it != m_parties.end()); } //////////////////////////////////////////////////////////////////////////// bool CConfRsrc::CheckIfThereAreNotRelayParty() const { PARTIES::iterator _it = std::find_if(m_parties.begin(), m_parties.end(), not1(compareVideoPartyFunc())); return (_it != m_parties.end()); } //////////////////////////////////////////////////////////////////////////// STATUS CConfRsrc::GetBoardUnitIdByAvMcuLinkMain(PartyRsrcID mainPartyRsrcID, WORD& boardId, WORD& unitId) { const CRsrcDesc* pRtpDesc = GetDesc(mainPartyRsrcID, eLogical_rtp); if (pRtpDesc) { boardId = pRtpDesc->GetBoardId(); unitId = pRtpDesc->GetUnitId(); return STATUS_OK; } return STATUS_FAIL; } //////////////////////////////////////////////////////////////////////////// void CConfRsrc::CountAvcSvcParties(WORD& numAvc, WORD& numSvc) const { numAvc = 0; numSvc = 0; PARTIES::iterator _iiEnd = m_parties.end(); for (PARTIES::iterator _ii = m_parties.begin(); _ii != _iiEnd; ++_ii) { if (CHelperFuncs::IsVideoRelayParty(_ii->GetVideoPartyType())) numSvc++; else numAvc++; } } //////////////////////////////////////////////////////////////////////////// // Need to receive in pRsrcDescList memory of MAX_NUM_ALLOCATED_RSRCS_NET pointers (CRsrcDesc*) allocated for the output (and initialized to all NULLs) // Returns number of RsrcDescs found. WORD CConfRsrc::GetPartyRcrsDescArrayByRsrcId(DWORD rsrcpartyId, CRsrcDesc** pRsrcDescArray, WORD arrSize) { RSRC_DESC_MULTISET_ITR itr; int num_party_resources = 0; for (itr = m_pRsrcDescList.begin(); itr != m_pRsrcDescList.end(); itr++) { if (itr->GetRsrcPartyId() == rsrcpartyId) { if (num_party_resources < arrSize) // For protection { pRsrcDescArray[num_party_resources] = (CRsrcDesc*)&(*itr); num_party_resources++; } else{ PASSERTMSG(num_party_resources, "CConfRsrc::GetDescArrayPerResourceTypeByRsrcId - error in call to function"); } } } return num_party_resources; } //////////////////////////////////////////////////////////////////////////// WORD CConfRsrc::GetPartyRTPDescArrayByRsrcId(DWORD rsrcpartyId, CRsrcDesc** pRsrcDescArray, WORD arrSize) { RSRC_DESC_MULTISET_ITR itr; int num_party_resources = 0; for (itr = m_pRsrcDescList.begin(); itr != m_pRsrcDescList.end(); itr++) { if (itr->GetRsrcPartyId() == rsrcpartyId && CHelperFuncs::IsLogicalRTPtype(itr->GetType())) { if (num_party_resources < arrSize) // For protection { pRsrcDescArray[num_party_resources] = (CRsrcDesc*)&(*itr); num_party_resources++; } else{ PASSERTMSG(num_party_resources, "CConfRsrc::GetDescArrayPerResourceTypeByRsrcId - error in call to function"); } } } return num_party_resources; } //////////////////////////////////////////////////////////////////////////// void CConfRsrc::UpdateConfMediaStateByPartiesList() { bool hasRelayParties = CheckIfThereAreRelayParty(); bool hasNotRelayParties = CheckIfThereAreNotRelayParty(); if (eMediaStateMixAvcSvc == m_confMediaState) { // since we don't support downgrade - we don't change ConfMediaState after it already in mixed return; } if (!hasRelayParties && !hasNotRelayParties) { SetConfMediaState(eMediaStateEmpty); } else if (hasRelayParties && !hasNotRelayParties) { SetConfMediaState(eMediaStateSvcOnly); } else if (!hasRelayParties && hasNotRelayParties) { SetConfMediaState(eMediaStateAvcOnly); } } //////////////////////////////////////////////////////////////////////////// // CConfRsrcDB //////////////////////////////////////////////////////////////////////////// CConfRsrcDB::CConfRsrcDB() { m_numConfRsrcs = 0; } //////////////////////////////////////////////////////////////////////////// CConfRsrcDB::~CConfRsrcDB() { m_numConfRsrcs = 0; } //////////////////////////////////////////////////////////////////////////// STATUS CConfRsrcDB::AddConfRsrc(CConfRsrc* pConfRsrc) { PASSERT_AND_RETURN_VALUE(!pConfRsrc, STATUS_FAIL); PASSERT_AND_RETURN_VALUE(m_confList.find(*pConfRsrc) != m_confList.end(), STATUS_FAIL); m_confList.insert(*pConfRsrc); ConfRsrcID id = pConfRsrc->GetRsrcConfId(); if (STANDALONE_CONF_ID != id) m_numConfRsrcs++; TRACEINTO << "ConfId:" << id << ", NumOngoingConf:" << m_numConfRsrcs; return STATUS_OK; } //////////////////////////////////////////////////////////////////////////// STATUS CConfRsrcDB::RemoveConfRsrc(ConfMonitorID confId) { CConfRsrc conf(confId); RSRC_CONF_LIST::iterator _itr = m_confList.find(conf); if (_itr == m_confList.end()) return STATUS_FAIL; ConfRsrcID id = _itr->GetRsrcConfId(); if (STANDALONE_CONF_ID != id) { if (m_numConfRsrcs > 0) m_numConfRsrcs--; else PASSERT(1); } m_confList.erase(_itr); TRACEINTO << "ConfId:" << id << ", NumOngoingConf:" << m_numConfRsrcs; return STATUS_OK; } //////////////////////////////////////////////////////////////////////////// CConfRsrc* CConfRsrcDB::GetConfRsrc(ConfMonitorID confId) { CConfRsrc conf(confId); RSRC_CONF_LIST::iterator _itr = m_confList.find(conf); if (_itr != m_confList.end()) return (CConfRsrc*)(&(*_itr)); return NULL; } //////////////////////////////////////////////////////////////////////////// CConfRsrc* CConfRsrcDB::GetConfRsrcByRsrcConfId(ConfRsrcID confId) { RSRC_CONF_LIST::iterator _end = m_confList.end(); for (RSRC_CONF_LIST::iterator _itr = m_confList.begin(); _itr != _end; ++_itr) { if (_itr->GetRsrcConfId() == confId) return (CConfRsrc*)(&(*_itr)); } return NULL; } //////////////////////////////////////////////////////////////////////////// STATUS CConfRsrcDB::GetMonitorIdsRsrcIds(ConfRsrcID confId, PartyRsrcID partyId, ConfMonitorID& monitorConfId, PartyMonitorID& monitorPartyId) { monitorConfId = 0xFFFFFFFF; monitorPartyId = 0xFFFFFFFF; RSRC_CONF_LIST::iterator _end = m_confList.end(); for (RSRC_CONF_LIST::iterator _itr = m_confList.begin(); _itr != _end; ++_itr) { if (_itr->GetRsrcConfId() == confId) { monitorConfId = _itr->GetMonitorConfId(); const CPartyRsrc* pParty = _itr->GetPartyRsrcByRsrcPartyId(partyId); if (pParty) { monitorPartyId = pParty->GetMonitorPartyId(); return STATUS_OK; } } } return STATUS_FAIL; } //////////////////////////////////////////////////////////////////////////// bool CConfRsrcDB::IsExitingConf(ConfMonitorID confId) { const CConfRsrc* pConfRsrc = GetConfRsrc(confId); return (pConfRsrc == NULL)? false : true; } //////////////////////////////////////////////////////////////////////////// bool CConfRsrcDB::IsEmptyConf(ConfMonitorID confId) { CConfRsrc* pConfRsrc = GetConfRsrc(confId); PASSERT_AND_RETURN_VALUE(!pConfRsrc, true); return pConfRsrc->GetNumParties() ? false : true; } //////////////////////////////////////////////////////////////////////////// ConfRsrcID CConfRsrcDB::MonitorToRsrcConfId(ConfMonitorID confId) { CConfRsrc* pConfRsrc = GetConfRsrc(confId); return pConfRsrc ? pConfRsrc->GetRsrcConfId() : 0; } //////////////////////////////////////////////////////////////////////////// void CConfRsrcDB::GetAllPartiesOnBoard(WORD boardId, WORD subBoardId, std::map<std::string, CONF_PARTY_ID_S*>* listOfConfIdPartyIdPair) { RSRC_CONF_LIST::iterator _end = m_confList.end(); for (RSRC_CONF_LIST::iterator _itr = m_confList.begin(); _itr != _end; ++_itr) _itr->AddListOfPartiesDescriptorsOnBoard(boardId, subBoardId, listOfConfIdPartyIdPair); } //////////////////////////////////////////////////////////////////////////// void CConfRsrcDB::FillISDNServiceName(ConfMonitorID confId, PartyMonitorID partyId, char serviceName[GENERAL_SERVICE_PROVIDER_NAME_LEN]) { CSystemResources* pSystemResources = CHelperFuncs::GetSystemResources(); PASSERT_AND_RETURN(!pSystemResources); const CConfRsrc* pConfRsrc = GetConfRsrc(confId); TRACECOND_AND_RETURN(!pConfRsrc, "MonitorConfId:" << confId << " - Failed, conference not found"); const CPartyRsrc* pPartyRsrc = pConfRsrc->GetParty(partyId); TRACECOND_AND_RETURN(!pPartyRsrc, "MonitorPartyId:" << partyId << " - Failed, participant not found"); CRsrcDesc** pRsrcDescArray = new CRsrcDesc*[MAX_NUM_ALLOCATED_RSRCS_NET]; for (int i = 0 ; i < MAX_NUM_ALLOCATED_RSRCS_NET ; i++) pRsrcDescArray[i] = NULL; // Get all resource descriptors of RTM per a given party pConfRsrc->GetDescArrayPerResourceTypeByRsrcId(pPartyRsrc->GetRsrcPartyId(), eLogical_net, pRsrcDescArray); if (pRsrcDescArray[0] == NULL) { TRACEINTO << "MonitorPartyId:" << partyId << " - Failed, RTMs not found for party"; delete []pRsrcDescArray; return; } WORD boardId = pRsrcDescArray[0]->GetBoardId(); WORD unitId = pRsrcDescArray[0]->GetUnitId(); delete []pRsrcDescArray; CBoard* pBoard = pSystemResources->GetBoard(boardId); PASSERT_AND_RETURN(!pBoard); const CSpanRTM* pSpan = pBoard->GetRTM(unitId); PASSERT_AND_RETURN(!pSpan); const char* serviceNameFromSpan = pSpan->GetSpanServiceName(); if (serviceNameFromSpan) strcpy_safe(serviceName, sizeof(serviceName), serviceNameFromSpan); } //////////////////////////////////////////////////////////////////////////// PartyRsrcID CConfRsrcDB::MonitorToRsrcPartyId(ConfMonitorID confId, PartyMonitorID partyId) { const CConfRsrc* pConfRsrc = GetConfRsrc(confId); if (pConfRsrc) { const CPartyRsrc* pPartyRsrc = pConfRsrc->GetParty(partyId); if (pPartyRsrc) return pPartyRsrc->GetRsrcPartyId(); } return 0; } //////////////////////////////////////////////////////////////////////////// bool CConfRsrcDB::GetPartyType(ConfMonitorID confId, PartyMonitorID partyId, eNetworkPartyType& networkPartyType, eVideoPartyType& videoPartyType, ePartyRole& partyRole, WORD& artChannels, eSessionType& sessionType) { const CConfRsrc* pConfRsrc = GetConfRsrc(confId); TRACECOND_AND_RETURN_VALUE(!pConfRsrc, "MonitorConfId:" << confId << " - Failed, conference not found", false); const CPartyRsrc* pPartyRsrc = pConfRsrc->GetParty(partyId); TRACECOND_AND_RETURN_VALUE(!pPartyRsrc, "MonitorPartyId:" << partyId << " - Failed, participant not found", false); networkPartyType = pPartyRsrc->GetNetworkPartyType(); videoPartyType = pPartyRsrc->GetVideoPartyType(); partyRole = pPartyRsrc->GetPartyRole(); artChannels = pPartyRsrc->GetARTChannels(); sessionType = pConfRsrc->GetSessionType(); return true; }
[ [ [ 1, 1227 ] ] ]
6bb71dcc34b99d77ceb1ceff65cfbc759d142cb5
fb72a82827496e66e04ecb29abbca788a1ea0525
/src/wallet/wallet.h
5c79de2b263b987cf010ed0c6314bf311d8d6581
[ "MIT" ]
permissive
exiliumcore/exilium
92631c2e7abeeae6a80debbb699441d6b56e2fee
6aa88fe0c40fe72850e5bdb265741a375b2ab766
refs/heads/master
2020-03-14T05:50:41.214608
2018-05-13T01:00:24
2018-05-13T01:00:24
131,472,364
0
1
null
null
null
null
UTF-8
C++
false
false
37,762
h
// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2015 The Bitcoin Core developers // Copyright (c) 2014-2017 The Dash Core developers // Copyright (c) 2018 The Exilium Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_WALLET_WALLET_H #define BITCOIN_WALLET_WALLET_H #include "amount.h" #include "base58.h" #include "streams.h" #include "tinyformat.h" #include "ui_interface.h" #include "util.h" #include "utilstrencodings.h" #include "validationinterface.h" #include "wallet/crypter.h" #include "wallet/wallet_ismine.h" #include "wallet/walletdb.h" #include "privatesend.h" #include <algorithm> #include <map> #include <set> #include <stdexcept> #include <stdint.h> #include <string> #include <utility> #include <vector> #include <boost/shared_ptr.hpp> /** * Settings */ extern CFeeRate payTxFee; extern CAmount maxTxFee; extern unsigned int nTxConfirmTarget; extern bool bSpendZeroConfChange; extern bool fSendFreeTransactions; static const unsigned int DEFAULT_KEYPOOL_SIZE = 1000; //! -paytxfee default static const CAmount DEFAULT_TRANSACTION_FEE = 0; //! -paytxfee will warn if called with a higher fee than this amount (in satoshis) per KB static const CAmount nHighTransactionFeeWarning = 0.01 * COIN; //! -fallbackfee default static const CAmount DEFAULT_FALLBACK_FEE = 1000; //! -mintxfee default static const CAmount DEFAULT_TRANSACTION_MINFEE = 1000; //! -maxtxfee default static const CAmount DEFAULT_TRANSACTION_MAXFEE = 0.2 * COIN; // "smallest denom" + X * "denom tails" //! minimum change amount static const CAmount MIN_CHANGE = CENT; //! Default for -spendzeroconfchange static const bool DEFAULT_SPEND_ZEROCONF_CHANGE = true; //! Default for -sendfreetransactions static const bool DEFAULT_SEND_FREE_TRANSACTIONS = false; //! -txconfirmtarget default static const unsigned int DEFAULT_TX_CONFIRM_TARGET = 2; //! -maxtxfee will warn if called with a higher fee than this amount (in satoshis) static const CAmount nHighTransactionMaxFeeWarning = 100 * nHighTransactionFeeWarning; //! Largest (in bytes) free transaction we're willing to create static const unsigned int MAX_FREE_TRANSACTION_CREATE_SIZE = 1000; static const bool DEFAULT_WALLETBROADCAST = true; //! if set, all keys will be derived by using BIP39/BIP44 static const bool DEFAULT_USE_HD_WALLET = false; class CBlockIndex; class CCoinControl; class COutput; class CReserveKey; class CScript; class CTxMemPool; class CWalletTx; /** (client) version numbers for particular wallet features */ enum WalletFeature { FEATURE_BASE = 10500, // the earliest version new wallets supports (only useful for getinfo's clientversion output) FEATURE_WALLETCRYPT = 40000, // wallet encryption FEATURE_COMPRPUBKEY = 60000, // compressed public keys FEATURE_HD = 120200, // Hierarchical key derivation after BIP32 (HD Wallet), BIP44 (multi-coin), BIP39 (mnemonic) // which uses on-the-fly private key derivation FEATURE_LATEST = 61000 }; enum AvailableCoinsType { ALL_COINS, ONLY_DENOMINATED, ONLY_NONDENOMINATED, ONLY_1000, // find masternode outputs including locked ones (use with caution) ONLY_PRIVATESEND_COLLATERAL }; struct CompactTallyItem { CTxDestination txdest; CAmount nAmount; std::vector<CTxIn> vecTxIn; CompactTallyItem() { nAmount = 0; } }; /** A key pool entry */ class CKeyPool { public: int64_t nTime; CPubKey vchPubKey; bool fInternal; // for change outputs CKeyPool(); CKeyPool(const CPubKey& vchPubKeyIn, bool fInternalIn); ADD_SERIALIZE_METHODS; template <typename Stream, typename Operation> inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) { if (!(nType & SER_GETHASH)) READWRITE(nVersion); READWRITE(nTime); READWRITE(vchPubKey); if (ser_action.ForRead()) { try { READWRITE(fInternal); } catch (std::ios_base::failure&) { /* flag as external address if we can't read the internal boolean (this will be the case for any wallet before the HD chain split version) */ fInternal = false; } } else { READWRITE(fInternal); } } }; /** Address book data */ class CAddressBookData { public: std::string name; std::string purpose; CAddressBookData() { purpose = "unknown"; } typedef std::map<std::string, std::string> StringMap; StringMap destdata; }; struct CRecipient { CScript scriptPubKey; CAmount nAmount; bool fSubtractFeeFromAmount; }; typedef std::map<std::string, std::string> mapValue_t; static void ReadOrderPos(int64_t& nOrderPos, mapValue_t& mapValue) { if (!mapValue.count("n")) { nOrderPos = -1; // TODO: calculate elsewhere return; } nOrderPos = atoi64(mapValue["n"].c_str()); } static void WriteOrderPos(const int64_t& nOrderPos, mapValue_t& mapValue) { if (nOrderPos == -1) return; mapValue["n"] = i64tostr(nOrderPos); } struct COutputEntry { CTxDestination destination; CAmount amount; int vout; }; /** A transaction with a merkle branch linking it to the block chain. */ class CMerkleTx : public CTransaction { private: /** Constant used in hashBlock to indicate tx has been abandoned */ static const uint256 ABANDON_HASH; public: uint256 hashBlock; /* An nIndex == -1 means that hashBlock (in nonzero) refers to the earliest * block in the chain we know this or any in-wallet dependency conflicts * with. Older clients interpret nIndex == -1 as unconfirmed for backward * compatibility. */ int nIndex; CMerkleTx() { Init(); } CMerkleTx(const CTransaction& txIn) : CTransaction(txIn) { Init(); } void Init() { hashBlock = uint256(); nIndex = -1; } ADD_SERIALIZE_METHODS; template <typename Stream, typename Operation> inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) { std::vector<uint256> vMerkleBranch; // For compatibility with older versions. READWRITE(*(CTransaction*)this); nVersion = this->nVersion; READWRITE(hashBlock); READWRITE(vMerkleBranch); READWRITE(nIndex); } int SetMerkleBranch(const CBlock& block); /** * Return depth of transaction in blockchain: * <0 : conflicts with a transaction this deep in the blockchain * 0 : in memory pool, waiting to be included in a block * >=1 : this many blocks deep in the main chain */ int GetDepthInMainChain(const CBlockIndex* &pindexRet, bool enableIX = true) const; int GetDepthInMainChain(bool enableIX = true) const { const CBlockIndex *pindexRet; return GetDepthInMainChain(pindexRet, enableIX); } bool IsInMainChain() const { const CBlockIndex *pindexRet; return GetDepthInMainChain(pindexRet) > 0; } int GetBlocksToMaturity() const; bool AcceptToMemoryPool(bool fLimitFree=true, bool fRejectAbsurdFee=true); bool hashUnset() const { return (hashBlock.IsNull() || hashBlock == ABANDON_HASH); } bool isAbandoned() const { return (hashBlock == ABANDON_HASH); } void setAbandoned() { hashBlock = ABANDON_HASH; } }; /** * A transaction with a bunch of additional info that only the owner cares about. * It includes any unrecorded transactions needed to link it back to the block chain. */ class CWalletTx : public CMerkleTx { private: const CWallet* pwallet; public: mapValue_t mapValue; std::vector<std::pair<std::string, std::string> > vOrderForm; unsigned int fTimeReceivedIsTxTime; unsigned int nTimeReceived; //! time received by this node unsigned int nTimeSmart; char fFromMe; std::string strFromAccount; int64_t nOrderPos; //! position in ordered transaction list // memory only mutable bool fDebitCached; mutable bool fCreditCached; mutable bool fImmatureCreditCached; mutable bool fAvailableCreditCached; mutable bool fAnonymizedCreditCached; mutable bool fDenomUnconfCreditCached; mutable bool fDenomConfCreditCached; mutable bool fWatchDebitCached; mutable bool fWatchCreditCached; mutable bool fImmatureWatchCreditCached; mutable bool fAvailableWatchCreditCached; mutable bool fChangeCached; mutable CAmount nDebitCached; mutable CAmount nCreditCached; mutable CAmount nImmatureCreditCached; mutable CAmount nAvailableCreditCached; mutable CAmount nAnonymizedCreditCached; mutable CAmount nDenomUnconfCreditCached; mutable CAmount nDenomConfCreditCached; mutable CAmount nWatchDebitCached; mutable CAmount nWatchCreditCached; mutable CAmount nImmatureWatchCreditCached; mutable CAmount nAvailableWatchCreditCached; mutable CAmount nChangeCached; CWalletTx() { Init(NULL); } CWalletTx(const CWallet* pwalletIn) { Init(pwalletIn); } CWalletTx(const CWallet* pwalletIn, const CMerkleTx& txIn) : CMerkleTx(txIn) { Init(pwalletIn); } CWalletTx(const CWallet* pwalletIn, const CTransaction& txIn) : CMerkleTx(txIn) { Init(pwalletIn); } void Init(const CWallet* pwalletIn) { pwallet = pwalletIn; mapValue.clear(); vOrderForm.clear(); fTimeReceivedIsTxTime = false; nTimeReceived = 0; nTimeSmart = 0; fFromMe = false; strFromAccount.clear(); fDebitCached = false; fCreditCached = false; fImmatureCreditCached = false; fAvailableCreditCached = false; fAnonymizedCreditCached = false; fDenomUnconfCreditCached = false; fDenomConfCreditCached = false; fWatchDebitCached = false; fWatchCreditCached = false; fImmatureWatchCreditCached = false; fAvailableWatchCreditCached = false; fChangeCached = false; nDebitCached = 0; nCreditCached = 0; nImmatureCreditCached = 0; nAvailableCreditCached = 0; nAnonymizedCreditCached = 0; nDenomUnconfCreditCached = 0; nDenomConfCreditCached = 0; nWatchDebitCached = 0; nWatchCreditCached = 0; nAvailableWatchCreditCached = 0; nImmatureWatchCreditCached = 0; nChangeCached = 0; nOrderPos = -1; } ADD_SERIALIZE_METHODS; template <typename Stream, typename Operation> inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) { if (ser_action.ForRead()) Init(NULL); char fSpent = false; if (!ser_action.ForRead()) { mapValue["fromaccount"] = strFromAccount; WriteOrderPos(nOrderPos, mapValue); if (nTimeSmart) mapValue["timesmart"] = strprintf("%u", nTimeSmart); } READWRITE(*(CMerkleTx*)this); std::vector<CMerkleTx> vUnused; //! Used to be vtxPrev READWRITE(vUnused); READWRITE(mapValue); READWRITE(vOrderForm); READWRITE(fTimeReceivedIsTxTime); READWRITE(nTimeReceived); READWRITE(fFromMe); READWRITE(fSpent); if (ser_action.ForRead()) { strFromAccount = mapValue["fromaccount"]; ReadOrderPos(nOrderPos, mapValue); nTimeSmart = mapValue.count("timesmart") ? (unsigned int)atoi64(mapValue["timesmart"]) : 0; } mapValue.erase("fromaccount"); mapValue.erase("version"); mapValue.erase("spent"); mapValue.erase("n"); mapValue.erase("timesmart"); } //! make sure balances are recalculated void MarkDirty() { fCreditCached = false; fAvailableCreditCached = false; fImmatureCreditCached = false; fAnonymizedCreditCached = false; fDenomUnconfCreditCached = false; fDenomConfCreditCached = false; fWatchDebitCached = false; fWatchCreditCached = false; fAvailableWatchCreditCached = false; fImmatureWatchCreditCached = false; fDebitCached = false; fChangeCached = false; } void BindWallet(CWallet *pwalletIn) { pwallet = pwalletIn; MarkDirty(); } //! filter decides which addresses will count towards the debit CAmount GetDebit(const isminefilter& filter) const; CAmount GetCredit(const isminefilter& filter) const; CAmount GetImmatureCredit(bool fUseCache=true) const; CAmount GetAvailableCredit(bool fUseCache=true) const; CAmount GetImmatureWatchOnlyCredit(const bool& fUseCache=true) const; CAmount GetAvailableWatchOnlyCredit(const bool& fUseCache=true) const; CAmount GetChange() const; CAmount GetAnonymizedCredit(bool fUseCache=true) const; CAmount GetDenominatedCredit(bool unconfirmed, bool fUseCache=true) const; void GetAmounts(std::list<COutputEntry>& listReceived, std::list<COutputEntry>& listSent, CAmount& nFee, std::string& strSentAccount, const isminefilter& filter) const; void GetAccountAmounts(const std::string& strAccount, CAmount& nReceived, CAmount& nSent, CAmount& nFee, const isminefilter& filter) const; bool IsFromMe(const isminefilter& filter) const { return (GetDebit(filter) > 0); } // True if only scriptSigs are different bool IsEquivalentTo(const CWalletTx& tx) const; bool InMempool() const; bool IsTrusted() const; bool WriteToDisk(CWalletDB *pwalletdb); int64_t GetTxTime() const; int GetRequestCount() const; bool RelayWalletTransaction(CConnman* connman, std::string strCommand="tx"); std::set<uint256> GetConflicts() const; }; class COutput { public: const CWalletTx *tx; int i; int nDepth; bool fSpendable; bool fSolvable; COutput(const CWalletTx *txIn, int iIn, int nDepthIn, bool fSpendableIn, bool fSolvableIn) { tx = txIn; i = iIn; nDepth = nDepthIn; fSpendable = fSpendableIn; fSolvable = fSolvableIn; } //Used with Darksend. Will return largest nondenom, then denominations, then very small inputs int Priority() const; std::string ToString() const; }; /** Private key that includes an expiration date in case it never gets used. */ class CWalletKey { public: CPrivKey vchPrivKey; int64_t nTimeCreated; int64_t nTimeExpires; std::string strComment; //! todo: add something to note what created it (user, getnewaddress, change) //! maybe should have a map<string, string> property map CWalletKey(int64_t nExpires=0); ADD_SERIALIZE_METHODS; template <typename Stream, typename Operation> inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) { if (!(nType & SER_GETHASH)) READWRITE(nVersion); READWRITE(vchPrivKey); READWRITE(nTimeCreated); READWRITE(nTimeExpires); READWRITE(LIMITED_STRING(strComment, 65536)); } }; /** * Internal transfers. * Database key is acentry<account><counter>. */ class CAccountingEntry { public: std::string strAccount; CAmount nCreditDebit; int64_t nTime; std::string strOtherAccount; std::string strComment; mapValue_t mapValue; int64_t nOrderPos; //! position in ordered transaction list uint64_t nEntryNo; CAccountingEntry() { SetNull(); } void SetNull() { nCreditDebit = 0; nTime = 0; strAccount.clear(); strOtherAccount.clear(); strComment.clear(); nOrderPos = -1; nEntryNo = 0; } ADD_SERIALIZE_METHODS; template <typename Stream, typename Operation> inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) { if (!(nType & SER_GETHASH)) READWRITE(nVersion); //! Note: strAccount is serialized as part of the key, not here. READWRITE(nCreditDebit); READWRITE(nTime); READWRITE(LIMITED_STRING(strOtherAccount, 65536)); if (!ser_action.ForRead()) { WriteOrderPos(nOrderPos, mapValue); if (!(mapValue.empty() && _ssExtra.empty())) { CDataStream ss(nType, nVersion); ss.insert(ss.begin(), '\0'); ss << mapValue; ss.insert(ss.end(), _ssExtra.begin(), _ssExtra.end()); strComment.append(ss.str()); } } READWRITE(LIMITED_STRING(strComment, 65536)); size_t nSepPos = strComment.find("\0", 0, 1); if (ser_action.ForRead()) { mapValue.clear(); if (std::string::npos != nSepPos) { CDataStream ss(std::vector<char>(strComment.begin() + nSepPos + 1, strComment.end()), nType, nVersion); ss >> mapValue; _ssExtra = std::vector<char>(ss.begin(), ss.end()); } ReadOrderPos(nOrderPos, mapValue); } if (std::string::npos != nSepPos) strComment.erase(nSepPos); mapValue.erase("n"); } private: std::vector<char> _ssExtra; }; /** * A CWallet is an extension of a keystore, which also maintains a set of transactions and balances, * and provides the ability to create new transactions. */ class CWallet : public CCryptoKeyStore, public CValidationInterface { private: /** * Select a set of coins such that nValueRet >= nTargetValue and at least * all coins from coinControl are selected; Never select unconfirmed coins * if they are not ours */ bool SelectCoins(const CAmount& nTargetValue, std::set<std::pair<const CWalletTx*,unsigned int> >& setCoinsRet, CAmount& nValueRet, const CCoinControl *coinControl = NULL, AvailableCoinsType nCoinType=ALL_COINS, bool fUseInstantSend = true) const; CWalletDB *pwalletdbEncryption; //! the current wallet version: clients below this version are not able to load the wallet int nWalletVersion; //! the maximum wallet format version: memory-only variable that specifies to what version this wallet may be upgraded int nWalletMaxVersion; int64_t nNextResend; int64_t nLastResend; bool fBroadcastTransactions; mutable bool fAnonymizableTallyCached; mutable std::vector<CompactTallyItem> vecAnonymizableTallyCached; mutable bool fAnonymizableTallyCachedNonDenom; mutable std::vector<CompactTallyItem> vecAnonymizableTallyCachedNonDenom; /** * Used to keep track of spent outpoints, and * detect and report conflicts (double-spends or * mutated transactions where the mutant gets mined). */ typedef std::multimap<COutPoint, uint256> TxSpends; TxSpends mapTxSpends; void AddToSpends(const COutPoint& outpoint, const uint256& wtxid); void AddToSpends(const uint256& wtxid); std::set<COutPoint> setWalletUTXO; /* Mark a transaction (and its in-wallet descendants) as conflicting with a particular block. */ void MarkConflicted(const uint256& hashBlock, const uint256& hashTx); void SyncMetaData(std::pair<TxSpends::iterator, TxSpends::iterator>); /* HD derive new child key (on internal or external chain) */ void DeriveNewChildKey(const CKeyMetadata& metadata, CKey& secretRet, uint32_t nAccountIndex, bool fInternal /*= false*/); public: /* * Main wallet lock. * This lock protects all the fields added by CWallet * except for: * fFileBacked (immutable after instantiation) * strWalletFile (immutable after instantiation) */ mutable CCriticalSection cs_wallet; bool fFileBacked; const std::string strWalletFile; void LoadKeyPool(int nIndex, const CKeyPool &keypool) { if (keypool.fInternal) { setInternalKeyPool.insert(nIndex); } else { setExternalKeyPool.insert(nIndex); } // If no metadata exists yet, create a default with the pool key's // creation time. Note that this may be overwritten by actually // stored metadata for that key later, which is fine. CKeyID keyid = keypool.vchPubKey.GetID(); if (mapKeyMetadata.count(keyid) == 0) mapKeyMetadata[keyid] = CKeyMetadata(keypool.nTime); } std::set<int64_t> setInternalKeyPool; std::set<int64_t> setExternalKeyPool; std::map<CKeyID, CKeyMetadata> mapKeyMetadata; typedef std::map<unsigned int, CMasterKey> MasterKeyMap; MasterKeyMap mapMasterKeys; unsigned int nMasterKeyMaxID; CWallet() { SetNull(); } CWallet(const std::string& strWalletFileIn) : strWalletFile(strWalletFileIn) { SetNull(); fFileBacked = true; } ~CWallet() { delete pwalletdbEncryption; pwalletdbEncryption = NULL; } void SetNull() { nWalletVersion = FEATURE_BASE; nWalletMaxVersion = FEATURE_BASE; fFileBacked = false; nMasterKeyMaxID = 0; pwalletdbEncryption = NULL; nOrderPosNext = 0; nNextResend = 0; nLastResend = 0; nTimeFirstKey = 0; fBroadcastTransactions = false; fAnonymizableTallyCached = false; fAnonymizableTallyCachedNonDenom = false; vecAnonymizableTallyCached.clear(); vecAnonymizableTallyCachedNonDenom.clear(); } std::map<uint256, CWalletTx> mapWallet; std::list<CAccountingEntry> laccentries; typedef std::pair<CWalletTx*, CAccountingEntry*> TxPair; typedef std::multimap<int64_t, TxPair > TxItems; TxItems wtxOrdered; int64_t nOrderPosNext; std::map<uint256, int> mapRequestCount; std::map<CTxDestination, CAddressBookData> mapAddressBook; CPubKey vchDefaultKey; std::set<COutPoint> setLockedCoins; int64_t nTimeFirstKey; int64_t nKeysLeftSinceAutoBackup; std::map<CKeyID, CHDPubKey> mapHdPubKeys; //<! memory map of HD extended pubkeys const CWalletTx* GetWalletTx(const uint256& hash) const; //! check whether we are allowed to upgrade (or already support) to the named feature bool CanSupportFeature(enum WalletFeature wf) { AssertLockHeld(cs_wallet); return nWalletMaxVersion >= wf; } /** * populate vCoins with vector of available COutputs. */ void AvailableCoins(std::vector<COutput>& vCoins, bool fOnlyConfirmed=true, const CCoinControl *coinControl = NULL, bool fIncludeZeroValue=false, AvailableCoinsType nCoinType=ALL_COINS, bool fUseInstantSend = false) const; /** * Shuffle and select coins until nTargetValue is reached while avoiding * small change; This method is stochastic for some inputs and upon * completion the coin set and corresponding actual target value is * assembled */ bool SelectCoinsMinConf(const CAmount& nTargetValue, int nConfMine, int nConfTheirs, std::vector<COutput> vCoins, std::set<std::pair<const CWalletTx*,unsigned int> >& setCoinsRet, CAmount& nValueRet, bool fUseInstantSend = false) const; // Coin selection bool SelectCoinsByDenominations(int nDenom, CAmount nValueMin, CAmount nValueMax, std::vector<CTxDSIn>& vecTxDSInRet, std::vector<COutput>& vCoinsRet, CAmount& nValueRet, int nPrivateSendRoundsMin, int nPrivateSendRoundsMax); bool GetCollateralTxDSIn(CTxDSIn& txdsinRet, CAmount& nValueRet) const; bool SelectCoinsDark(CAmount nValueMin, CAmount nValueMax, std::vector<CTxIn>& vecTxInRet, CAmount& nValueRet, int nPrivateSendRoundsMin, int nPrivateSendRoundsMax) const; bool SelectCoinsGrouppedByAddresses(std::vector<CompactTallyItem>& vecTallyRet, bool fSkipDenominated = true, bool fAnonymizable = true, bool fSkipUnconfirmed = true) const; /// Get 1000exilium output and keys which can be used for the Masternode bool GetMasternodeOutpointAndKeys(COutPoint& outpointRet, CPubKey& pubKeyRet, CKey& keyRet, std::string strTxHash = "", std::string strOutputIndex = ""); /// Extract txin information and keys from output bool GetOutpointAndKeysFromOutput(const COutput& out, COutPoint& outpointRet, CPubKey& pubKeyRet, CKey& keyRet); bool HasCollateralInputs(bool fOnlyConfirmed = true) const; int CountInputsWithAmount(CAmount nInputAmount); // get the PrivateSend chain depth for a given input int GetRealOutpointPrivateSendRounds(const COutPoint& outpoint, int nRounds) const; // respect current settings int GetOutpointPrivateSendRounds(const COutPoint& outpoint) const; bool IsDenominated(const COutPoint& outpoint) const; bool IsSpent(const uint256& hash, unsigned int n) const; bool IsLockedCoin(uint256 hash, unsigned int n) const; void LockCoin(COutPoint& output); void UnlockCoin(COutPoint& output); void UnlockAllCoins(); void ListLockedCoins(std::vector<COutPoint>& vOutpts); /** * keystore implementation * Generate a new key */ CPubKey GenerateNewKey(uint32_t nAccountIndex, bool fInternal /*= false*/); //! HaveKey implementation that also checks the mapHdPubKeys bool HaveKey(const CKeyID &address) const; //! GetPubKey implementation that also checks the mapHdPubKeys bool GetPubKey(const CKeyID &address, CPubKey& vchPubKeyOut) const; //! GetKey implementation that can derive a HD private key on the fly bool GetKey(const CKeyID &address, CKey& keyOut) const; //! Adds a HDPubKey into the wallet(database) bool AddHDPubKey(const CExtPubKey &extPubKey, bool fInternal); //! loads a HDPubKey into the wallets memory bool LoadHDPubKey(const CHDPubKey &hdPubKey); //! Adds a key to the store, and saves it to disk. bool AddKeyPubKey(const CKey& key, const CPubKey &pubkey); //! Adds a key to the store, without saving it to disk (used by LoadWallet) bool LoadKey(const CKey& key, const CPubKey &pubkey) { return CCryptoKeyStore::AddKeyPubKey(key, pubkey); } //! Load metadata (used by LoadWallet) bool LoadKeyMetadata(const CPubKey &pubkey, const CKeyMetadata &metadata); bool LoadMinVersion(int nVersion) { AssertLockHeld(cs_wallet); nWalletVersion = nVersion; nWalletMaxVersion = std::max(nWalletMaxVersion, nVersion); return true; } //! Adds an encrypted key to the store, and saves it to disk. bool AddCryptedKey(const CPubKey &vchPubKey, const std::vector<unsigned char> &vchCryptedSecret); //! Adds an encrypted key to the store, without saving it to disk (used by LoadWallet) bool LoadCryptedKey(const CPubKey &vchPubKey, const std::vector<unsigned char> &vchCryptedSecret); bool AddCScript(const CScript& redeemScript); bool LoadCScript(const CScript& redeemScript); //! Adds a destination data tuple to the store, and saves it to disk bool AddDestData(const CTxDestination &dest, const std::string &key, const std::string &value); //! Erases a destination data tuple in the store and on disk bool EraseDestData(const CTxDestination &dest, const std::string &key); //! Adds a destination data tuple to the store, without saving it to disk bool LoadDestData(const CTxDestination &dest, const std::string &key, const std::string &value); //! Look up a destination data tuple in the store, return true if found false otherwise bool GetDestData(const CTxDestination &dest, const std::string &key, std::string *value) const; //! Adds a watch-only address to the store, and saves it to disk. bool AddWatchOnly(const CScript &dest); bool RemoveWatchOnly(const CScript &dest); //! Adds a watch-only address to the store, without saving it to disk (used by LoadWallet) bool LoadWatchOnly(const CScript &dest); bool Unlock(const SecureString& strWalletPassphrase, bool fForMixingOnly = false); bool ChangeWalletPassphrase(const SecureString& strOldWalletPassphrase, const SecureString& strNewWalletPassphrase); bool EncryptWallet(const SecureString& strWalletPassphrase); void GetKeyBirthTimes(std::map<CKeyID, int64_t> &mapKeyBirth) const; /** * Increment the next transaction order id * @return next transaction order id */ int64_t IncOrderPosNext(CWalletDB *pwalletdb = NULL); void MarkDirty(); bool AddToWallet(const CWalletTx& wtxIn, bool fFromLoadWallet, CWalletDB* pwalletdb); void SyncTransaction(const CTransaction& tx, const CBlock* pblock); bool AddToWalletIfInvolvingMe(const CTransaction& tx, const CBlock* pblock, bool fUpdate); int ScanForWalletTransactions(CBlockIndex* pindexStart, bool fUpdate = false); void ReacceptWalletTransactions(); void ResendWalletTransactions(int64_t nBestBlockTime, CConnman* connman); std::vector<uint256> ResendWalletTransactionsBefore(int64_t nTime, CConnman* connman); CAmount GetBalance() const; CAmount GetUnconfirmedBalance() const; CAmount GetImmatureBalance() const; CAmount GetWatchOnlyBalance() const; CAmount GetUnconfirmedWatchOnlyBalance() const; CAmount GetImmatureWatchOnlyBalance() const; CAmount GetAnonymizableBalance(bool fSkipDenominated = false, bool fSkipUnconfirmed = true) const; CAmount GetAnonymizedBalance() const; float GetAverageAnonymizedRounds() const; CAmount GetNormalizedAnonymizedBalance() const; CAmount GetNeedsToBeAnonymizedBalance(CAmount nMinBalance = 0) const; CAmount GetDenominatedBalance(bool unconfirmed=false) const; bool GetBudgetSystemCollateralTX(CTransaction& tx, uint256 hash, CAmount amount, bool fUseInstantSend); bool GetBudgetSystemCollateralTX(CWalletTx& tx, uint256 hash, CAmount amount, bool fUseInstantSend); /** * Insert additional inputs into the transaction by * calling CreateTransaction(); */ bool FundTransaction(CMutableTransaction& tx, CAmount& nFeeRet, int& nChangePosRet, std::string& strFailReason, bool includeWatching); /** * Create a new transaction paying the recipients with a set of coins * selected by SelectCoins(); Also create the change output, when needed */ bool CreateTransaction(const std::vector<CRecipient>& vecSend, CWalletTx& wtxNew, CReserveKey& reservekey, CAmount& nFeeRet, int& nChangePosRet, std::string& strFailReason, const CCoinControl *coinControl = NULL, bool sign = true, AvailableCoinsType nCoinType=ALL_COINS, bool fUseInstantSend=false); bool CommitTransaction(CWalletTx& wtxNew, CReserveKey& reservekey, CConnman* connman, std::string strCommand="tx"); bool CreateCollateralTransaction(CMutableTransaction& txCollateral, std::string& strReason); bool ConvertList(std::vector<CTxIn> vecTxIn, std::vector<CAmount>& vecAmounts); bool AddAccountingEntry(const CAccountingEntry&, CWalletDB & pwalletdb); static CFeeRate minTxFee; static CFeeRate fallbackFee; /** * Estimate the minimum fee considering user set parameters * and the required fee */ static CAmount GetMinimumFee(unsigned int nTxBytes, unsigned int nConfirmTarget, const CTxMemPool& pool); /** * Return the minimum required fee taking into account the * floating relay fee and user set minimum transaction fee */ static CAmount GetRequiredFee(unsigned int nTxBytes); bool NewKeyPool(); size_t KeypoolCountExternalKeys(); size_t KeypoolCountInternalKeys(); bool TopUpKeyPool(unsigned int kpSize = 0); void ReserveKeyFromKeyPool(int64_t& nIndex, CKeyPool& keypool, bool fInternal); void KeepKey(int64_t nIndex); void ReturnKey(int64_t nIndex, bool fInternal); bool GetKeyFromPool(CPubKey &key, bool fInternal /*= false*/); int64_t GetOldestKeyPoolTime(); void GetAllReserveKeys(std::set<CKeyID>& setAddress) const; std::set< std::set<CTxDestination> > GetAddressGroupings(); std::map<CTxDestination, CAmount> GetAddressBalances(); std::set<CTxDestination> GetAccountAddresses(const std::string& strAccount) const; isminetype IsMine(const CTxIn& txin) const; CAmount GetDebit(const CTxIn& txin, const isminefilter& filter) const; isminetype IsMine(const CTxOut& txout) const; CAmount GetCredit(const CTxOut& txout, const isminefilter& filter) const; bool IsChange(const CTxOut& txout) const; CAmount GetChange(const CTxOut& txout) const; bool IsMine(const CTransaction& tx) const; /** should probably be renamed to IsRelevantToMe */ bool IsFromMe(const CTransaction& tx) const; CAmount GetDebit(const CTransaction& tx, const isminefilter& filter) const; CAmount GetCredit(const CTransaction& tx, const isminefilter& filter) const; CAmount GetChange(const CTransaction& tx) const; void SetBestChain(const CBlockLocator& loc); DBErrors LoadWallet(bool& fFirstRunRet); DBErrors ZapWalletTx(std::vector<CWalletTx>& vWtx); bool SetAddressBook(const CTxDestination& address, const std::string& strName, const std::string& purpose); bool DelAddressBook(const CTxDestination& address); bool UpdatedTransaction(const uint256 &hashTx); void Inventory(const uint256 &hash) { { LOCK(cs_wallet); std::map<uint256, int>::iterator mi = mapRequestCount.find(hash); if (mi != mapRequestCount.end()) (*mi).second++; } } void GetScriptForMining(boost::shared_ptr<CReserveScript> &script); void ResetRequestCount(const uint256 &hash) { LOCK(cs_wallet); mapRequestCount[hash] = 0; }; unsigned int GetKeyPoolSize() { AssertLockHeld(cs_wallet); // set{Ex,In}ternalKeyPool return setInternalKeyPool.size() + setExternalKeyPool.size(); } bool SetDefaultKey(const CPubKey &vchPubKey); //! signify that a particular wallet feature is now used. this may change nWalletVersion and nWalletMaxVersion if those are lower bool SetMinVersion(enum WalletFeature, CWalletDB* pwalletdbIn = NULL, bool fExplicit = false); //! change which version we're allowed to upgrade to (note that this does not immediately imply upgrading to that format) bool SetMaxVersion(int nVersion); //! get the current wallet format (the oldest client version guaranteed to understand this wallet) int GetVersion() { LOCK(cs_wallet); return nWalletVersion; } //! Get wallet transactions that conflict with given transaction (spend same outputs) std::set<uint256> GetConflicts(const uint256& txid) const; //! Flush wallet (bitdb flush) void Flush(bool shutdown=false); //! Verify the wallet database and perform salvage if required static bool Verify(const std::string& walletFile, std::string& warningString, std::string& errorString); /** * Address book entry changed. * @note called with lock cs_wallet held. */ boost::signals2::signal<void (CWallet *wallet, const CTxDestination &address, const std::string &label, bool isMine, const std::string &purpose, ChangeType status)> NotifyAddressBookChanged; /** * Wallet transaction added, removed or updated. * @note called with lock cs_wallet held. */ boost::signals2::signal<void (CWallet *wallet, const uint256 &hashTx, ChangeType status)> NotifyTransactionChanged; /** Show progress e.g. for rescan */ boost::signals2::signal<void (const std::string &title, int nProgress)> ShowProgress; /** Watch-only address added */ boost::signals2::signal<void (bool fHaveWatchOnly)> NotifyWatchonlyChanged; /** Inquire whether this wallet broadcasts transactions. */ bool GetBroadcastTransactions() const { return fBroadcastTransactions; } /** Set whether this wallet broadcasts transactions. */ void SetBroadcastTransactions(bool broadcast) { fBroadcastTransactions = broadcast; } /* Mark a transaction (and it in-wallet descendants) as abandoned so its inputs may be respent. */ bool AbandonTransaction(const uint256& hashTx); /** * HD Wallet Functions */ /* Returns true if HD is enabled */ bool IsHDEnabled(); /* Generates a new HD chain */ void GenerateNewHDChain(); /* Set the HD chain model (chain child index counters) */ bool SetHDChain(const CHDChain& chain, bool memonly); bool SetCryptedHDChain(const CHDChain& chain, bool memonly); bool GetDecryptedHDChain(CHDChain& hdChainRet); }; /** A key allocated from the key pool. */ class CReserveKey : public CReserveScript { protected: CWallet* pwallet; int64_t nIndex; CPubKey vchPubKey; bool fInternal; public: CReserveKey(CWallet* pwalletIn) { nIndex = -1; pwallet = pwalletIn; fInternal = false; } ~CReserveKey() { ReturnKey(); } void ReturnKey(); bool GetReservedKey(CPubKey &pubkey, bool fInternalIn /*= false*/); void KeepKey(); void KeepScript() { KeepKey(); } }; /** * Account information. * Stored in wallet with key "acc"+string account name. */ class CAccount { public: CPubKey vchPubKey; CAccount() { SetNull(); } void SetNull() { vchPubKey = CPubKey(); } ADD_SERIALIZE_METHODS; template <typename Stream, typename Operation> inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) { if (!(nType & SER_GETHASH)) READWRITE(nVersion); READWRITE(vchPubKey); } }; #endif // BITCOIN_WALLET_WALLET_H
[ [ [ 1, 1097 ] ] ]
8b9b6cee9f4a3bdf5a803cc6d17ae5edb97e8f6e
510a162f34810012b90de49893dd12e1b760f8ac
/main.cpp
df1e65c2de255b41f25520def95f2773d5fe65a1
[]
no_license
dionsaputra/framebuffer-paint
97e19a0e623ac670ff40d96a12e61af9e15b758b
d8bc6cbf72dbecec09c5dff433285800eb07d7db
refs/heads/master
2020-04-28T04:04:30.521444
2019-03-15T16:55:13
2019-03-15T16:55:13
174,963,715
0
0
null
null
null
null
UTF-8
C++
false
false
30,476
cpp
#include <stdlib.h> #include <unistd.h> #include <iostream> #include <fcntl.h> #include <linux/fb.h> #include <sys/mman.h> #include <sys/ioctl.h> #include <stdio.h> #include <sys/types.h> #include <termios.h> #include <ctype.h> #include <time.h> #include <vector> #include <map> #include <iterator> #include "Drawer.h" #include "Point.h" #include "Color.h" #include "Parser.h" #include "Wireframe.h" #include "PaintController.h" #include "Letter.h" #define CANVAS_WIDTH 1200 #define CANVAS_LENGTH 900 using namespace std; // Global variable PaintController controller; Drawer drawer; Parser parser; string filename; vector<Point> cornerWindow; string currentWireframe; map<string,Wireframe> wireframes; Wireframe window; Wireframe horizontalScrollBar; Wireframe verticalScrollBar; Wireframe horizontalScrollBarBorder; Wireframe verticalScrollBarBorder; Wireframe legend; Point disorientation; float diffX,diffY; bool useBatik; void credits(){ drawer.clear_screen(); for (int y = drawer.vinfo.yres - 1; y >= 0; y-=5){ drawer.draw_word("DONATLAB",Point(400, y), 25, 4, Color(74, 123, 192)); drawer.draw_word("MUHAMAD ILYAS MUSTAFA - SMAN 4 BANDUNG",Point(100, y + 150), 11, 2, Color(20, 200, 100)); drawer.draw_word("DION SAPUTRA - SMAN 10 PADANG", Point(100, y + 200), 10, 2, Color(100, 100, 171)); drawer.draw_word("DAFI IHSANDIYA FARAZ - SMAN 3 BANDUNG", Point(100, y + 250), 11, 2, Color(154, 200, 200)); drawer.draw_word("KRISHNA AURELIO N - SMAN 7 CIMAHI", Point(100, y + 300), 11, 2, Color(12, 32, 111)); drawer.draw_word("RIFO AHMAD GENADI - SMAN 1 GARUT", Point(100, y + 350), 11, 2, Color(131, 100, 171)); drawer.draw_word("ADAM FADHEL R - SMAN 2 TANGERANG", Point(100, y + 400), 11, 2, Color(153, 132, 12)); usleep(20000); if (y <= 5){ drawer.clear_screen(); break; } drawer.draw_word("DONATLAB", Point(400, y), 25, 4, Color(0, 0, 0)); drawer.draw_word("MUHAMAD ILYAS MUSTAFA - SMAN 4 BANDUNG", Point(100, y + 150), 11, 2, Color(0, 0, 0)); drawer.draw_word("DION SAPUTRA - SMAN 10 PADANG", Point(100, y + 200), 11, 2, Color(0, 0, 0)); drawer.draw_word("DAFI IHSANDIYA FARAZ - SMAN 3 BANDUNG", Point(100, y + 250), 11, 2, Color(0, 0, 0)); drawer.draw_word("KRISHNA AURELIO N - SMAN 7 CIMAHI", Point(100, y + 300), 11, 2, Color(0, 0, 0)); drawer.draw_word("RIFO AHMAD GENADI - SMAN 1 GARUT", Point(100, y + 350), 11, 2, Color(0, 0, 0)); drawer.draw_word("ADAM FADHEL R - SMAN 2 TANGERANG", Point(100, y + 400), 11, 2, Color(0, 0, 0)); } } Wireframe createRectangle(Point topLeft, Point bottomRight) { vector<Point> points; points.push_back(topLeft); points.push_back(Point(bottomRight.getX(), topLeft.getY())); points.push_back(bottomRight); points.push_back(Point(topLeft.getX(), bottomRight.getY())); Wireframe wireframe; wireframe.setPoints(points); wireframe.updateEnvelope(); return wireframe; } void setupWindow() { int xres = drawer.vinfo.xres, yres = drawer.vinfo.yres; window = createRectangle(Point(350,50), Point(xres-50, yres-250)); window.setBorderColor(Color(0,250,0)); disorientation = window.getTopLeft(); useBatik = false; diffX = (float) (xres-350)/CANVAS_WIDTH; diffY = (float) (yres-100)/CANVAS_LENGTH; drawer.draw_wireframe(window); } void setupLegend() { int xres = drawer.vinfo.xres, yres = drawer.vinfo.yres; legend = createRectangle(Point(350,yres-200),Point(xres-30,yres-30)); legend.setBorderColor(Color(0,250,0)); drawer.draw_wireframe(legend); int xStart = 400, xEnd = xres-30-50; int dx = xEnd-xStart; int yStart = yres-180; drawer.draw_word("FILE", Point(xStart-25, yStart), 20, 3, Color(0, 255, 255)); drawer.draw_word("NEW", Point(xStart, yStart+30), 15, 2, Color(0, 255, 0)); drawer.draw_word("OPEN", Point(xStart, yStart+50), 15, 2, Color(0, 255, 0)); drawer.draw_word("SAVE", Point(xStart, yStart+70), 15, 2, Color(0, 255, 0)); drawer.draw_word("EXIT", Point(xStart, yStart+90), 15, 2, Color(0, 255, 0)); int xCol2 = xStart + (dx/5); drawer.draw_word("VIEW", Point(xCol2-25, yStart), 20, 3, Color(0, 255, 255)); drawer.draw_word("ZOOM", Point(xCol2, yStart+30), 15, 2, Color(0, 255, 0)); drawer.draw_word("SCROLL", Point(xCol2, yStart+50), 15, 2, Color(0, 255, 0)); drawer.draw_word("TRANSLATE", Point(xCol2, yStart+70), 15, 2, Color(0, 255, 0)); int xCol3 = xStart + (2*dx/5); drawer.draw_word("ATTRIBUTE", Point(xCol3-25, yStart), 20, 3, Color(0, 255, 255)); drawer.draw_word("LINE-COLOR", Point(xCol3, yStart+30), 15, 2, Color(0, 255, 0)); drawer.draw_word("THICKNESS", Point(xCol3, yStart+50), 15, 2, Color(0, 255, 0)); drawer.draw_word("LINE-STYLE", Point(xCol3, yStart+70), 15, 2, Color(0, 255, 0)); drawer.draw_word("FILL", Point(xCol3, yStart+90), 15, 2, Color(0, 255, 0)); drawer.draw_word("UNFILL", Point(xCol3, yStart+110), 15, 2, Color(0, 255, 0)); drawer.draw_word("USE-BATIK", Point(xCol3, yStart+130), 15, 2, Color(0, 255, 0)); int xCol4 = xStart + (3*dx/5); drawer.draw_word("OBJECT", Point(xCol4-25, yStart), 20, 3, Color(0, 255, 255)); drawer.draw_word("LINE", Point(xCol4, yStart+30), 15, 2, Color(0, 255, 0)); drawer.draw_word("TRIANGLE", Point(xCol4, yStart+50), 15, 2, Color(0, 255, 0)); drawer.draw_word("RECTANGLE", Point(xCol4, yStart+70), 15, 2, Color(0, 255, 0)); drawer.draw_word("POLYGON", Point(xCol4, yStart+90), 15, 2, Color(0, 255, 0)); drawer.draw_word("SELECT", Point(xCol4, yStart+110), 15, 2, Color(0, 255, 0)); drawer.draw_word("DELETE", Point(xCol4, yStart+130), 15, 2, Color(0, 255, 0)); int xCol5 = xStart + (4*dx/5); drawer.draw_word("ANIMATION", Point(xCol5-25, yStart), 20, 3, Color(0, 255, 255)); drawer.draw_word("CREDITS", Point(xCol5, yStart+30), 15, 2, Color(0, 255, 0)); } void setupHorizontalScrollBarBorder() { int xres = drawer.vinfo.xres, yres = drawer.vinfo.yres; horizontalScrollBarBorder = createRectangle(Point(350,yres-249), Point(xres-50, yres-230)); horizontalScrollBarBorder.setBorderColor(Color(0,250,0)); drawer.draw_wireframe(horizontalScrollBarBorder); } void setupVerticalScrollBarBorder() { int xres = drawer.vinfo.xres, yres = drawer.vinfo.yres; verticalScrollBarBorder = createRectangle(Point(xres-49,50), Point(xres-31, yres-250)); verticalScrollBarBorder.setBorderColor(Color(0,250,0)); drawer.draw_wireframe(verticalScrollBarBorder); } void setupScrollbars() { int xres = drawer.vinfo.xres, yres = drawer.vinfo.yres; horizontalScrollBar = createRectangle(Point(450,yres-249), Point(xres-250, yres-230)); horizontalScrollBar.setBorderColor(Color(0,250,0)); horizontalScrollBar.setFillColor(Color(0,250,0)); horizontalScrollBar.setInnerPoint(Point((450+xres-250)/2, (yres-249+yres-230)/2)); drawer.draw_wireframe(horizontalScrollBar); drawer.queueFloodFill(horizontalScrollBar); verticalScrollBar = createRectangle(Point(xres-50,250), Point(xres-30, yres-450)); verticalScrollBar.setBorderColor(Color(0,250,0)); verticalScrollBar.setFillColor(Color(0,250,0)); verticalScrollBar.setInnerPoint(Point((xres-50+xres-30)/2, (250+yres-450)/2)); drawer.draw_wireframe(verticalScrollBar); drawer.queueFloodFill(verticalScrollBar); } void resizeHorizontalScrollBar(int dx){ int xres = drawer.vinfo.xres, yres = drawer.vinfo.yres; Point newTopLeft = Point(horizontalScrollBar.getTopLeft().getX()+dx,yres-249); Point newBottomRight = Point(horizontalScrollBar.getBottomRight().getX()-dx,yres-230); horizontalScrollBar = createRectangle(newTopLeft, newBottomRight); horizontalScrollBar.setBorderColor(Color(0,250,0)); horizontalScrollBar.setFillColor(Color(0,250,0)); horizontalScrollBar.setInnerPoint(Point((newTopLeft.getX() + newBottomRight.getX())/2, (newTopLeft.getY() + newBottomRight.getY())/2)); } void resizeVerticalScrollBar(int dy){ int xres = drawer.vinfo.xres, yres = drawer.vinfo.yres; Point newTopLeft = Point(xres-50,verticalScrollBar.getTopLeft().getY()+dy); Point newBottomRight = Point(xres-30,verticalScrollBar.getBottomRight().getY()-dy); verticalScrollBar = createRectangle(newTopLeft, newBottomRight); verticalScrollBar.setBorderColor(Color(0,250,0)); verticalScrollBar.setFillColor(Color(0,250,0)); verticalScrollBar.setInnerPoint(Point((newTopLeft.getX() + newBottomRight.getX())/2, (newTopLeft.getY() + newBottomRight.getY())/2)); } void redrawScrollbars(){ drawer.draw_wireframe(horizontalScrollBar); drawer.draw_wireframe(verticalScrollBar); drawer.queueFloodFill(horizontalScrollBar); drawer.queueFloodFill(verticalScrollBar); drawer.draw_wireframe(horizontalScrollBarBorder); drawer.draw_wireframe(verticalScrollBarBorder); } void scroll(int dx, int dy){ int leftScrollbarBorder = horizontalScrollBarBorder.getTopLeft().getX(); int rightScrollbarBorder = horizontalScrollBarBorder.getBottomRight().getX(); int topScrollbarBorder = verticalScrollBarBorder.getTopLeft().getY(); int bottomScrollbarBorder = verticalScrollBarBorder.getBottomRight().getY(); if (horizontalScrollBar.getTopLeft().getX()+dx >= leftScrollbarBorder && horizontalScrollBar.getBottomRight().getX()+dx <= rightScrollbarBorder && verticalScrollBar.getTopLeft().getY()+dy >= topScrollbarBorder && verticalScrollBar.getBottomRight().getY()+dy <= bottomScrollbarBorder){ drawer.erase_wireframe(horizontalScrollBar); drawer.unfill_wireframe(horizontalScrollBar); drawer.erase_wireframe(verticalScrollBar); drawer.unfill_wireframe(verticalScrollBar); drawer.erase_canvas(wireframes,disorientation); if (dx != 0) horizontalScrollBar.translate(dx,dy); if (dy != 0) verticalScrollBar.translate(dx,dy); for (auto itr = wireframes.begin(); itr!=wireframes.end();itr++){ itr->second.translate(-dx,-dy); } drawer.draw_canvas(wireframes,window,disorientation,true,useBatik); redrawScrollbars(); } } bool checkZoomOut(int dx, int dy){ int leftScrollbarBorder = horizontalScrollBarBorder.getTopLeft().getX(); int rightScrollbarBorder = horizontalScrollBarBorder.getBottomRight().getX(); int topScrollbarBorder = verticalScrollBarBorder.getTopLeft().getY(); int bottomScrollbarBorder = verticalScrollBarBorder.getBottomRight().getY(); return (dx > 0 && horizontalScrollBar.getTopLeft().getX()+dx >= leftScrollbarBorder && horizontalScrollBar.getBottomRight().getX()-dx <= rightScrollbarBorder && ((horizontalScrollBar.getBottomRight().getX() - horizontalScrollBar.getTopLeft().getX()) > 100) && verticalScrollBar.getTopLeft().getY()-dy >= topScrollbarBorder && verticalScrollBar.getBottomRight().getY()+dy <= bottomScrollbarBorder && (verticalScrollBar.getBottomRight().getY() - verticalScrollBar.getTopLeft().getY()> 55)); } bool checkZoomIn(int dx, int dy){ int leftScrollbarBorder = horizontalScrollBarBorder.getTopLeft().getX(); int rightScrollbarBorder = horizontalScrollBarBorder.getBottomRight().getX(); int topScrollbarBorder = verticalScrollBarBorder.getTopLeft().getY(); int bottomScrollbarBorder = verticalScrollBarBorder.getBottomRight().getY(); return (dx < 0 && horizontalScrollBar.getTopLeft().getX()+dx >= leftScrollbarBorder && horizontalScrollBar.getBottomRight().getX()-dx <= rightScrollbarBorder && verticalScrollBar.getTopLeft().getY()-dy >= topScrollbarBorder && verticalScrollBar.getBottomRight().getY()+dy <= bottomScrollbarBorder); } void zoom(float scale){ int dx,dy; int xres = drawer.vinfo.xres, yres = drawer.vinfo.yres; if (scale < 1){ dx = -35; dy = -15; } else { dx = 35; dy = 15; } if (checkZoomOut(dx,dy) || checkZoomIn(dx,dy)){ drawer.erase_wireframe(horizontalScrollBar); drawer.unfill_wireframe(horizontalScrollBar); drawer.erase_wireframe(verticalScrollBar); drawer.unfill_wireframe(verticalScrollBar); drawer.erase_canvas(wireframes,disorientation); for (auto itr = wireframes.begin(); itr!=wireframes.end();itr++){ itr->second.scale(Point((250+xres-50)/2, (50+yres-50)/2), scale); } resizeHorizontalScrollBar(dx); resizeVerticalScrollBar(dy); drawer.draw_canvas(wireframes,window,disorientation,true,useBatik); redrawScrollbars(); drawer.draw_wireframe(horizontalScrollBarBorder); drawer.draw_wireframe(verticalScrollBarBorder); } } void moveScrollBar(Wireframe* scrollbar,int x,int y){ drawer.erase_wireframe(*scrollbar); drawer.unfill_wireframe(*scrollbar); scrollbar->translate(x,y); drawer.draw_wireframe(*scrollbar); drawer.queueFloodFill(*scrollbar); drawer.draw_wireframe(horizontalScrollBarBorder); drawer.draw_wireframe(verticalScrollBarBorder); } void setup() { setupWindow(); setupLegend(); setupHorizontalScrollBarBorder(); setupVerticalScrollBarBorder(); setupScrollbars(); redrawScrollbars(); } void hideLabels(){ for (auto itr = wireframes.begin(); itr != wireframes.end(); itr++) { string name = itr->first; Point loc = itr->second.getInnerPoint(); loc.translate(200, 0); drawer.draw_word(name, loc, 25, 3, Color(0,0,0)); } drawer.draw_canvas(wireframes,window,disorientation,true,useBatik); } int main() { // Load file string inputCommand; for (int i=1; i<=100; i++) printf("\n"); setup(); // cout << "filename : "; // cin >> filename; // wireframes = controller.load(filename); drawer.draw_canvas(wireframes, window, disorientation); // Setup input mode struct termios oldSettings, newSettings; tcgetattr( fileno( stdin ), &oldSettings ); newSettings = oldSettings; newSettings.c_lflag &= (~ICANON & ~ECHO); // one key mode // Load file flush(cout); // Receive command while(1){ printf("$ "); flush(cout); cin >> inputCommand; hideLabels(); if (inputCommand == "new") { if(!wireframes.empty()){ drawer.erase_canvas(wireframes,disorientation); } wireframes.clear(); currentWireframe = ""; } else if (inputCommand == "open") { // TODO: add open command cout << "filename : "; cin >> filename; if(!wireframes.empty()){ drawer.erase_canvas(wireframes,disorientation); } currentWireframe = ""; wireframes = controller.load(filename); drawer.draw_canvas(wireframes, window, disorientation); }else if(inputCommand == "select"){ cout << "----list----" << endl; for (auto itr = wireframes.begin(); itr!=wireframes.end();itr++){ if (currentWireframe == itr->first){ cout << itr->first << " (selected)" << endl; } else { cout << itr->first << endl; } } cout << "------------" << endl; cin >> currentWireframe; for (auto & c: currentWireframe) c = toupper(c); cout << currentWireframe <<" selected" << endl; } else if (inputCommand == "save") { cout << "filename: "; cin >> filename; controller.save(wireframes,filename); cout << "saved" << endl; } else if (inputCommand == "current") { cout << currentWireframe << endl; int xres = drawer.vinfo.xres, yres = drawer.vinfo.yres; } else if (inputCommand == "scroll"){ tcsetattr( fileno( stdin ), TCSANOW, &newSettings ); cout << "Use WASD to navigate" << endl; cout << "Enter 'x' to return" << endl; while (1){ char c; read( fileno( stdin ), &c, 1 ); // printf( "Input available %c %d\n",c,c); if (c == 'w' && verticalScrollBar.getTopLeft().getY()>50){ drawer.erase_canvas(wireframes,disorientation); disorientation.translate(0,5); moveScrollBar(&verticalScrollBar,0,-5 * diffY); drawer.draw_wireframe(horizontalScrollBarBorder); drawer.draw_wireframe(verticalScrollBarBorder); setupLegend(); // Scroll up } else if (c == 'a' && horizontalScrollBar.getTopLeft().getX()>350){ drawer.erase_canvas(wireframes,disorientation); disorientation.translate(5,0); drawer.draw_wireframe(horizontalScrollBarBorder); drawer.draw_wireframe(verticalScrollBarBorder); setupLegend(); moveScrollBar(&horizontalScrollBar,-5 * diffX,0); // Scroll left } else if (c == 's' && verticalScrollBar.getBottomRight().getY()<drawer.vinfo.yres-250){ drawer.erase_canvas(wireframes,disorientation); disorientation.translate(0,-5); moveScrollBar(&verticalScrollBar,0,5*diffY); drawer.draw_wireframe(horizontalScrollBarBorder); drawer.draw_wireframe(verticalScrollBarBorder); setupLegend(); // Scroll down } else if (c == 'd' && horizontalScrollBar.getBottomRight().getX()<drawer.vinfo.xres-50){ drawer.erase_canvas(wireframes,disorientation); disorientation.translate(-5,0); moveScrollBar(&horizontalScrollBar,5*diffX,0); drawer.draw_wireframe(horizontalScrollBarBorder); drawer.draw_wireframe(verticalScrollBarBorder); setupLegend(); // Scroll right } else if(c=='x'){ // Change settings tcsetattr( fileno( stdin ), TCSANOW, &oldSettings ); break; } drawer.draw_canvas(wireframes,window,disorientation,true,useBatik); } } else if (inputCommand == "exit") { exit(1); } else if (inputCommand == "translate" && currentWireframe != ""){ tcsetattr( fileno( stdin ), TCSANOW, &newSettings ); cout << "Use WASD to move " << currentWireframe << " object" << endl; cout << "Enter 'x' to finish" << endl; while (1){ char c; read( fileno( stdin ), &c, 1 ); if (c == 'w'){ drawer.erase_canvas(wireframes,disorientation); wireframes.find(currentWireframe)->second.translate(0, -10); } else if (c == 'a'){ drawer.erase_canvas(wireframes,disorientation); wireframes.find(currentWireframe)->second.translate(-10, 0); } else if (c == 's'){ drawer.erase_canvas(wireframes,disorientation); wireframes.find(currentWireframe)->second.translate(0, 10); } else if (c == 'd'){ drawer.erase_canvas(wireframes,disorientation); wireframes.find(currentWireframe)->second.translate(10, 0); } else if(c=='x'){ // Change settings tcsetattr( fileno( stdin ), TCSANOW, &oldSettings ); break; } drawer.draw_canvas(wireframes,window,disorientation,true,useBatik); drawer.draw_wireframe(horizontalScrollBarBorder); drawer.draw_wireframe(verticalScrollBarBorder); redrawScrollbars(); setupLegend(); drawer.draw_wireframe(window); } } else if (inputCommand == "rotate" && currentWireframe != ""){ tcsetattr( fileno( stdin ), TCSANOW, &newSettings ); cout << "Use 'p' rotate clockwise " << currentWireframe << " object" << endl; cout << "Use 'o' rotate counter clockwise " << currentWireframe << " object" << endl; cout << "Enter 'x' to finish" << endl; while (1){ char c; read( fileno( stdin ), &c, 1 ); if (c == 'o'){ drawer.erase_canvas(wireframes,disorientation); wireframes.find(currentWireframe)->second.rotate(-10); } else if (c == 'p'){ drawer.erase_canvas(wireframes,disorientation); wireframes.find(currentWireframe)->second.rotate(10); } else if(c=='x'){ // Change settings tcsetattr( fileno( stdin ), TCSANOW, &oldSettings ); break; } drawer.draw_canvas(wireframes,window,disorientation,true,useBatik); drawer.draw_wireframe(horizontalScrollBarBorder); drawer.draw_wireframe(verticalScrollBarBorder); redrawScrollbars(); setupLegend(); drawer.draw_wireframe(window); } } else if (inputCommand == "zoom") { tcsetattr( fileno( stdin ), TCSANOW, &newSettings ); cout << "Use '=' to zoom in" << endl; cout << "Use '-' to zoom out" << endl; cout << "Enter 'x' to return" << endl; while (1){ char c; read( fileno( stdin ), &c, 1 ); if (c == '='){ zoom(1.15); } else if (c == '-'){ zoom(0.75); } else if(c=='x'){ // Change settings tcsetattr( fileno( stdin ), TCSANOW, &oldSettings); break; } drawer.draw_wireframe(horizontalScrollBarBorder); drawer.draw_wireframe(verticalScrollBarBorder); redrawScrollbars(); setupLegend(); } } else if (inputCommand == "scale" && currentWireframe != "") { tcsetattr( fileno( stdin ), TCSANOW, &newSettings ); cout << "Use '=' to scale up " << currentWireframe << " object" << endl; cout << "Use '-' to scale down " << currentWireframe << " object" << endl; cout << "Enter 'x' to finish" << endl; while (1){ char c; read( fileno( stdin ), &c, 1 ); if (c == '='){ drawer.erase_canvas(wireframes,disorientation); wireframes.find(currentWireframe)->second.scale(1.15); } else if (c == '-'){ drawer.erase_canvas(wireframes,disorientation); wireframes.find(currentWireframe)->second.scale(0.75); } else if(c=='x'){ // Change settings tcsetattr( fileno( stdin ), TCSANOW, &oldSettings); break; } drawer.draw_canvas(wireframes,window,disorientation,true,useBatik); } drawer.draw_wireframe(horizontalScrollBarBorder); drawer.draw_wireframe(verticalScrollBarBorder); redrawScrollbars(); setupLegend(); } else if (inputCommand == "fill" && currentWireframe != "") { int red, green, blue; cout << "fill color (r g b): "; cin >> red >> green >> blue; drawer.erase_canvas(wireframes,disorientation); wireframes.find(currentWireframe)->second.setFillColor(Color(red, green, blue)); drawer.draw_canvas(wireframes,window,disorientation,true); } else if (inputCommand == "unfill") { drawer.erase_canvas(wireframes,disorientation); wireframes.find(currentWireframe)->second.setFillColor(Color::background()); drawer.draw_canvas(wireframes,window,disorientation,true); } else if (inputCommand == "create"){ int radius, nPoint, xCenter, yCenter, red, green, boy; string nameShape; cout << "shape's name: "; cin >> nameShape; cout << "center (x y): "; cin >> xCenter >> yCenter; cout << "radius: "; cin >> radius; cout << "number of point: "; cin >> nPoint; cout << "color (r g b): "; cin >> red >> green >> boy; for (auto & c: nameShape) c = toupper(c); Wireframe wireframe(radius, nPoint, Point(xCenter, yCenter), Color(red, green, boy)); wireframes.insert(pair<string, Wireframe>(nameShape, wireframe)); drawer.draw_canvas(wireframes,window,disorientation,true,useBatik); } else if (inputCommand == "triangle"){ int radius, xCenter, yCenter, red, green, boy; string nameShape; cout << "shape's name: "; cin >> nameShape; cout << "center (x y): "; cin >> xCenter >> yCenter; cout << "radius: "; cin >> radius; cout << "color (r g b): "; cin >> red >> green >> boy; for (auto & c: nameShape) c = toupper(c); Wireframe wireframe(radius, 3, Point(xCenter, yCenter), Color(red, green, boy)); wireframes.insert(pair<string, Wireframe>(nameShape, wireframe)); drawer.draw_canvas(wireframes,window,disorientation,true,useBatik); }else if (inputCommand == "rectangle"){ int radius, xCenter, yCenter, red, green, boy; string nameShape; cout << "shape's name: "; cin >> nameShape; cout << "center (x y): "; cin >> xCenter >> yCenter; cout << "radius: "; cin >> radius; cout << "color (r g b): "; cin >> red >> green >> boy; for (auto & c: nameShape) c = toupper(c); Wireframe wireframe(radius, 4, Point(xCenter, yCenter), Color(red, green, boy)); wireframes.insert(pair<string, Wireframe>(nameShape, wireframe)); drawer.draw_canvas(wireframes,window,disorientation,true,useBatik); }else if (inputCommand == "thickness" && currentWireframe != "") { float thickness; cout << "width: "; cin >> thickness; drawer.erase_canvas(wireframes,disorientation); if(thickness >= 1.0f){ wireframes.find(currentWireframe)->second.setThickness(thickness); }; drawer.draw_canvas(wireframes,window, disorientation, true, useBatik); } else if (inputCommand == "line-style" && currentWireframe != "") { char lineStyle; cout << "dot/solid (d/s): "; cin >> lineStyle; drawer.erase_canvas(wireframes,disorientation); if(lineStyle == 's' || lineStyle == 'd'){ wireframes.find(currentWireframe)->second.setLineStyle(lineStyle); } drawer.draw_canvas(wireframes,window, disorientation, true, useBatik); } else if (inputCommand == "line-color" && currentWireframe != "") { int red, green, blue; cout << "color(r g b): "; cin >> red >> green >> blue; drawer.erase_canvas(wireframes,disorientation); if(red >= 0 && red <=255 && green >= 0 && green <=255 && blue >= 0 && blue <=255){ wireframes.find(currentWireframe)->second.setBorderColor(Color(red, green, blue)); } else { cout << "Wrong format" << endl; } drawer.draw_canvas(wireframes,window, disorientation, true, useBatik); } else if (inputCommand == "show-label"){ for (auto itr = wireframes.begin(); itr != wireframes.end(); itr++) { string name = itr->first; Point loc = itr->second.getInnerPoint(); loc.translate(200, 0); drawer.draw_word(name, loc, 25, 3, Color(0, 255, 0)); } } else if (inputCommand == "hide-label"){ hideLabels(); } else if (inputCommand == "use-batik"){ useBatik = true; drawer.erase_canvas(wireframes,disorientation); drawer.draw_canvas(wireframes,window,disorientation,true,useBatik); } else if (inputCommand == "off-batik"){ useBatik = false; drawer.erase_canvas(wireframes,disorientation); drawer.draw_canvas(wireframes,window,disorientation,true,useBatik); }else if (inputCommand == "credits"){ credits(); setup(); drawer.draw_canvas(wireframes,window,disorientation,true,useBatik); } else if (inputCommand == "delete" && currentWireframe != ""){ drawer.erase_canvas(wireframes,disorientation); wireframes.erase(currentWireframe); currentWireframe = ""; drawer.draw_canvas(wireframes,window,disorientation,true,useBatik); } else if ("line" == inputCommand) { int radius, xCenter, yCenter, red, green, boy; string nameShape; cout << "shape's name: "; cin >> nameShape; cout << "center (x y): "; cin >> xCenter >> yCenter; cout << "radius: "; cin >> radius; cout << "color (r g b): "; cin >> red >> green >> boy; for (auto & c: nameShape) c = toupper(c); Wireframe wireframe(radius, 2, Point(xCenter, yCenter), Color(red, green, boy)); wireframes.insert(pair<string, Wireframe>(nameShape, wireframe)); }else{ cout << "Please enter a valid command" << endl; } } tcsetattr( fileno( stdin ), TCSANOW, &oldSettings ); }
[ [ [ 1, 7 ], [ 11, 13 ], [ 16, 18 ], [ 21, 21 ], [ 25, 26 ], [ 29, 29 ], [ 38, 40 ], [ 43, 43 ], [ 47, 47 ], [ 76, 92 ], [ 95, 95 ], [ 98, 101 ], [ 103, 145 ], [ 148, 148 ], [ 161, 161 ], [ 163, 163 ], [ 166, 166 ], [ 175, 176 ], [ 178, 178 ], [ 192, 192 ], [ 199, 199 ], [ 294, 295 ], [ 306, 308 ], [ 313, 314 ], [ 324, 324 ], [ 344, 344 ], [ 347, 347 ], [ 350, 350 ], [ 352, 352 ], [ 359, 360 ], [ 378, 378 ], [ 386, 386 ], [ 391, 391 ], [ 393, 393 ], [ 556, 560 ], [ 580, 580 ], [ 598, 598 ], [ 657, 657 ], [ 678, 694 ] ], [ [ 8, 10 ], [ 383, 383 ], [ 388, 388 ], [ 440, 442 ], [ 474, 474 ], [ 522, 522 ], [ 548, 552 ], [ 554, 554 ], [ 561, 574 ], [ 577, 578 ], [ 617, 621 ], [ 623, 627 ], [ 629, 637 ], [ 639, 651 ], [ 665, 665 ], [ 673, 677 ] ], [ [ 14, 15 ], [ 19, 19 ], [ 23, 24 ], [ 27, 27 ], [ 33, 33 ], [ 37, 37 ], [ 44, 46 ], [ 48, 75 ], [ 93, 94 ], [ 96, 96 ], [ 232, 232 ], [ 289, 289 ], [ 296, 301 ], [ 304, 305 ], [ 322, 322 ], [ 329, 333 ], [ 348, 349 ], [ 353, 358 ], [ 361, 373 ], [ 376, 377 ], [ 379, 380 ], [ 384, 385 ], [ 387, 387 ], [ 389, 389 ], [ 399, 405 ], [ 408, 413 ], [ 416, 422 ], [ 424, 430 ], [ 437, 438 ], [ 450, 450 ], [ 453, 453 ], [ 456, 456 ], [ 459, 459 ], [ 466, 467 ], [ 470, 471 ], [ 483, 483 ], [ 486, 486 ], [ 493, 493 ], [ 496, 498 ], [ 517, 520 ], [ 531, 531 ], [ 534, 534 ], [ 541, 541 ], [ 543, 547 ], [ 553, 553 ], [ 555, 555 ], [ 579, 579 ], [ 581, 597 ], [ 599, 616 ], [ 622, 622 ], [ 628, 628 ], [ 638, 638 ], [ 661, 664 ], [ 666, 672 ], [ 695, 695 ], [ 697, 697 ] ], [ [ 20, 20 ], [ 28, 28 ], [ 30, 32 ], [ 34, 36 ], [ 41, 42 ], [ 97, 97 ], [ 102, 102 ], [ 146, 147 ], [ 149, 160 ], [ 162, 162 ], [ 164, 165 ], [ 167, 174 ], [ 177, 177 ], [ 179, 191 ], [ 193, 198 ], [ 200, 231 ], [ 233, 288 ], [ 290, 293 ], [ 302, 303 ], [ 309, 312 ], [ 315, 321 ], [ 323, 323 ], [ 325, 328 ], [ 334, 343 ], [ 345, 346 ], [ 351, 351 ], [ 374, 375 ], [ 381, 382 ], [ 390, 390 ], [ 392, 392 ], [ 394, 398 ], [ 406, 407 ], [ 414, 415 ], [ 423, 423 ], [ 431, 436 ], [ 439, 439 ], [ 443, 449 ], [ 451, 452 ], [ 454, 455 ], [ 457, 458 ], [ 460, 465 ], [ 468, 469 ], [ 472, 473 ], [ 475, 482 ], [ 484, 485 ], [ 487, 492 ], [ 494, 495 ], [ 499, 516 ], [ 521, 521 ], [ 523, 530 ], [ 532, 533 ], [ 535, 540 ], [ 542, 542 ], [ 575, 576 ], [ 652, 652 ], [ 654, 656 ], [ 659, 660 ], [ 696, 696 ], [ 698, 700 ] ], [ [ 22, 22 ], [ 653, 653 ], [ 658, 658 ] ] ]
be342d25f24c065b687f2354984709c3205a3034
03c9dcedb5c93f6930fbe274d188199df574e87c
/node_location/code/MultiviewGeometryUtility.cpp
bfe4419fde1892cae668b58fc56a44cb6e5a9d18
[]
no_license
marvinCMU/marvin
6b5f6af693746657650a66b78f899fadbb937071
6f6e378f78447d6b8de2e8b97b82e1bc7f3f5cfc
refs/heads/master
2016-09-06T04:51:17.572255
2014-06-17T03:43:45
2014-06-17T03:43:45
null
0
0
null
null
null
null
UTF-8
C++
false
false
345,280
cpp
#include "MultiviewGeometryUtility.h" #include <assert.h> using namespace std; //void BilinearCameraPoseEstimation(vector<Feature> vFeature, int initialFrame1, int initialFrame2, double ransacThreshold, int ransacMaxIter, CvMat *K, CvMat &P, CvMat &X, vector<int> &visibleStructureID) //{ // PrintAlgorithm("Bilinear Camera Pose Estimation"); // CvMat cx1, cx2, nx1, nx2; // vector<int> visibleFeatureID; // X = *cvCreateMat(vFeature.size(), 3, CV_32FC1); // VisibleIntersection(vFeature, initialFrame1, initialFrame2, cx1, cx2, visibleFeatureID); // assert(visibleFeatureID.size() > 7); // CvMat *F = cvCreateMat(3,3,CV_32FC1); // // Classifier classifier; // vector<int> visibleID; // classifier.SetRansacParam(ransacThreshold, ransacMaxIter); // classifier.SetCorrespondance(&cx1, &cx2, visibleFeatureID); // classifier.Classify(); // vector<int> vInlierID, vOutlierID; // classifier.GetClassificationResultByFeatureID(vInlierID, vOutlierID); // visibleFeatureID = vInlierID; // F = cvCloneMat(classifier.F); // cx1 = *cvCreateMat(classifier.inlier1->rows, classifier.inlier1->cols, CV_32FC1); // cx2 = *cvCreateMat(classifier.inlier2->rows, classifier.inlier2->cols, CV_32FC1); // cx1 = *cvCloneMat(classifier.inlier1); // cx2 = *cvCloneMat(classifier.inlier2); // // //vector<int> vInlierID; // //CvMat *status = cvCreateMat(1,cx1.rows,CV_8UC1); // //int n = cvFindFundamentalMat(&cx1, &cx2, F, CV_FM_LMEDS , 1, 0.99, status); // //for (int i = 0; i < cx1.rows; i++) // //{ // // if (cvGetReal2D(status, 0, i) == 1) // // { // // vInlierID.push_back(visibleFeatureID[i]); // // } // //} // //visibleFeatureID = vInlierID; // //CvMat *tempCx1 = cvCreateMat(vInlierID.size(), 2, CV_32FC1); // //CvMat *tempCx2 = cvCreateMat(vInlierID.size(), 2, CV_32FC1); // //int temprow = 0; // //for (int i = 0; i < cx1.rows; i++) // //{ // // if (cvGetReal2D(status, 0, i) == 1) // // { // // cvSetReal2D(tempCx1, temprow, 0, cvGetReal2D(&cx1, i, 0)); // // cvSetReal2D(tempCx1, temprow, 1, cvGetReal2D(&cx1, i, 1)); // // cvSetReal2D(tempCx2, temprow, 0, cvGetReal2D(&cx2, i, 0)); // // cvSetReal2D(tempCx2, temprow, 1, cvGetReal2D(&cx2, i, 1)); // // temprow++; // // } // //} // //cx1 = *cvCreateMat(tempCx1->rows, tempCx1->cols, CV_32FC1); // //cx2 = *cvCreateMat(tempCx2->rows, tempCx2->cols, CV_32FC1); // //cx1 = *cvCloneMat(tempCx1); // //cx2 = *cvCloneMat(tempCx2); // //cvReleaseMat(&status); // //cvReleaseMat(&tempCx1); // //cvReleaseMat(&tempCx2); // // CvMat *E = cvCreateMat(3, 3, CV_32FC1); // CvMat *temp33 = cvCreateMat(3, 3, CV_32FC1); // CvMat *temp34 = cvCreateMat(3, 4, CV_32FC1); // // cvTranspose(K, temp33); // cvMatMul(temp33, F, temp33); // cvMatMul(temp33, K, E); // // CvMat *invK = cvCreateMat(3,3,CV_32FC1); // cvInvert(K, invK); // Pxx_inhomo(invK, &cx1, nx1); // Pxx_inhomo(invK, &cx2, nx2); // // GetExtrinsicParameterFromE(E, &nx1, &nx2, P); // CvMat *P0 = cvCreateMat(3, 4, CV_32FC1); // cvSetIdentity(P0); // CvMat cX; // // LinearTriangulation(&nx1, P0, &nx2, &P, cX); // cvSetZero(&X); // SetIndexedMatRowwise(&X, visibleFeatureID, &cX); // cvMatMul(K, &P, temp34); // P = *cvCloneMat(temp34); // // visibleStructureID = visibleFeatureID; // // cvReleaseMat(&F); // cvReleaseMat(&E); // cvReleaseMat(&temp33); // cvReleaseMat(&temp34); // cvReleaseMat(&invK); // cvReleaseMat(&P0); //} void BilinearCameraPoseEstimation_OPENCV(vector<Feature> vFeature, int initialFrame1, int initialFrame2, double ransacThreshold, int ransacMaxIter, CvMat *K, CvMat &P, CvMat &X, vector<int> &visibleStructureID) { PrintAlgorithm("Bilinear Camera Pose Estimation"); CvMat cx1, cx2, nx1, nx2; vector<int> visibleFeatureID; X = *cvCreateMat(vFeature.size(), 3, CV_32FC1); VisibleIntersection(vFeature, initialFrame1, initialFrame2, cx1, cx2, visibleFeatureID); assert(visibleFeatureID.size() > 7); CvMat *F = cvCreateMat(3,3,CV_32FC1); //Classifier classifier; //vector<int> visibleID; //classifier.SetRansacParam(ransacThreshold, ransacMaxIter); //classifier.SetCorrespondance(&cx1, &cx2, visibleFeatureID); //classifier.Classify(); //vector<int> vInlierID, vOutlierID; //classifier.GetClassificationResultByFeatureID(vInlierID, vOutlierID); //visibleFeatureID = vInlierID; //F = cvCloneMat(classifier.F); //cx1 = *cvCreateMat(classifier.inlier1->rows, classifier.inlier1->cols, CV_32FC1); //cx2 = *cvCreateMat(classifier.inlier2->rows, classifier.inlier2->cols, CV_32FC1); //cx1 = *cvCloneMat(classifier.inlier1); //cx2 = *cvCloneMat(classifier.inlier2); vector<int> vInlierID; CvMat *status = cvCreateMat(1,cx1.rows,CV_8UC1); int n = cvFindFundamentalMat(&cx1, &cx2, F, CV_FM_RANSAC , 1, 0.99, status); for (int i = 0; i < cx1.rows; i++) { if (cvGetReal2D(status, 0, i) == 1) { vInlierID.push_back(visibleFeatureID[i]); } } visibleFeatureID = vInlierID; CvMat *tempCx1 = cvCreateMat(vInlierID.size(), 2, CV_32FC1); CvMat *tempCx2 = cvCreateMat(vInlierID.size(), 2, CV_32FC1); int temprow = 0; for (int i = 0; i < cx1.rows; i++) { if (cvGetReal2D(status, 0, i) == 1) { cvSetReal2D(tempCx1, temprow, 0, cvGetReal2D(&cx1, i, 0)); cvSetReal2D(tempCx1, temprow, 1, cvGetReal2D(&cx1, i, 1)); cvSetReal2D(tempCx2, temprow, 0, cvGetReal2D(&cx2, i, 0)); cvSetReal2D(tempCx2, temprow, 1, cvGetReal2D(&cx2, i, 1)); temprow++; } } cx1 = *cvCreateMat(tempCx1->rows, tempCx1->cols, CV_32FC1); cx2 = *cvCreateMat(tempCx2->rows, tempCx2->cols, CV_32FC1); cx1 = *cvCloneMat(tempCx1); cx2 = *cvCloneMat(tempCx2); cvReleaseMat(&status); cvReleaseMat(&tempCx1); cvReleaseMat(&tempCx2); CvMat *E = cvCreateMat(3, 3, CV_32FC1); CvMat *temp33 = cvCreateMat(3, 3, CV_32FC1); CvMat *temp34 = cvCreateMat(3, 4, CV_32FC1); cvTranspose(K, temp33); cvMatMul(temp33, F, temp33); cvMatMul(temp33, K, E); CvMat *invK = cvCreateMat(3,3,CV_32FC1); cvInvert(K, invK); Pxx_inhomo(invK, &cx1, nx1); Pxx_inhomo(invK, &cx2, nx2); GetExtrinsicParameterFromE(E, &nx1, &nx2, P); CvMat *P0 = cvCreateMat(3, 4, CV_32FC1); cvSetIdentity(P0); CvMat cX; LinearTriangulation(&nx1, P0, &nx2, &P, cX); cvSetZero(&X); SetIndexedMatRowwise(&X, visibleFeatureID, &cX); cvMatMul(K, &P, temp34); P = *cvCloneMat(temp34); visibleStructureID = visibleFeatureID; cvReleaseMat(&F); cvReleaseMat(&E); cvReleaseMat(&temp33); cvReleaseMat(&temp34); cvReleaseMat(&invK); cvReleaseMat(&P0); } int BilinearCameraPoseEstimation_OPENCV(vector<Feature> vFeature, int initialFrame1, int initialFrame2, int max_nFrames, vector<Camera> vCamera, CvMat &P, CvMat &X, vector<int> &visibleStructureID) { PrintAlgorithm("Bilinear Camera Pose Estimation"); CvMat cx1, cx2, nx1, nx2; vector<int> visibleFeatureID; X = *cvCreateMat(vFeature.size(), 3, CV_32FC1); VisibleIntersection(vFeature, initialFrame1, initialFrame2, cx1, cx2, visibleFeatureID); assert(visibleFeatureID.size() > 7); CvMat *F = cvCreateMat(3,3,CV_32FC1); vector<int> vInlierID; CvMat *status = cvCreateMat(1,cx1.rows,CV_8UC1); int n = cvFindFundamentalMat(&cx1, &cx2, F, CV_FM_LMEDS , 1, 0.99, status); //int n = cvFindFundamentalMat(&cx1, &cx2, F, CV_FM_8POINT , 3, 0.99, status); PrintMat(F, "Fundamental Matrix"); for (int i = 0; i < cx1.rows; i++) { if (cvGetReal2D(status, 0, i) == 1) { vInlierID.push_back(visibleFeatureID[i]); } } visibleFeatureID = vInlierID; CvMat *tempCx1 = cvCreateMat(vInlierID.size(), 2, CV_32FC1); CvMat *tempCx2 = cvCreateMat(vInlierID.size(), 2, CV_32FC1); int temprow = 0; for (int i = 0; i < cx1.rows; i++) { if (cvGetReal2D(status, 0, i) == 1) { cvSetReal2D(tempCx1, temprow, 0, cvGetReal2D(&cx1, i, 0)); cvSetReal2D(tempCx1, temprow, 1, cvGetReal2D(&cx1, i, 1)); cvSetReal2D(tempCx2, temprow, 0, cvGetReal2D(&cx2, i, 0)); cvSetReal2D(tempCx2, temprow, 1, cvGetReal2D(&cx2, i, 1)); temprow++; } } cx1 = *cvCreateMat(tempCx1->rows, tempCx1->cols, CV_32FC1); cx2 = *cvCreateMat(tempCx2->rows, tempCx2->cols, CV_32FC1); cx1 = *cvCloneMat(tempCx1); cx2 = *cvCloneMat(tempCx2); cvReleaseMat(&status); cvReleaseMat(&tempCx1); cvReleaseMat(&tempCx2); CvMat *E = cvCreateMat(3, 3, CV_32FC1); CvMat *temp33 = cvCreateMat(3, 3, CV_32FC1); CvMat *temp34 = cvCreateMat(3, 4, CV_32FC1); CvMat *K1 = cvCreateMat(3,3,CV_32FC1); CvMat *K2 = cvCreateMat(3,3,CV_32FC1); int camera1 = (int)((double)initialFrame1/max_nFrames); int camera2 = (int)((double)initialFrame2/max_nFrames); vector<int> ::const_iterator it1 = find(vCamera[camera1].vTakenFrame.begin(), vCamera[camera1].vTakenFrame.end(), initialFrame1%max_nFrames); vector<int> ::const_iterator it2 = find(vCamera[camera2].vTakenFrame.begin(), vCamera[camera2].vTakenFrame.end(), initialFrame2%max_nFrames); int idx1 = (int) (it1 - vCamera[camera1].vTakenFrame.begin()); int idx2 = (int) (it2 - vCamera[camera2].vTakenFrame.begin()); K1 = cvCloneMat(vCamera[camera1].vK[idx1]); K2 = cvCloneMat(vCamera[camera2].vK[idx2]); cvTranspose(K2, temp33); cvMatMul(temp33, F, temp33); cvMatMul(temp33, K1, E); CvMat *invK1 = cvCreateMat(3,3,CV_32FC1); CvMat *invK2 = cvCreateMat(3,3,CV_32FC1); cvInvert(K1, invK1); cvInvert(K2, invK2); Pxx_inhomo(invK1, &cx1, nx1); Pxx_inhomo(invK2, &cx2, nx2); GetExtrinsicParameterFromE(E, &nx1, &nx2, P); CvMat *P0 = cvCreateMat(3, 4, CV_32FC1); cvSetIdentity(P0); CvMat cX; LinearTriangulation(&nx1, P0, &nx2, &P, cX); cvSetZero(&X); SetIndexedMatRowwise(&X, visibleFeatureID, &cX); cvMatMul(K2, &P, temp34); P = *cvCloneMat(temp34); visibleStructureID = visibleFeatureID; cvReleaseMat(&F); cvReleaseMat(&E); cvReleaseMat(&temp33); cvReleaseMat(&temp34); cvReleaseMat(&K1); cvReleaseMat(&K2); cvReleaseMat(&invK1); cvReleaseMat(&invK2); cvReleaseMat(&P0); return n; } void SetCvMatFromVectors(vector<vector<double> > x, CvMat *X) { for (int i = 0; i < x.size(); i++) { for (int j = 0; j < x[i].size(); j++) cvSetReal2D(X, i, j, x[i][j]); } } int BilinearCameraPoseEstimation_OPENCV_mem(vector<Feature> &vFeature, int initialFrame1, int initialFrame2, int max_nFrames, vector<Camera> vCamera, CvMat *P, CvMat *X, vector<int> &visibleStructureID) { PrintAlgorithm("Bilinear Camera Pose Estimation"); vector<int> visibleFeatureID; vector<vector<double> > cx1_vec, cx2_vec, nx1_vec, nx2_vec; VisibleIntersection_mem(vFeature, initialFrame1, initialFrame2, cx1_vec, cx2_vec, visibleFeatureID); CvMat *cx1 = cvCreateMat(cx1_vec.size(), 2, CV_32FC1); CvMat *cx2 = cvCreateMat(cx2_vec.size(), 2, CV_32FC1); SetCvMatFromVectors(cx1_vec, cx1); SetCvMatFromVectors(cx2_vec, cx2); assert(visibleFeatureID.size() > 7); CvMat *F = cvCreateMat(3,3,CV_32FC1); vector<int> vInlierID; CvMat *status = cvCreateMat(1,cx1->rows,CV_8UC1); int n = cvFindFundamentalMat(cx1, cx2, F, CV_FM_LMEDS , 1, 0.99, status); PrintMat(F, "Fundamental Matrix"); for (int i = 0; i < cx1->rows; i++) { if (cvGetReal2D(status, 0, i) == 1) { vInlierID.push_back(visibleFeatureID[i]); } } visibleFeatureID = vInlierID; CvMat *tempCx1 = cvCreateMat(vInlierID.size(), 2, CV_32FC1); CvMat *tempCx2 = cvCreateMat(vInlierID.size(), 2, CV_32FC1); int temprow = 0; for (int i = 0; i < cx1->rows; i++) { if (cvGetReal2D(status, 0, i) == 1) { cvSetReal2D(tempCx1, temprow, 0, cvGetReal2D(cx1, i, 0)); cvSetReal2D(tempCx1, temprow, 1, cvGetReal2D(cx1, i, 1)); cvSetReal2D(tempCx2, temprow, 0, cvGetReal2D(cx2, i, 0)); cvSetReal2D(tempCx2, temprow, 1, cvGetReal2D(cx2, i, 1)); temprow++; } } cvReleaseMat(&cx1); cvReleaseMat(&cx2); cx1 = cvCloneMat(tempCx1); cx2 = cvCloneMat(tempCx2); cvReleaseMat(&status); cvReleaseMat(&tempCx1); cvReleaseMat(&tempCx2); CvMat *E = cvCreateMat(3, 3, CV_32FC1); CvMat *temp33 = cvCreateMat(3, 3, CV_32FC1); CvMat *temp34 = cvCreateMat(3, 4, CV_32FC1); //CvMat *K1 = cvCreateMat(3,3,CV_32FC1); //CvMat *K2 = cvCreateMat(3,3,CV_32FC1); int camera1 = (int)((double)initialFrame1/max_nFrames); int camera2 = (int)((double)initialFrame2/max_nFrames); vector<int> ::const_iterator it1 = find(vCamera[camera1].vTakenFrame.begin(), vCamera[camera1].vTakenFrame.end(), initialFrame1%max_nFrames); vector<int> ::const_iterator it2 = find(vCamera[camera2].vTakenFrame.begin(), vCamera[camera2].vTakenFrame.end(), initialFrame2%max_nFrames); int idx1 = (int) (it1 - vCamera[camera1].vTakenFrame.begin()); int idx2 = (int) (it2 - vCamera[camera2].vTakenFrame.begin()); CvMat *K1 = cvCloneMat(vCamera[camera1].vK[idx1]); CvMat *K2 = cvCloneMat(vCamera[camera2].vK[idx2]); cvTranspose(K2, temp33); cvMatMul(temp33, F, temp33); cvMatMul(temp33, K1, E); CvMat *invK1 = cvCreateMat(3,3,CV_32FC1); CvMat *invK2 = cvCreateMat(3,3,CV_32FC1); cvInvert(K1, invK1); cvInvert(K2, invK2); CvMat *nx1 = cvCreateMat(cx1->rows, cx1->cols, CV_32FC1); CvMat *nx2 = cvCreateMat(cx2->rows, cx2->cols, CV_32FC1); Pxx_inhomo(invK1, cx1, nx1); Pxx_inhomo(invK2, cx2, nx2); GetExtrinsicParameterFromE(E, nx1, nx2, P); CvMat *P0 = cvCreateMat(3, 4, CV_32FC1); cvSetIdentity(P0); CvMat *cX = cvCreateMat(nx1->rows, 3, CV_32FC1); LinearTriangulation(nx1, P0, nx2, P, cX); cvSetZero(X); SetIndexedMatRowwise(X, visibleFeatureID, cX); cvMatMul(K2, P, temp34); SetSubMat(P, 0, 0, temp34); visibleStructureID = visibleFeatureID; cvReleaseMat(&F); cvReleaseMat(&E); cvReleaseMat(&temp33); cvReleaseMat(&temp34); cvReleaseMat(&K1); cvReleaseMat(&K2); cvReleaseMat(&invK1); cvReleaseMat(&invK2); cvReleaseMat(&P0); cvReleaseMat(&cx1); cvReleaseMat(&cx2); cvReleaseMat(&nx1); cvReleaseMat(&nx2); cvReleaseMat(&cX); return n; } int BilinearCameraPoseEstimation_OPENCV_mem_fast(vector<Feature> &vFeature, int initialFrame1, int initialFrame2, int max_nFrames, vector<Camera> vCamera, CvMat *P, CvMat *X) { PrintAlgorithm("Bilinear Camera Pose Estimation"); vector<int> visibleFeatureID; vector<vector<double> > cx1_vec, cx2_vec, nx1_vec, nx2_vec; VisibleIntersection_mem(vFeature, initialFrame1, initialFrame2, cx1_vec, cx2_vec, visibleFeatureID); CvMat *cx1 = cvCreateMat(cx1_vec.size(), 2, CV_32FC1); CvMat *cx2 = cvCreateMat(cx2_vec.size(), 2, CV_32FC1); SetCvMatFromVectors(cx1_vec, cx1); SetCvMatFromVectors(cx2_vec, cx2); assert(visibleFeatureID.size() > 7); CvMat *F = cvCreateMat(3,3,CV_32FC1); vector<int> vInlierID; CvMat *status = cvCreateMat(1,cx1->rows,CV_8UC1); int n = cvFindFundamentalMat(cx1, cx2, F, CV_FM_LMEDS , 1, 0.99, status); PrintMat(F, "Fundamental Matrix"); //for (int i = 0; i < cx1->rows; i++) //{ // if (cvGetReal2D(status, 0, i) == 1) // { // vInlierID.push_back(visibleFeatureID[i]); // } //} cout << n << endl; vector<int> vCX_indx; for (int i = 0; i < cx1->rows; i++) { CvMat *xM2 = cvCreateMat(1,3,CV_32FC1); CvMat *xM1 = cvCreateMat(3,1,CV_32FC1); CvMat *s = cvCreateMat(1,1, CV_32FC1); cvSetReal2D(xM2, 0, 0, cvGetReal2D(cx2, i, 0)); cvSetReal2D(xM2, 0, 1, cvGetReal2D(cx2, i, 1)); cvSetReal2D(xM2, 0, 2, 1); cvSetReal2D(xM1, 0, 0, cvGetReal2D(cx1, i, 0)); cvSetReal2D(xM1, 1, 0, cvGetReal2D(cx1, i, 1)); cvSetReal2D(xM1, 2, 0, 1); cvMatMul(xM2, F, xM2); cvMatMul(xM2, xM1, s); double l1 = cvGetReal2D(xM2, 0, 0); double l2 = cvGetReal2D(xM2, 0, 1); double l3 = cvGetReal2D(xM2, 0, 2); double dist = abs(cvGetReal2D(s, 0, 0))/sqrt(l1*l1+l2*l2); if (dist < 5) { vInlierID.push_back(visibleFeatureID[i]); vCX_indx.push_back(i); } cvReleaseMat(&xM2); cvReleaseMat(&xM1); cvReleaseMat(&s); //if (cvGetReal2D(status, 0, i) == 1) //{ // cvSetReal2D(tempCx1, temprow, 0, cvGetReal2D(cx1, i, 0)); // cvSetReal2D(tempCx1, temprow, 1, cvGetReal2D(cx1, i, 1)); // cvSetReal2D(tempCx2, temprow, 0, cvGetReal2D(cx2, i, 0)); // cvSetReal2D(tempCx2, temprow, 1, cvGetReal2D(cx2, i, 1)); // temprow++; //} } visibleFeatureID = vInlierID; CvMat *tempCx1 = cvCreateMat(vCX_indx.size(), 2, CV_32FC1); CvMat *tempCx2 = cvCreateMat(vCX_indx.size(), 2, CV_32FC1); for (int iInlier = 0; iInlier < vInlierID.size(); iInlier++) { cvSetReal2D(tempCx1, iInlier, 0, cvGetReal2D(cx1, vCX_indx[iInlier], 0)); cvSetReal2D(tempCx1, iInlier, 1, cvGetReal2D(cx1, vCX_indx[iInlier], 1)); cvSetReal2D(tempCx2, iInlier, 0, cvGetReal2D(cx2, vCX_indx[iInlier], 0)); cvSetReal2D(tempCx2, iInlier, 1, cvGetReal2D(cx2, vCX_indx[iInlier], 1)); } cvReleaseMat(&cx1); cvReleaseMat(&cx2); cx1 = cvCloneMat(tempCx1); cx2 = cvCloneMat(tempCx2); cvReleaseMat(&status); cvReleaseMat(&tempCx1); cvReleaseMat(&tempCx2); CvMat *E = cvCreateMat(3, 3, CV_32FC1); CvMat *temp33 = cvCreateMat(3, 3, CV_32FC1); CvMat *temp34 = cvCreateMat(3, 4, CV_32FC1); //CvMat *K1 = cvCreateMat(3,3,CV_32FC1); //CvMat *K2 = cvCreateMat(3,3,CV_32FC1); int camera1 = (int)((double)initialFrame1/max_nFrames); int camera2 = (int)((double)initialFrame2/max_nFrames); vector<int> ::const_iterator it1 = find(vCamera[camera1].vTakenFrame.begin(), vCamera[camera1].vTakenFrame.end(), initialFrame1%max_nFrames); vector<int> ::const_iterator it2 = find(vCamera[camera2].vTakenFrame.begin(), vCamera[camera2].vTakenFrame.end(), initialFrame2%max_nFrames); int idx1 = (int) (it1 - vCamera[camera1].vTakenFrame.begin()); int idx2 = (int) (it2 - vCamera[camera2].vTakenFrame.begin()); CvMat *K1 = cvCloneMat(vCamera[camera1].vK[idx1]); CvMat *K2 = cvCloneMat(vCamera[camera2].vK[idx2]); cvTranspose(K2, temp33); cvMatMul(temp33, F, temp33); cvMatMul(temp33, K1, E); CvMat *invK1 = cvCreateMat(3,3,CV_32FC1); CvMat *invK2 = cvCreateMat(3,3,CV_32FC1); cvInvert(K1, invK1); cvInvert(K2, invK2); CvMat *nx1 = cvCreateMat(cx1->rows, cx1->cols, CV_32FC1); CvMat *nx2 = cvCreateMat(cx2->rows, cx2->cols, CV_32FC1); Pxx_inhomo(invK1, cx1, nx1); Pxx_inhomo(invK2, cx2, nx2); GetExtrinsicParameterFromE(E, nx1, nx2, P); CvMat *P0 = cvCreateMat(3, 4, CV_32FC1); cvSetIdentity(P0); CvMat *cX = cvCreateMat(nx1->rows, 3, CV_32FC1); PrintMat(P); cvMatMul(K1, P0, P0); cvMatMul(K2, P, P); PrintMat(P); //LinearTriangulation(nx1, P0, nx2, P, cX); LinearTriangulation(cx1, P0, cx2, P, cX); //PrintMat(cX); cvSetZero(X); SetIndexedMatRowwise(X, visibleFeatureID, cX); for (int i = 0; i < visibleFeatureID.size(); i++) { vFeature[visibleFeatureID[i]].isRegistered = true; } cvReleaseMat(&F); cvReleaseMat(&E); cvReleaseMat(&temp33); cvReleaseMat(&temp34); cvReleaseMat(&K1); cvReleaseMat(&K2); cvReleaseMat(&invK1); cvReleaseMat(&invK2); cvReleaseMat(&P0); cvReleaseMat(&cx1); cvReleaseMat(&cx2); cvReleaseMat(&nx1); cvReleaseMat(&nx2); cvReleaseMat(&cX); return vInlierID.size(); } int BilinearCameraPoseEstimation_OPENCV_mem_fast_AD(vector<Feature> &vFeature, int initialFrame1, int initialFrame2, int max_nFrames, vector<Camera> vCamera, CvMat *P, CvMat *X, vector<vector<int> > &vvPointIndex) { PrintAlgorithm("Bilinear Camera Pose Estimation"); vector<int> visibleFeatureID; vector<vector<double> > cx1_vec, cx2_vec, nx1_vec, nx2_vec; VisibleIntersection_mem(vFeature, initialFrame1, initialFrame2, cx1_vec, cx2_vec, visibleFeatureID); CvMat *cx1 = cvCreateMat(cx1_vec.size(), 2, CV_32FC1); CvMat *cx2 = cvCreateMat(cx2_vec.size(), 2, CV_32FC1); SetCvMatFromVectors(cx1_vec, cx1); SetCvMatFromVectors(cx2_vec, cx2); assert(visibleFeatureID.size() > 7); CvMat *F = cvCreateMat(3,3,CV_32FC1); vector<int> vInlierID; CvMat *status = cvCreateMat(1,cx1->rows,CV_8UC1); int n = cvFindFundamentalMat(cx1, cx2, F, CV_FM_LMEDS , 1, 0.99, status); PrintMat(F, "Fundamental Matrix"); //for (int i = 0; i < cx1->rows; i++) //{ // if (cvGetReal2D(status, 0, i) == 1) // { // vInlierID.push_back(visibleFeatureID[i]); // } //} cout << n << endl; vector<int> vCX_indx; for (int i = 0; i < cx1->rows; i++) { CvMat *xM2 = cvCreateMat(1,3,CV_32FC1); CvMat *xM1 = cvCreateMat(3,1,CV_32FC1); CvMat *s = cvCreateMat(1,1, CV_32FC1); cvSetReal2D(xM2, 0, 0, cvGetReal2D(cx2, i, 0)); cvSetReal2D(xM2, 0, 1, cvGetReal2D(cx2, i, 1)); cvSetReal2D(xM2, 0, 2, 1); cvSetReal2D(xM1, 0, 0, cvGetReal2D(cx1, i, 0)); cvSetReal2D(xM1, 1, 0, cvGetReal2D(cx1, i, 1)); cvSetReal2D(xM1, 2, 0, 1); cvMatMul(xM2, F, xM2); cvMatMul(xM2, xM1, s); double l1 = cvGetReal2D(xM2, 0, 0); double l2 = cvGetReal2D(xM2, 0, 1); double l3 = cvGetReal2D(xM2, 0, 2); double dist = abs(cvGetReal2D(s, 0, 0))/sqrt(l1*l1+l2*l2); if (dist < 5) { vInlierID.push_back(visibleFeatureID[i]); vCX_indx.push_back(i); } cvReleaseMat(&xM2); cvReleaseMat(&xM1); cvReleaseMat(&s); //if (cvGetReal2D(status, 0, i) == 1) //{ // cvSetReal2D(tempCx1, temprow, 0, cvGetReal2D(cx1, i, 0)); // cvSetReal2D(tempCx1, temprow, 1, cvGetReal2D(cx1, i, 1)); // cvSetReal2D(tempCx2, temprow, 0, cvGetReal2D(cx2, i, 0)); // cvSetReal2D(tempCx2, temprow, 1, cvGetReal2D(cx2, i, 1)); // temprow++; //} } visibleFeatureID = vInlierID; CvMat *tempCx1 = cvCreateMat(vCX_indx.size(), 2, CV_32FC1); CvMat *tempCx2 = cvCreateMat(vCX_indx.size(), 2, CV_32FC1); for (int iInlier = 0; iInlier < vInlierID.size(); iInlier++) { cvSetReal2D(tempCx1, iInlier, 0, cvGetReal2D(cx1, vCX_indx[iInlier], 0)); cvSetReal2D(tempCx1, iInlier, 1, cvGetReal2D(cx1, vCX_indx[iInlier], 1)); cvSetReal2D(tempCx2, iInlier, 0, cvGetReal2D(cx2, vCX_indx[iInlier], 0)); cvSetReal2D(tempCx2, iInlier, 1, cvGetReal2D(cx2, vCX_indx[iInlier], 1)); } cvReleaseMat(&cx1); cvReleaseMat(&cx2); cx1 = cvCloneMat(tempCx1); cx2 = cvCloneMat(tempCx2); cvReleaseMat(&status); cvReleaseMat(&tempCx1); cvReleaseMat(&tempCx2); CvMat *E = cvCreateMat(3, 3, CV_32FC1); CvMat *temp33 = cvCreateMat(3, 3, CV_32FC1); CvMat *temp34 = cvCreateMat(3, 4, CV_32FC1); //CvMat *K1 = cvCreateMat(3,3,CV_32FC1); //CvMat *K2 = cvCreateMat(3,3,CV_32FC1); int camera1 = (int)((double)initialFrame1/max_nFrames); int camera2 = (int)((double)initialFrame2/max_nFrames); vector<int> ::const_iterator it1 = find(vCamera[camera1].vTakenFrame.begin(), vCamera[camera1].vTakenFrame.end(), initialFrame1%max_nFrames); vector<int> ::const_iterator it2 = find(vCamera[camera2].vTakenFrame.begin(), vCamera[camera2].vTakenFrame.end(), initialFrame2%max_nFrames); int idx1 = (int) (it1 - vCamera[camera1].vTakenFrame.begin()); int idx2 = (int) (it2 - vCamera[camera2].vTakenFrame.begin()); CvMat *K1 = cvCloneMat(vCamera[camera1].vK[idx1]); CvMat *K2 = cvCloneMat(vCamera[camera2].vK[idx2]); cvTranspose(K2, temp33); cvMatMul(temp33, F, temp33); cvMatMul(temp33, K1, E); CvMat *invK1 = cvCreateMat(3,3,CV_32FC1); CvMat *invK2 = cvCreateMat(3,3,CV_32FC1); cvInvert(K1, invK1); cvInvert(K2, invK2); CvMat *nx1 = cvCreateMat(cx1->rows, cx1->cols, CV_32FC1); CvMat *nx2 = cvCreateMat(cx2->rows, cx2->cols, CV_32FC1); Pxx_inhomo(invK1, cx1, nx1); Pxx_inhomo(invK2, cx2, nx2); GetExtrinsicParameterFromE(E, nx1, nx2, P); CvMat *P0 = cvCreateMat(3, 4, CV_32FC1); cvSetIdentity(P0); CvMat *cX = cvCreateMat(nx1->rows, 3, CV_32FC1); PrintMat(P); cvMatMul(K1, P0, P0); cvMatMul(K2, P, P); PrintMat(P); //LinearTriangulation(nx1, P0, nx2, P, cX); LinearTriangulation(cx1, P0, cx2, P, cX); //PrintMat(cX); cvSetZero(X); SetIndexedMatRowwise(X, visibleFeatureID, cX); vvPointIndex.push_back(visibleFeatureID); vvPointIndex.push_back(visibleFeatureID); for (int i = 0; i < visibleFeatureID.size(); i++) { vFeature[visibleFeatureID[i]].isRegistered = true; } cvReleaseMat(&F); cvReleaseMat(&E); cvReleaseMat(&temp33); cvReleaseMat(&temp34); cvReleaseMat(&K1); cvReleaseMat(&K2); cvReleaseMat(&invK1); cvReleaseMat(&invK2); cvReleaseMat(&P0); cvReleaseMat(&cx1); cvReleaseMat(&cx2); cvReleaseMat(&nx1); cvReleaseMat(&nx2); cvReleaseMat(&cX); return vInlierID.size(); } int BilinearCameraPoseEstimation_OPENCV_OrientationRefinement(vector<Feature> &vFeature, int initialFrame1, int initialFrame2, int max_nFrames, vector<Camera> vCamera, CvMat *M, CvMat *m, vector<int> &vVisibleID) { //PrintAlgorithm("Bilinear Camera Pose Estimation"); vector<int> visibleFeatureID; vector<vector<double> > cx1_vec, cx2_vec, nx1_vec, nx2_vec; VisibleIntersection_mem(vFeature, initialFrame1, initialFrame2, cx1_vec, cx2_vec, visibleFeatureID); if (visibleFeatureID.size() < 40) return 0; CvMat *cx1 = cvCreateMat(cx1_vec.size(), 2, CV_32FC1); CvMat *cx2 = cvCreateMat(cx2_vec.size(), 2, CV_32FC1); SetCvMatFromVectors(cx1_vec, cx1); SetCvMatFromVectors(cx2_vec, cx2); if (visibleFeatureID.size() < 8) { return visibleFeatureID.size(); } CvMat *F = cvCreateMat(3,3,CV_32FC1); vector<int> vInlierID; CvMat *status = cvCreateMat(1,cx1->rows,CV_8UC1); int n = cvFindFundamentalMat(cx1, cx2, F, CV_FM_LMEDS , 1, 0.99, status); //cout << n << endl; vector<int> vCX_indx; for (int i = 0; i < cx1->rows; i++) { CvMat *xM2 = cvCreateMat(1,3,CV_32FC1); CvMat *xM1 = cvCreateMat(3,1,CV_32FC1); CvMat *s = cvCreateMat(1,1, CV_32FC1); cvSetReal2D(xM2, 0, 0, cvGetReal2D(cx2, i, 0)); cvSetReal2D(xM2, 0, 1, cvGetReal2D(cx2, i, 1)); cvSetReal2D(xM2, 0, 2, 1); cvSetReal2D(xM1, 0, 0, cvGetReal2D(cx1, i, 0)); cvSetReal2D(xM1, 1, 0, cvGetReal2D(cx1, i, 1)); cvSetReal2D(xM1, 2, 0, 1); cvMatMul(xM2, F, xM2); cvMatMul(xM2, xM1, s); double l1 = cvGetReal2D(xM2, 0, 0); double l2 = cvGetReal2D(xM2, 0, 1); double l3 = cvGetReal2D(xM2, 0, 2); double dist = abs(cvGetReal2D(s, 0, 0))/sqrt(l1*l1+l2*l2); if (dist < 5) { vInlierID.push_back(visibleFeatureID[i]); vCX_indx.push_back(i); } cvReleaseMat(&xM2); cvReleaseMat(&xM1); cvReleaseMat(&s); } visibleFeatureID = vInlierID; CvMat *tempCx1 = cvCreateMat(vCX_indx.size(), 2, CV_32FC1); CvMat *tempCx2 = cvCreateMat(vCX_indx.size(), 2, CV_32FC1); for (int iInlier = 0; iInlier < vInlierID.size(); iInlier++) { cvSetReal2D(tempCx1, iInlier, 0, cvGetReal2D(cx1, vCX_indx[iInlier], 0)); cvSetReal2D(tempCx1, iInlier, 1, cvGetReal2D(cx1, vCX_indx[iInlier], 1)); cvSetReal2D(tempCx2, iInlier, 0, cvGetReal2D(cx2, vCX_indx[iInlier], 0)); cvSetReal2D(tempCx2, iInlier, 1, cvGetReal2D(cx2, vCX_indx[iInlier], 1)); } cvReleaseMat(&cx1); cvReleaseMat(&cx2); cx1 = cvCloneMat(tempCx1); cx2 = cvCloneMat(tempCx2); cvReleaseMat(&status); cvReleaseMat(&tempCx1); cvReleaseMat(&tempCx2); CvMat *E = cvCreateMat(3, 3, CV_32FC1); CvMat *temp33 = cvCreateMat(3, 3, CV_32FC1); CvMat *temp34 = cvCreateMat(3, 4, CV_32FC1); //CvMat *K1 = cvCreateMat(3,3,CV_32FC1); //CvMat *K2 = cvCreateMat(3,3,CV_32FC1); int camera1 = (int)((double)initialFrame1/max_nFrames); int camera2 = (int)((double)initialFrame2/max_nFrames); vector<int> ::const_iterator it1 = find(vCamera[camera1].vTakenFrame.begin(), vCamera[camera1].vTakenFrame.end(), initialFrame1%max_nFrames); vector<int> ::const_iterator it2 = find(vCamera[camera2].vTakenFrame.begin(), vCamera[camera2].vTakenFrame.end(), initialFrame2%max_nFrames); int idx1 = (int) (it1 - vCamera[camera1].vTakenFrame.begin()); int idx2 = (int) (it2 - vCamera[camera2].vTakenFrame.begin()); CvMat *K1 = cvCloneMat(vCamera[camera1].vK[idx1]); CvMat *K2 = cvCloneMat(vCamera[camera2].vK[idx2]); cvTranspose(K2, temp33); cvMatMul(temp33, F, temp33); cvMatMul(temp33, K1, E); CvMat *invK1 = cvCreateMat(3,3,CV_32FC1); CvMat *invK2 = cvCreateMat(3,3,CV_32FC1); cvInvert(K1, invK1); cvInvert(K2, invK2); CvMat *nx1 = cvCreateMat(cx1->rows, cx1->cols, CV_32FC1); CvMat *nx2 = cvCreateMat(cx2->rows, cx2->cols, CV_32FC1); Pxx_inhomo(invK1, cx1, nx1); Pxx_inhomo(invK2, cx2, nx2); CvMat *P = cvCreateMat(3,4,CV_32FC1); GetExtrinsicParameterFromE(E, nx1, nx2, P); CvMat *P0 = cvCreateMat(3, 4, CV_32FC1); cvSetIdentity(P0); for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { cvSetReal2D(M, i, j, cvGetReal2D(P, i, j)); } } for (int i = 0; i < 3; i++) { cvSetReal2D(m, i, 0, cvGetReal2D(P, i, 3)); } cvReleaseMat(&F); cvReleaseMat(&E); cvReleaseMat(&temp33); cvReleaseMat(&temp34); cvReleaseMat(&K1); cvReleaseMat(&K2); cvReleaseMat(&invK1); cvReleaseMat(&invK2); cvReleaseMat(&P0); cvReleaseMat(&cx1); cvReleaseMat(&cx2); cvReleaseMat(&nx1); cvReleaseMat(&nx2); cvReleaseMat(&P); vVisibleID = vInlierID; return vInlierID.size(); } void BilinearCameraPoseEstimation(vector<Feature> vFeature, int initialFrame1, int initialFrame2, double ransacThreshold, int ransacMaxIter, int max_nFrames, vector<Camera> vCamera, CvMat &P, CvMat &X, vector<int> &visibleStructureID) { PrintAlgorithm("Bilinear Camera Pose Estimation"); CvMat cx1, cx2, nx1, nx2; vector<int> visibleFeatureID; X = *cvCreateMat(vFeature.size(), 3, CV_32FC1); VisibleIntersection(vFeature, initialFrame1, initialFrame2, cx1, cx2, visibleFeatureID); cout << "Visible intersection between 2 and 3: " << visibleFeatureID.size() << endl; assert(visibleFeatureID.size() > 7); CvMat *F = cvCreateMat(3,3,CV_32FC1); EightPointAlgorithm(&cx1, &cx2, F); ScalarMul(F, 1/cvGetReal2D(F, 2,2), F); PrintMat(F, "Fundamental Matrix"); //Classifier classifier; //vector<int> visibleID; //classifier.SetRansacParam(ransacThreshold, ransacMaxIter); //classifier.SetCorrespondance(&cx1, &cx2, visibleFeatureID); //classifier.Classify(); //vector<int> vInlierID, vOutlierID; //classifier.GetClassificationResultByFeatureID(vInlierID, vOutlierID); //visibleFeatureID = vInlierID; //F = cvCloneMat(classifier.F); //double F33 = cvGetReal2D(F, 2,2); //ScalarMul(F, 1/F33, F); //PrintMat(F, "Fundamental Matrix"); //cx1 = *cvCreateMat(classifier.inlier1->rows, classifier.inlier1->cols, CV_32FC1); //cx2 = *cvCreateMat(classifier.inlier2->rows, classifier.inlier2->cols, CV_32FC1); //cx1 = *cvCloneMat(classifier.inlier1); //cx2 = *cvCloneMat(classifier.inlier2); CvMat *E = cvCreateMat(3, 3, CV_32FC1); CvMat *temp33 = cvCreateMat(3, 3, CV_32FC1); CvMat *temp34 = cvCreateMat(3, 4, CV_32FC1); CvMat *K1 = cvCreateMat(3,3,CV_32FC1); CvMat *K2 = cvCreateMat(3,3,CV_32FC1); int camera1 = (int)((double)initialFrame1/max_nFrames); int camera2 = (int)((double)initialFrame2/max_nFrames); vector<int> ::const_iterator it1 = find(vCamera[camera1].vTakenFrame.begin(), vCamera[camera1].vTakenFrame.end(), initialFrame1%max_nFrames); vector<int> ::const_iterator it2 = find(vCamera[camera2].vTakenFrame.begin(), vCamera[camera2].vTakenFrame.end(), initialFrame2%max_nFrames); int idx1 = (int) (it1 - vCamera[camera1].vTakenFrame.begin()); int idx2 = (int) (it2 - vCamera[camera2].vTakenFrame.begin()); K1 = cvCloneMat(vCamera[camera1].vK[idx1]); K2 = cvCloneMat(vCamera[camera2].vK[idx1]); cvTranspose(K2, temp33); cvMatMul(temp33, F, temp33); cvMatMul(temp33, K1, E); CvMat *invK1 = cvCreateMat(3,3,CV_32FC1); CvMat *invK2 = cvCreateMat(3,3,CV_32FC1); cvInvert(K1, invK1); cvInvert(K2, invK2); Pxx_inhomo(invK1, &cx1, nx1); Pxx_inhomo(invK2, &cx2, nx2); GetExtrinsicParameterFromE(E, &nx1, &nx2, P); CvMat *P0 = cvCreateMat(3, 4, CV_32FC1); cvSetIdentity(P0); CvMat cX; LinearTriangulation(&nx1, P0, &nx2, &P, cX); cvSetZero(&X); SetIndexedMatRowwise(&X, visibleFeatureID, &cX); cvMatMul(K2, &P, temp34); P = *cvCloneMat(temp34); visibleStructureID = visibleFeatureID; cvReleaseMat(&F); cvReleaseMat(&E); cvReleaseMat(&temp33); cvReleaseMat(&temp34); cvReleaseMat(&K1); cvReleaseMat(&K2); cvReleaseMat(&invK1); cvReleaseMat(&invK2); cvReleaseMat(&P0); } void EightPointAlgorithm(CvMat *x1_8, CvMat *x2_8, CvMat *F_8) { CvMat *A = cvCreateMat(x1_8->rows, 9, CV_32FC1); CvMat *U = cvCreateMat(x1_8->rows, x1_8->rows, CV_32FC1); CvMat *D = cvCreateMat(x1_8->rows, 9, CV_32FC1); CvMat *V = cvCreateMat(9, 9, CV_32FC1); for (int iIdx = 0; iIdx < x1_8->rows; iIdx++) { double x11 = cvGetReal2D(x1_8, iIdx, 0); double x12 = cvGetReal2D(x1_8, iIdx, 1); double x21 = cvGetReal2D(x2_8, iIdx, 0); double x22 = cvGetReal2D(x2_8, iIdx, 1); cvSetReal2D(A, iIdx, 0, x21*x11); cvSetReal2D(A, iIdx, 1, x21*x12); cvSetReal2D(A, iIdx, 2, x21); cvSetReal2D(A, iIdx, 3, x22*x11); cvSetReal2D(A, iIdx, 4, x22*x12); cvSetReal2D(A, iIdx, 5, x22); cvSetReal2D(A, iIdx, 6, x11); cvSetReal2D(A, iIdx, 7, x12); cvSetReal2D(A, iIdx, 8, 1); } cvSVD(A, D, U, V, 0); cvSetReal2D(F_8, 0, 0, cvGetReal2D(V, 0, 8)); cvSetReal2D(F_8, 0, 1, cvGetReal2D(V, 1, 8)); cvSetReal2D(F_8, 0, 2, cvGetReal2D(V, 2, 8)); cvSetReal2D(F_8, 1, 0, cvGetReal2D(V, 3, 8)); cvSetReal2D(F_8, 1, 1, cvGetReal2D(V, 4, 8)); cvSetReal2D(F_8, 1, 2, cvGetReal2D(V, 5, 8)); cvSetReal2D(F_8, 2, 0, cvGetReal2D(V, 6, 8)); cvSetReal2D(F_8, 2, 1, cvGetReal2D(V, 7, 8)); cvSetReal2D(F_8, 2, 2, cvGetReal2D(V, 8, 8)); CvMat *UD, *Vt; U = cvCreateMat(3, 3, CV_32FC1); D = cvCreateMat(3, 3, CV_32FC1); V = cvCreateMat(3, 3, CV_32FC1); UD = cvCreateMat(U->rows, D->cols, CV_32FC1); Vt = cvCreateMat(V->cols, V->rows, CV_32FC1); cvSVD(F_8, D, U, V, 0); cvSetReal2D(D, 2, 2, 0); cvMatMul(U, D, UD); cvTranspose(V, Vt); cvMatMul(UD, Vt, F_8); cvReleaseMat(&UD); cvReleaseMat(&Vt); cvReleaseMat(&A); cvReleaseMat(&U); cvReleaseMat(&D); cvReleaseMat(&V); } void VisibleIntersection(vector<Feature> vFeature, int frame1, int frame2, CvMat &cx1, CvMat &cx2, vector<int> &visibleFeatureID) { vector<double> x1, y1, x2, y2; for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) { vector<int>::iterator it1 = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),frame1); vector<int>::iterator it2 = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),frame2); if ((it1 != vFeature[iFeature].vFrame.end()) && (it2 != vFeature[iFeature].vFrame.end())) { int idx = int(it1-vFeature[iFeature].vFrame.begin()); x1.push_back(vFeature[iFeature].vx[idx]); y1.push_back(vFeature[iFeature].vy[idx]); idx = int(it2-vFeature[iFeature].vFrame.begin()); x2.push_back(vFeature[iFeature].vx[idx]); y2.push_back(vFeature[iFeature].vy[idx]); visibleFeatureID.push_back(vFeature[iFeature].id); } } cout << "# intersection: " << visibleFeatureID.size() << endl; cx1 = *cvCreateMat(x1.size(), 2, CV_32FC1); cx2 = *cvCreateMat(x1.size(), 2, CV_32FC1); for (int i = 0; i < x1.size(); i++) { cvSetReal2D(&cx1, i, 0, x1[i]); cvSetReal2D(&cx1, i, 1, y1[i]); cvSetReal2D(&cx2, i, 0, x2[i]); cvSetReal2D(&cx2, i, 1, y2[i]); } } void VisibleIntersection_mem(vector<Feature> &vFeature, int frame1, int frame2, vector<vector<double> > &cx1, vector<vector<double> > &cx2, vector<int> &visibleFeatureID) { vector<double> x1, y1, x2, y2; for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) { vector<int>::iterator it1 = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),frame1); vector<int>::iterator it2 = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),frame2); if ((it1 != vFeature[iFeature].vFrame.end()) && (it2 != vFeature[iFeature].vFrame.end())) { int idx = int(it1-vFeature[iFeature].vFrame.begin()); x1.push_back(vFeature[iFeature].vx[idx]); y1.push_back(vFeature[iFeature].vy[idx]); idx = int(it2-vFeature[iFeature].vFrame.begin()); x2.push_back(vFeature[iFeature].vx[idx]); y2.push_back(vFeature[iFeature].vy[idx]); visibleFeatureID.push_back(vFeature[iFeature].id); } } //cout << "# intersection: " << visibleFeatureID.size() << endl; for (int i = 0; i < x1.size(); i++) { vector<double> x1_vec, x2_vec; x1_vec.push_back(x1[i]); x1_vec.push_back(y1[i]); x2_vec.push_back(x2[i]); x2_vec.push_back(y2[i]); cx1.push_back(x1_vec); cx2.push_back(x2_vec); } } void VisibleIntersection_Simple(vector<Feature> vFeature, int frame1, int frame2, vector<int> &visibleFeatureID) { vector<double> x1, y1, x2, y2; for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) { vector<int>::iterator it1 = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),frame1); vector<int>::iterator it2 = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),frame2); if ((it1 != vFeature[iFeature].vFrame.end()) && (it2 != vFeature[iFeature].vFrame.end())) { visibleFeatureID.push_back(vFeature[iFeature].id); } } } int VisibleIntersection23(vector<Feature> vFeature, int frame1, CvMat *X, vector<int> visibleStructureID, CvMat &cx, CvMat &cX, vector<int> &visibleID) { vector<double> x_, y_, X_, Y_, Z_; for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) { vector<int>::iterator it1 = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),frame1); vector<int>::iterator it2 = find(visibleStructureID.begin(),visibleStructureID.end(),vFeature[iFeature].id); if ((it1 != vFeature[iFeature].vFrame.end()) && (it2 != visibleStructureID.end())) { int idx1 = int(it1-vFeature[iFeature].vFrame.begin()); int idx2 = int(it2-visibleStructureID.begin()); x_.push_back(vFeature[iFeature].vx[idx1]); y_.push_back(vFeature[iFeature].vy[idx1]); X_.push_back(cvGetReal2D(X, vFeature[iFeature].id, 0)); Y_.push_back(cvGetReal2D(X, vFeature[iFeature].id, 1)); Z_.push_back(cvGetReal2D(X, vFeature[iFeature].id, 2)); visibleID.push_back(vFeature[iFeature].id); } } if (x_.size() < 1) return 0; cx = *cvCreateMat(x_.size(), 2, CV_32FC1); cX = *cvCreateMat(x_.size(), 3, CV_32FC1); for (int i = 0; i < x_.size(); i++) { cvSetReal2D(&cx, i, 0, x_[i]); cvSetReal2D(&cx, i, 1, y_[i]); cvSetReal2D(&cX, i, 0, X_[i]); cvSetReal2D(&cX, i, 1, Y_[i]); cvSetReal2D(&cX, i, 2, Z_[i]); } return 1; } int VisibleIntersection23_mem(vector<Feature> vFeature, int frame1, CvMat *X, vector<int> visibleStructureID, vector<vector<double> > &cx, vector<vector<double> > &cX, vector<int> &visibleID) { vector<double> x_, y_, X_, Y_, Z_; for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) { vector<int>::iterator it1 = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),frame1); vector<int>::iterator it2 = find(visibleStructureID.begin(),visibleStructureID.end(),vFeature[iFeature].id); if ((it1 != vFeature[iFeature].vFrame.end()) && (it2 != visibleStructureID.end())) { int idx1 = int(it1-vFeature[iFeature].vFrame.begin()); int idx2 = int(it2-visibleStructureID.begin()); x_.push_back(vFeature[iFeature].vx[idx1]); y_.push_back(vFeature[iFeature].vy[idx1]); X_.push_back(cvGetReal2D(X, vFeature[iFeature].id, 0)); Y_.push_back(cvGetReal2D(X, vFeature[iFeature].id, 1)); Z_.push_back(cvGetReal2D(X, vFeature[iFeature].id, 2)); visibleID.push_back(vFeature[iFeature].id); } } if (x_.size() < 1) return 0; for (int i = 0; i < x_.size(); i++) { vector<double> cx_vec, cX_vec; cx_vec.push_back(x_[i]); cx_vec.push_back(y_[i]); cX_vec.push_back(X_[i]); cX_vec.push_back(Y_[i]); cX_vec.push_back(Z_[i]); cx.push_back(cx_vec); cX.push_back(cX_vec); } return visibleID.size(); } int VisibleIntersection23_mem_fast(vector<Feature> &vFeature, int frame1, CvMat *X, vector<vector<double> > &cx, vector<vector<double> > &cX, vector<int> &visibleID) { for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) { vector<double> cx_vec, cX_vec; vector<int>::iterator it1 = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),frame1); if ((it1 != vFeature[iFeature].vFrame.end()) && (vFeature[iFeature].isRegistered)) { int idx1 = int(it1-vFeature[iFeature].vFrame.begin()); cx_vec.push_back(vFeature[iFeature].vx[idx1]); cx_vec.push_back(vFeature[iFeature].vy[idx1]); cX_vec.push_back(cvGetReal2D(X, vFeature[iFeature].id, 0)); cX_vec.push_back(cvGetReal2D(X, vFeature[iFeature].id, 1)); cX_vec.push_back(cvGetReal2D(X, vFeature[iFeature].id, 2)); cx.push_back(cx_vec); cX.push_back(cX_vec); visibleID.push_back(vFeature[iFeature].id); } } if (cx.size() < 1) return 0; return visibleID.size(); } int VisibleIntersection23_Simple(vector<Feature> &vFeature, int frame1, vector<int> visibleStructureID, vector<int> &visibleID) { vector<double> x_, y_, X_, Y_, Z_; for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) { vector<int>::iterator it1 = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),frame1); if (it1 == vFeature[iFeature].vFrame.end()) continue; vector<int>::iterator it2 = find(visibleStructureID.begin(),visibleStructureID.end(),vFeature[iFeature].id); if ((it1 != vFeature[iFeature].vFrame.end()) && (it2 != visibleStructureID.end())) { int idx1 = int(it1-vFeature[iFeature].vFrame.begin()); int idx2 = int(it2-visibleStructureID.begin()); visibleID.push_back(vFeature[iFeature].id); } } x_.clear(); y_.clear(); X_.clear(); Y_.clear(); Z_.clear(); return visibleID.size(); } int VisibleIntersection23_Simple_fast(vector<Feature> &vFeature, int frame1) { int count = 0; for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) { vector<int>::iterator it1 = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),frame1); if (it1 == vFeature[iFeature].vFrame.end()) continue; else if (vFeature[iFeature].isRegistered) count++; } return count; } //int VisibleIntersection23(vector<Feature> vFeature, int frame1, CvMat *X, vector<int> visibleStructureID, CvMat *x, vector<int> &visibleID) //{ // vector<double> x_, y_, X_, Y_, Z_; // for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) // { // vector<int>::iterator it1 = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),frame1); // vector<int>::iterator it2 = find(visibleStructureID.begin(),visibleStructureID.end(),vFeature[iFeature].id); // // if ((it1 != vFeature[iFeature].vFrame.end()) && (it2 != visibleStructureID.end())) // { // int idx1 = int(it1-vFeature[iFeature].vFrame.begin()); // int idx2 = int(it2-visibleStructureID.begin()); // x_.push_back(vFeature[iFeature].vx[idx1]); // y_.push_back(vFeature[iFeature].vy[idx1]); // X_.push_back(cvGetReal2D(X, vFeature[iFeature].id, 0)); // Y_.push_back(cvGetReal2D(X, vFeature[iFeature].id, 1)); // Z_.push_back(cvGetReal2D(X, vFeature[iFeature].id, 2)); // visibleID.push_back(vFeature[iFeature].id); // } // } // // if (x_.size() < 1) // return 0; // cx = *cvCreateMat(x_.size(), 2, CV_32FC1); // cX = *cvCreateMat(x_.size(), 3, CV_32FC1); // for (int i = 0; i < x_.size(); i++) // { // cvSetReal2D(&cx, i, 0, x_[i]); cvSetReal2D(&cx, i, 1, y_[i]); // cvSetReal2D(&cX, i, 0, X_[i]); cvSetReal2D(&cX, i, 1, Y_[i]); cvSetReal2D(&cX, i, 2, Z_[i]); // } // return 1; //} int VisibleIntersectionXOR3(vector<Feature> vFeature, int frame1, int frame2, vector<int> visibleStructureID, CvMat &cx1, CvMat &cx2, vector<int> &visibleID) { vector<double> x1_, y1_, x2_, y2_; visibleID.clear(); for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) { vector<int>::iterator it1 = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),frame1); vector<int>::iterator it2 = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),frame2); vector<int>::iterator it3 = find(visibleStructureID.begin(),visibleStructureID.end(),vFeature[iFeature].id); if ((it1 != vFeature[iFeature].vFrame.end()) && (it2 != vFeature[iFeature].vFrame.end()) && (it3 == visibleStructureID.end())) { int idx1 = int(it1-vFeature[iFeature].vFrame.begin()); int idx2 = int(it2-vFeature[iFeature].vFrame.begin()); x1_.push_back(vFeature[iFeature].vx[idx1]); y1_.push_back(vFeature[iFeature].vy[idx1]); x2_.push_back(vFeature[iFeature].vx[idx2]); y2_.push_back(vFeature[iFeature].vy[idx2]); visibleID.push_back(vFeature[iFeature].id); } } if (x1_.size() == 0) { visibleID.clear(); return 0; } cx1 = *cvCreateMat(x1_.size(), 2, CV_32FC1); cx2 = *cvCreateMat(x1_.size(), 2, CV_32FC1); for (int i = 0; i < x1_.size(); i++) { cvSetReal2D(&cx1, i, 0, x1_[i]); cvSetReal2D(&cx1, i, 1, y1_[i]); cvSetReal2D(&cx2, i, 0, x2_[i]); cvSetReal2D(&cx2, i, 1, y2_[i]); } return 1; } int VisibleIntersectionXOR3_mem(vector<Feature> &vFeature, int frame1, int frame2, vector<int> visibleStructureID, vector<vector<double> > &cx1, vector<vector<double> > &cx2, vector<int> &visibleID) { vector<double> x1_, y1_, x2_, y2_; visibleID.clear(); for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) { vector<int>::iterator it1 = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),frame1); vector<int>::iterator it2 = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),frame2); vector<int>::iterator it3 = find(visibleStructureID.begin(),visibleStructureID.end(),vFeature[iFeature].id); if ((it1 != vFeature[iFeature].vFrame.end()) && (it2 != vFeature[iFeature].vFrame.end()) && (it3 == visibleStructureID.end())) { int idx1 = int(it1-vFeature[iFeature].vFrame.begin()); int idx2 = int(it2-vFeature[iFeature].vFrame.begin()); x1_.push_back(vFeature[iFeature].vx[idx1]); y1_.push_back(vFeature[iFeature].vy[idx1]); x2_.push_back(vFeature[iFeature].vx[idx2]); y2_.push_back(vFeature[iFeature].vy[idx2]); visibleID.push_back(vFeature[iFeature].id); } } if (x1_.size() == 0) { visibleID.clear(); return 0; } for (int i = 0; i < x1_.size(); i++) { vector<double> cx1_vec, cx2_vec; cx1_vec.push_back(x1_[i]); cx1_vec.push_back(y1_[i]); cx2_vec.push_back(x2_[i]); cx2_vec.push_back(y2_[i]); cx1.push_back(cx1_vec); cx2.push_back(cx2_vec); } return cx1.size(); } int VisibleIntersectionXOR3_mem_fast(vector<Feature> &vFeature, int frame1, int frame2, vector<vector<double> > &cx1, vector<vector<double> > &cx2, vector<int> &visibleID) { visibleID.clear(); for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) { if (vFeature[iFeature].isRegistered) continue; vector<int>::iterator it1 = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),frame1); if (it1 == vFeature[iFeature].vFrame.end()) continue; vector<int>::iterator it2 = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),frame2); if (it2 == vFeature[iFeature].vFrame.end()) continue; vector<double> cx1_vec, cx2_vec; int idx1 = int(it1-vFeature[iFeature].vFrame.begin()); int idx2 = int(it2-vFeature[iFeature].vFrame.begin()); cx1_vec.push_back(vFeature[iFeature].vx[idx1]); cx1_vec.push_back(vFeature[iFeature].vy[idx1]); cx2_vec.push_back(vFeature[iFeature].vx[idx2]); cx2_vec.push_back(vFeature[iFeature].vy[idx2]); cx1.push_back(cx1_vec); cx2.push_back(cx2_vec); visibleID.push_back(vFeature[iFeature].id); } if (visibleID.size() == 0) { return 0; } return cx1.size(); } //int VisibleIntersectionXOR3(vector<Feature> vFeature, int frame1, int frame2, vector<int> visibleStructureID, vector<int> &visibleID) //{ // vector<double> x1_, y1_, x2_, y2_; // visibleID.clear(); // for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) // { // vector<int>::iterator it1 = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),frame1); // vector<int>::iterator it2 = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),frame2); // vector<int>::iterator it3 = find(visibleStructureID.begin(),visibleStructureID.end(),vFeature[iFeature].id); // // if ((it1 != vFeature[iFeature].vFrame.end()) && (it2 != vFeature[iFeature].vFrame.end()) && (it3 == visibleStructureID.end())) // { // int idx1 = int(it1-vFeature[iFeature].vFrame.begin()); // int idx2 = int(it2-vFeature[iFeature].vFrame.begin()); // x1_.push_back(vFeature[iFeature].vx[idx1]); // y1_.push_back(vFeature[iFeature].vy[idx1]); // x2_.push_back(vFeature[iFeature].vx[idx2]); // y2_.push_back(vFeature[iFeature].vy[idx2]); // visibleID.push_back(vFeature[iFeature].id); // } // } // // if (x1_.size() == 0) // { // visibleID.clear(); // return 0; // } // // cx1 = *cvCreateMat(x1_.size(), 2, CV_32FC1); // cx2 = *cvCreateMat(x1_.size(), 2, CV_32FC1); // for (int i = 0; i < x1_.size(); i++) // { // cvSetReal2D(&cx1, i, 0, x1_[i]); cvSetReal2D(&cx1, i, 1, y1_[i]); // cvSetReal2D(&cx2, i, 0, x2_[i]); cvSetReal2D(&cx2, i, 1, y2_[i]); // } // return 1; //} //int ExcludeOutliers(CvMat *cx1, CvMat *cx2, double ransacThreshold, double ransacMaxIter, vector<int> visibleID, CvMat &ex1, CvMat &ex2, vector<int> &eVisibleID) //{ // Classifier classifier; // classifier.SetRansacParam(ransacThreshold, ransacMaxIter); // classifier.SetCorrespondance(cx1, cx2, visibleID); // classifier.Classify(); // vector<int> vInlierID, vOutlierID; // classifier.GetClassificationResultByFeatureID(vInlierID, vOutlierID); // // if (vInlierID.size() > 0) // { // ex1 = *cvCreateMat(classifier.inlier1->rows, classifier.inlier1->cols, CV_32FC1); // ex2 = *cvCreateMat(classifier.inlier1->rows, classifier.inlier1->cols, CV_32FC1); // eVisibleID = vInlierID; // ex1 = *cvCloneMat(classifier.inlier1); // ex2 = *cvCloneMat(classifier.inlier2); // return 1; // } // else // { // return 0; // } //} int ExcludeOutliers(CvMat *cx1, CvMat *P1, CvMat *cx2, CvMat *P2, CvMat *K, double threshold, vector<int> visibleID, CvMat &ex1, CvMat &ex2, vector<int> &eVisibleID) { // Find epipole CvMat *e_homo = cvCreateMat(3,1,CV_32FC1); CvMat *C = cvCreateMat(3,1,CV_32FC1); CvMat *R = cvCreateMat(3,3,CV_32FC1); GetCameraParameter(P1, K, R, C); CvMat *C_homo = cvCreateMat(4,1,CV_32FC1); Inhomo2HomoVec(C, C_homo); cvMatMul(P2, C_homo, e_homo); double enorm = NormL2(e_homo); ScalarMul(e_homo, 1/enorm, e_homo); CvMat *pinvP1 = cvCreateMat(4,3,CV_32FC1); cvInvert(P1, pinvP1, CV_SVD); CvMat *temp33 = cvCreateMat(3,3,CV_32FC1); cvMatMul(P2, pinvP1, temp33); CvMat *skewE = cvCreateMat(3,3,CV_32FC1); Vec2Skew(e_homo, skewE); CvMat *F = cvCreateMat(3,3,CV_32FC1); CvMat *FF = cvCreateMat(3,3,CV_32FC1); cvMatMul(skewE, temp33, F); double Fnorm = NormL2(F); ScalarMul(F, 1/Fnorm, F); cvTranspose(F, temp33); cvMatMul(temp33, F, FF); CvMat *D1=cvCreateMat(cx1->rows,1,CV_32FC1), *D2=cvCreateMat(cx1->rows,1,CV_32FC1), *D=cvCreateMat(cx1->rows,1,CV_32FC1); xPy_inhomo(cx2, cx1, F, D1); xPx_inhomo(cx1, FF, D2); for (int iIdx = 0; iIdx < D2->rows; iIdx++) { cvSetReal2D(D2, iIdx, 0, sqrt(cvGetReal2D(D2, iIdx, 0))); } cvDiv(D1, D2, D); cvMul(D, D, D); eVisibleID.clear(); for (int iIdx = 0; iIdx < cx1->rows; iIdx++) { if (abs(cvGetReal2D(D, iIdx, 0)) < threshold) { eVisibleID.push_back(visibleID[iIdx]); } } if (eVisibleID.size() > 0) { ex1 = *cvCreateMat(eVisibleID.size(), 2, CV_32FC1); ex2 = *cvCreateMat(eVisibleID.size(), 2, CV_32FC1); int k = 0; for (int iIdx = 0; iIdx < cx1->rows; iIdx++) { if (abs(cvGetReal2D(D, iIdx, 0)) < threshold) { cvSetReal2D(&ex1, k, 0, cvGetReal2D(cx1, iIdx, 0)); cvSetReal2D(&ex1, k, 1, cvGetReal2D(cx1, iIdx, 1)); cvSetReal2D(&ex2, k, 0, cvGetReal2D(cx2, iIdx, 0)); cvSetReal2D(&ex2, k, 1, cvGetReal2D(cx2, iIdx, 1)); k++; } } } cvReleaseMat(&e_homo); cvReleaseMat(&C); cvReleaseMat(&R); cvReleaseMat(&C_homo); cvReleaseMat(&pinvP1); cvReleaseMat(&temp33); cvReleaseMat(&skewE); cvReleaseMat(&F); cvReleaseMat(&FF); cvReleaseMat(&D1); cvReleaseMat(&D2); cvReleaseMat(&D); if (eVisibleID.size() >0) return 1; else return 0; } int ExcludeOutliers_mem(CvMat *cx1, CvMat *P1, CvMat *cx2, CvMat *P2, CvMat *K, double threshold, vector<int> visibleID, vector<vector<double> > &ex1, vector<vector<double> > &ex2, vector<int> &eVisibleID) { // Find epipole CvMat *e_homo = cvCreateMat(3,1,CV_32FC1); CvMat *C = cvCreateMat(3,1,CV_32FC1); CvMat *R = cvCreateMat(3,3,CV_32FC1); GetCameraParameter(P1, K, R, C); CvMat *C_homo = cvCreateMat(4,1,CV_32FC1); Inhomo2HomoVec(C, C_homo); cvMatMul(P2, C_homo, e_homo); double enorm = NormL2(e_homo); ScalarMul(e_homo, 1/enorm, e_homo); CvMat *pinvP1 = cvCreateMat(4,3,CV_32FC1); cvInvert(P1, pinvP1, CV_SVD); CvMat *temp33 = cvCreateMat(3,3,CV_32FC1); cvMatMul(P2, pinvP1, temp33); CvMat *skewE = cvCreateMat(3,3,CV_32FC1); Vec2Skew(e_homo, skewE); CvMat *F = cvCreateMat(3,3,CV_32FC1); CvMat *FF = cvCreateMat(3,3,CV_32FC1); cvMatMul(skewE, temp33, F); double Fnorm = NormL2(F); ScalarMul(F, 1/Fnorm, F); cvTranspose(F, temp33); cvMatMul(temp33, F, FF); CvMat *D1=cvCreateMat(cx1->rows,1,CV_32FC1), *D2=cvCreateMat(cx1->rows,1,CV_32FC1), *D=cvCreateMat(cx1->rows,1,CV_32FC1); xPy_inhomo(cx2, cx1, F, D1); xPx_inhomo(cx1, FF, D2); for (int iIdx = 0; iIdx < D2->rows; iIdx++) { cvSetReal2D(D2, iIdx, 0, sqrt(cvGetReal2D(D2, iIdx, 0))); } cvDiv(D1, D2, D); cvMul(D, D, D); eVisibleID.clear(); for (int iIdx = 0; iIdx < cx1->rows; iIdx++) { if (abs(cvGetReal2D(D, iIdx, 0)) < threshold) { eVisibleID.push_back(visibleID[iIdx]); } } if (eVisibleID.size() > 0) { //ex1 = *cvCreateMat(eVisibleID.size(), 2, CV_32FC1); //ex2 = *cvCreateMat(eVisibleID.size(), 2, CV_32FC1); int k = 0; for (int iIdx = 0; iIdx < cx1->rows; iIdx++) { if (abs(cvGetReal2D(D, iIdx, 0)) < threshold) { vector<double> ex1_vec, ex2_vec; ex1_vec.push_back(cvGetReal2D(cx1, iIdx, 0)); ex1_vec.push_back(cvGetReal2D(cx1, iIdx, 1)); ex2_vec.push_back(cvGetReal2D(cx2, iIdx, 0)); ex2_vec.push_back(cvGetReal2D(cx2, iIdx, 1)); ex1.push_back(ex1_vec); ex2.push_back(ex2_vec); k++; } } } cvReleaseMat(&e_homo); cvReleaseMat(&C); cvReleaseMat(&R); cvReleaseMat(&C_homo); cvReleaseMat(&pinvP1); cvReleaseMat(&temp33); cvReleaseMat(&skewE); cvReleaseMat(&F); cvReleaseMat(&FF); cvReleaseMat(&D1); cvReleaseMat(&D2); cvReleaseMat(&D); if (eVisibleID.size() >0) return 1; else return 0; } int ExcludeOutliers_mem_fast(CvMat *cx1, CvMat *P1, CvMat *cx2, CvMat *P2, CvMat *K, double threshold, vector<int> visibleID, vector<vector<double> > &ex1, vector<vector<double> > &ex2, vector<int> &eVisibleID) { // Find epipole CvMat *e_homo = cvCreateMat(3,1,CV_32FC1); CvMat *C = cvCreateMat(3,1,CV_32FC1); CvMat *R = cvCreateMat(3,3,CV_32FC1); GetCameraParameter(P1, K, R, C); CvMat *C_homo = cvCreateMat(4,1,CV_32FC1); Inhomo2HomoVec(C, C_homo); cvMatMul(P2, C_homo, e_homo); double enorm = NormL2(e_homo); ScalarMul(e_homo, 1/enorm, e_homo); CvMat *pinvP1 = cvCreateMat(4,3,CV_32FC1); cvInvert(P1, pinvP1, CV_SVD); CvMat *temp33 = cvCreateMat(3,3,CV_32FC1); cvMatMul(P2, pinvP1, temp33); CvMat *skewE = cvCreateMat(3,3,CV_32FC1); Vec2Skew(e_homo, skewE); CvMat *F = cvCreateMat(3,3,CV_32FC1); CvMat *FF = cvCreateMat(3,3,CV_32FC1); cvMatMul(skewE, temp33, F); double Fnorm = NormL2(F); ScalarMul(F, 1/Fnorm, F); cvTranspose(F, temp33); cvMatMul(temp33, F, FF); //CvMat *D1=cvCreateMat(cx1->rows,1,CV_32FC1), *D2=cvCreateMat(cx1->rows,1,CV_32FC1), *D=cvCreateMat(cx1->rows,1,CV_32FC1); //xPy_inhomo(cx2, cx1, F, D1); //xPx_inhomo(cx1, FF, D2); //for (int iIdx = 0; iIdx < D2->rows; iIdx++) //{ // cvSetReal2D(D2, iIdx, 0, sqrt(cvGetReal2D(D2, iIdx, 0))); //} //cvDiv(D1, D2, D); //cvMul(D, D, D); eVisibleID.clear(); for (int iIdx = 0; iIdx < cx1->rows; iIdx++) { CvMat *xM2 = cvCreateMat(1, 3, CV_32FC1); CvMat *xM1 = cvCreateMat(3, 1, CV_32FC1); CvMat *s = cvCreateMat(1, 1, CV_32FC1); cvSetReal2D(xM2, 0, 0, cvGetReal2D(cx2, iIdx, 0)); cvSetReal2D(xM2, 0, 1, cvGetReal2D(cx2, iIdx, 1)); cvSetReal2D(xM2, 0, 2, 1); cvSetReal2D(xM1, 0, 0, cvGetReal2D(cx1, iIdx, 0)); cvSetReal2D(xM1, 1, 0, cvGetReal2D(cx2, iIdx, 1)); cvSetReal2D(xM1, 2, 0, 1); cvMatMul(xM2, F, xM2); cvMatMul(xM2, xM1, s); double l1 = cvGetReal2D(xM2, 0, 0); double l2 = cvGetReal2D(xM2, 0, 1); double l3 = cvGetReal2D(xM2, 0, 2); double dist = abs(cvGetReal2D(s, 0, 0))/sqrt(l1*l1+l2*l2); cout << dist << endl; if (abs(dist) < threshold) { vector<double> ex1_vec, ex2_vec; ex1_vec.push_back(cvGetReal2D(cx1, iIdx, 0)); ex1_vec.push_back(cvGetReal2D(cx1, iIdx, 1)); ex2_vec.push_back(cvGetReal2D(cx2, iIdx, 0)); ex2_vec.push_back(cvGetReal2D(cx2, iIdx, 1)); ex1.push_back(ex1_vec); ex2.push_back(ex2_vec); eVisibleID.push_back(visibleID[iIdx]); } cvReleaseMat(&xM2); cvReleaseMat(&xM1); cvReleaseMat(&s); } cvReleaseMat(&e_homo); cvReleaseMat(&C); cvReleaseMat(&R); cvReleaseMat(&C_homo); cvReleaseMat(&pinvP1); cvReleaseMat(&temp33); cvReleaseMat(&skewE); cvReleaseMat(&F); cvReleaseMat(&FF); //cvReleaseMat(&D1); //cvReleaseMat(&D2); //cvReleaseMat(&D); if (eVisibleID.size() > 0) return 1; else return 0; } void NonlinearTriangulation(CvMat *x1, CvMat *x2, CvMat *F, CvMat &xhat1, CvMat &xhat2) { for (int ix = 0; ix < x1->rows; ix++) { CvMat *T1 = cvCreateMat(3,3,CV_32FC1); CvMat *T2 = cvCreateMat(3,3,CV_32FC1); cvSetZero(T1); cvSetReal2D(T1, 0, 0, 1.0); cvSetReal2D(T1, 1, 1, 1.0); cvSetReal2D(T1, 2, 2, 1.0); cvSetReal2D(T1, 0, 2, -cvGetReal2D(x1, ix, 0)); cvSetReal2D(T1, 1, 2, -cvGetReal2D(x1, ix, 1)); cvSetZero(T2); cvSetReal2D(T2, 0, 0, 1.0); cvSetReal2D(T2, 1, 1, 1.0); cvSetReal2D(T2, 2, 2, 1.0); cvSetReal2D(T2, 0, 2, -cvGetReal2D(x2, ix, 0)); cvSetReal2D(T2, 1, 2, -cvGetReal2D(x2, ix, 1)); CvMat *nF = cvCreateMat(3,3,CV_32FC1); nF = cvCloneMat(F); CvMat *FinvT1 = cvCreateMat(3,3,CV_32FC1); CvMat *invT1 = cvCreateMat(3,3,CV_32FC1); CvMat *invT2 = cvCreateMat(3,3,CV_32FC1); CvMat *invT2t = cvCreateMat(3,3,CV_32FC1); cvInvert(T1, invT1); cvInvert(T2, invT2); cvTranspose(invT2, invT2t); cvMatMul(nF, invT1, FinvT1); cvMatMul(invT2t, FinvT1, nF); CvMat *U = cvCreateMat(3,3,CV_32FC1); CvMat *D = cvCreateMat(3,3,CV_32FC1); CvMat *Vt = cvCreateMat(3,3,CV_32FC1); cvSVD(nF, D, U, Vt, CV_SVD_V_T); cvSetReal2D(D, 2, 2, 0); CvMat *temp33 = cvCreateMat(3,3,CV_32FC1); CvMat *temp33_1 = cvCreateMat(3,3,CV_32FC1); cvMatMul(U, D, temp33); cvMatMul(temp33, Vt, nF); CvMat *e1 = cvCreateMat(3,1,CV_32FC1); CvMat *e2 = cvCreateMat(3,1,CV_32FC1); double e11 = cvGetReal2D(Vt,2,0); double e12 = cvGetReal2D(Vt,2,1); double e13 = cvGetReal2D(Vt,2,2); CvMat *nFt = cvCreateMat(3,3,CV_32FC1); cvTranspose(nF, nFt); cvSVD(nFt, D, U, Vt, CV_SVD_V_T); double norm_e1 = sqrt(e11*e11+e12*e12); double e21 = cvGetReal2D(Vt,2,0); double e22 = cvGetReal2D(Vt,2,1); double e23 = cvGetReal2D(Vt,2,2); double norm_e2 = sqrt(e21*e21+e22*e22); cvSetReal2D(e1,0,0,e11/norm_e1); cvSetReal2D(e1,1,0,e12/norm_e1); cvSetReal2D(e1,2,0,e13/norm_e1); cvSetReal2D(e2,0,0,e21/norm_e2); cvSetReal2D(e2,1,0,e22/norm_e2); cvSetReal2D(e2,2,0,e23/norm_e2); CvMat *R1 = cvCreateMat(3,3,CV_32FC1); CvMat *R2 = cvCreateMat(3,3,CV_32FC1); cvSetIdentity(R1); cvSetIdentity(R2); cvSetReal2D(R1, 0, 0, cvGetReal2D(e1, 0, 0)); cvSetReal2D(R1, 0, 1, cvGetReal2D(e1, 1, 0)); cvSetReal2D(R1, 1, 0, -cvGetReal2D(e1, 1, 0)); cvSetReal2D(R1, 1, 1, cvGetReal2D(e1, 0, 0)); cvSetReal2D(R2, 0, 0, cvGetReal2D(e2, 0, 0)); cvSetReal2D(R2, 0, 1, cvGetReal2D(e2, 1, 0)); cvSetReal2D(R2, 1, 0, -cvGetReal2D(e2, 1, 0)); cvSetReal2D(R2, 1, 1, cvGetReal2D(e2, 0, 0)); cvMatMul(R2, nF, temp33); cvTranspose(R1, temp33_1); cvMatMul(temp33, temp33_1, nF); double f1 = cvGetReal2D(e1, 2, 0); double f2 = cvGetReal2D(e2, 2, 0); double a = cvGetReal2D(nF, 1, 1); double b = cvGetReal2D(nF, 1, 2); double c = cvGetReal2D(nF, 2, 1); double d = cvGetReal2D(nF, 2, 2); double g1 = -(a*d-b*c)*f1*f1*f1*f1*a*c; double g2 = (a*a+f2*f2*c*c)*(a*a+f2*f2*c*c)-(a*d-b*c)*f1*f1*f1*f1*b*c-(a*d-b*c)*f1*f1*f1*f1*a*d; double g3 = (2*(2*b*a+2*f2*f2*d*c)*(a*a+f2*f2*c*c)-2*(a*d-b*c)*f1*f1*a*c-(a*d-b*c)*f1*f1*f1*f1*b*d); double g4 = (-2*(a*d-b*c)*f1*f1*b*c-2*(a*d-b*c)*f1*f1*a*d+2*(b*b+f2*f2*d*d)*(a*a+f2*f2*c*c)+(2*b*a+2*f2*f2*d*c)*(2*b*a+2*f2*f2*d*c)); double g5 = (-(a*d-b*c)*a*c-2*(a*d-b*c)*f1*f1*b*d+2*(b*b+f2*f2*d*d)*(2*b*a+2*f2*f2*d*c)); double g6 = ((b*b+f2*f2*d*d)*(b*b+f2*f2*d*d)-(a*d-b*c)*b*c-(a*d-b*c)*a*d); double g7 = -(a*d-b*c)*b*d; CvMat *G = cvCreateMat(7,1,CV_32FC1); CvMat *root = cvCreateMat(6,1, CV_32FC2); cvSetReal2D(G, 0, 0, g1); cvSetReal2D(G, 1, 0, g2); cvSetReal2D(G, 2, 0, g3); cvSetReal2D(G, 3, 0, g4); cvSetReal2D(G, 4, 0, g5); cvSetReal2D(G, 5, 0, g6); cvSetReal2D(G, 6, 0, g7); cvSolvePoly(G, root, 1e+3, 10); for (int i = 0; i < 6; i++) { CvScalar r = cvGet2D(root, i, 0); cout << r.val[0] << " " << r.val[1]<< endl; } } // e1 = null(F); e1 = e1/sqrt(e1(1)^2+e1(2)^2); //e2 = null(F'); e2 = e2/sqrt(e2(1)^2+e2(2)^2); // R1 = [e1(1) e1(2) 0; -e1(2) e1(1) 0; 0 0 1]; //R2 = [e2(1) e2(2) 0; -e2(2) e2(1) 0; 0 0 1]; //F = R2*F*R1'; // f1 = e1(3); f2 = e2(3); //a = F(2,2); b = F(2,3); c = F(3,2); d = F(3,3); //g = [-(a*d-b*c)*f1^4*a*c,... // (a^2+f2^2*c^2)^2-(a*d-b*c)*f1^4*b*c-(a*d-b*c)*f1^4*a*d,... // (2*(2*b*a+2*f2^2*d*c)*(a^2+f2^2*c^2)-2*(a*d-b*c)*f1^2*a*c-(a*d-b*c)*f1^4*b*d),... // (-2*(a*d-b*c)*f1^2*b*c-2*(a*d-b*c)*f1^2*a*d+2*(b^2+f2^2*d^2)*(a^2+f2^2*c^2)+(2*b*a+2*f2^2*d*c)^2),... // (-(a*d-b*c)*a*c-2*(a*d-b*c)*f1^2*b*d+2*(b^2+f2^2*d^2)*(2*b*a+2*f2^2*d*c)),... // ((b^2+f2^2*d^2)^2-(a*d-b*c)*b*c-(a*d-b*c)*a*d),... // -(a*d-b*c)*b*d]; //t = roots(g); //t = real(t); //s = t.^2./(1+f1^2*t.^2) + (c*t+d).^2./((a*t+b).^2 + f2^2*(c*t+d).^2); //s(end+1) = 1/f1^2+c^2/(a^2+f2^2*c^2); //[mins,minidx] = min(s); //if minidx <= length(t) // t = t(minidx); //else // t = 1e+6; //end // l1 = [t*f1, 1, -t]; //l2 = F*[0; t; 1]; //xhat1_t = [-l1(1)*l1(3); -l1(2)*l1(3); l1(1)^2+l1(2)^2]; //xhat2_t = [-l2(1)*l2(3); -l2(2)*l2(3); l2(1)^2+l2(2)^2]; //xhat1_t = inv(T1)*R1'*xhat1_t; // xhat2_t = inv(T2)*R2'*xhat2_t; // xhat1_t = xhat1_t/xhat1_t(3); //xhat2_t = xhat2_t/xhat2_t(3); //xhat1(i,:) = xhat1_t; //xhat2(i,:) = xhat2_t; //end } void GetExtrinsicParameterFromE(CvMat *E, CvMat *x1, CvMat *x2, CvMat &P) { CvMat *W = cvCreateMat(3, 3, CV_32FC1); CvMat *U = cvCreateMat(3, 3, CV_32FC1); CvMat *D = cvCreateMat(3, 3, CV_32FC1); CvMat *Vt = cvCreateMat(3, 3, CV_32FC1); CvMat *Wt = cvCreateMat(3, 3, CV_32FC1); cvSVD(E, D, U, Vt, CV_SVD_V_T); //cvSetReal2D(D, 1,1,cvGetReal2D(D,0,0)); //cvMatMul(U, D, E); //cvMatMul(E, Vt, E); //cvSVD(E, D, U, Vt, CV_SVD_V_T); cvSetReal2D(W, 0, 0, 0); cvSetReal2D(W, 0, 1, -1); cvSetReal2D(W, 0, 2, 0); cvSetReal2D(W, 1, 0, 1); cvSetReal2D(W, 1, 1, 0); cvSetReal2D(W, 1, 2, 0); cvSetReal2D(W, 2, 0, 0); cvSetReal2D(W, 2, 1, 0); cvSetReal2D(W, 2, 2, 1); cvTranspose(W, Wt); CvMat *P0 = cvCreateMat(3, 4, CV_32FC1); cvSetIdentity(P0); P = *cvCreateMat(3, 4, CV_32FC1); CvMat *P1 = cvCreateMat(3, 4, CV_32FC1); CvMat *P2 = cvCreateMat(3, 4, CV_32FC1); CvMat *P3 = cvCreateMat(3, 4, CV_32FC1); CvMat *P4 = cvCreateMat(3, 4, CV_32FC1); CvMat *R1 = cvCreateMat(3, 3, CV_32FC1); CvMat *R2 = cvCreateMat(3, 3, CV_32FC1); CvMat *t1 = cvCreateMat(3, 1, CV_32FC1); CvMat *t2 = cvCreateMat(3, 1, CV_32FC1); CvMat *temp33 = cvCreateMat(3, 3, CV_32FC1); cvMatMul(U, W, temp33); cvMatMul(temp33, Vt, R1); cvMatMul(U, Wt, temp33); cvMatMul(temp33, Vt, R2); cvSetReal2D(t1, 0, 0, cvGetReal2D(U,0,2)); cvSetReal2D(t1, 1, 0, cvGetReal2D(U,1,2)); cvSetReal2D(t1, 2, 0, cvGetReal2D(U,2,2)); ScalarMul(t1, -1, t2); SetSubMat(P1, 0, 0, R1); SetSubMat(P1, 0, 3, t1); SetSubMat(P2, 0, 0, R1); SetSubMat(P2, 0, 3, t2); SetSubMat(P3, 0, 0, R2); SetSubMat(P3, 0, 3, t1); SetSubMat(P4, 0, 0, R2); SetSubMat(P4, 0, 3, t2); if (cvDet(R1) < 0) { ScalarMul(P1, -1, P1); ScalarMul(P2, -1, P2); } if (cvDet(R2) < 0) { ScalarMul(P3, -1, P3); ScalarMul(P4, -1, P4); } CvMat X1; LinearTriangulation(x1, P0, x2, P1, X1); CvMat X2; LinearTriangulation(x1, P0, x2, P2, X2); CvMat X3; LinearTriangulation(x1, P0, x2, P3, X3); CvMat X4; LinearTriangulation(x1, P0, x2, P4, X4); int x1neg = 0, x2neg = 0, x3neg = 0, x4neg = 0; CvMat *H1 = cvCreateMat(4, 4, CV_32FC1); CvMat *invH1 = cvCreateMat(4, 4, CV_32FC1); CvMat HX1; cvSetIdentity(H1); SetSubMat(H1, 0, 0, P1); cvInvert(H1, invH1); Pxx_inhomo(H1, &X1, HX1); CvMat *H2 = cvCreateMat(4, 4, CV_32FC1); CvMat *invH2 = cvCreateMat(4, 4, CV_32FC1); CvMat HX2; cvSetIdentity(H2); SetSubMat(H2, 0, 0, P2); cvInvert(H2, invH2); Pxx_inhomo(H2, &X2, HX2); CvMat *H3 = cvCreateMat(4, 4, CV_32FC1); CvMat *invH3 = cvCreateMat(4, 4, CV_32FC1); CvMat HX3; cvSetIdentity(H3); SetSubMat(H3, 0, 0, P3); cvInvert(H3, invH3); Pxx_inhomo(H3, &X3, HX3); CvMat *H4 = cvCreateMat(4, 4, CV_32FC1); CvMat *invH4 = cvCreateMat(4, 4, CV_32FC1); CvMat HX4; cvSetIdentity(H4); SetSubMat(H4, 0, 0, P4); cvInvert(H4, invH4); Pxx_inhomo(H4, &X4, HX4); for (int ix = 0; ix < x1->rows; ix++) { if ((cvGetReal2D(&X1, ix, 2)<0) || (cvGetReal2D(&HX1, ix, 2)<0)) x1neg++; if ((cvGetReal2D(&X2, ix, 2)<0) || (cvGetReal2D(&HX2, ix, 2)<0)) x2neg++; if ((cvGetReal2D(&X3, ix, 2)<0) || (cvGetReal2D(&HX3, ix, 2)<0)) x3neg++; if ((cvGetReal2D(&X4, ix, 2)<0) || (cvGetReal2D(&HX4, ix, 2)<0)) x4neg++; } CvMat *temp34 = cvCreateMat(3, 4, CV_32FC1); if ((x1neg <= x2neg) && (x1neg <= x3neg) && (x1neg <= x4neg)) P = *cvCloneMat(P1); else if ((x2neg <= x1neg) && (x2neg <= x3neg) && (x2neg <= x4neg)) P = *cvCloneMat(P2); else if ((x3neg <= x1neg) && (x3neg <= x2neg) && (x3neg <= x4neg)) P = *cvCloneMat(P3); else P = *cvCloneMat(P4); cvReleaseMat(&W); cvReleaseMat(&U); cvReleaseMat(&D); cvReleaseMat(&Vt); cvReleaseMat(&Wt); cvReleaseMat(&P0); cvReleaseMat(&P1); cvReleaseMat(&P2); cvReleaseMat(&P3); cvReleaseMat(&P4); cvReleaseMat(&R1); cvReleaseMat(&R2); cvReleaseMat(&t1); cvReleaseMat(&t2); cvReleaseMat(&temp33); cvReleaseMat(&temp34); cvReleaseMat(&H1); cvReleaseMat(&invH1); cvReleaseMat(&H2); cvReleaseMat(&invH2); cvReleaseMat(&H3); cvReleaseMat(&invH3); cvReleaseMat(&H4); cvReleaseMat(&invH4); } void GetExtrinsicParameterFromE(CvMat *E, CvMat *x1, CvMat *x2, CvMat *P) { CvMat *W = cvCreateMat(3, 3, CV_32FC1); CvMat *U = cvCreateMat(3, 3, CV_32FC1); CvMat *D = cvCreateMat(3, 3, CV_32FC1); CvMat *Vt = cvCreateMat(3, 3, CV_32FC1); CvMat *Wt = cvCreateMat(3, 3, CV_32FC1); cvSVD(E, D, U, Vt, CV_SVD_V_T); //cvSetReal2D(D, 1,1,cvGetReal2D(D,0,0)); //cvMatMul(U, D, E); //cvMatMul(E, Vt, E); //cvSVD(E, D, U, Vt, CV_SVD_V_T); cvSetReal2D(W, 0, 0, 0); cvSetReal2D(W, 0, 1, -1); cvSetReal2D(W, 0, 2, 0); cvSetReal2D(W, 1, 0, 1); cvSetReal2D(W, 1, 1, 0); cvSetReal2D(W, 1, 2, 0); cvSetReal2D(W, 2, 0, 0); cvSetReal2D(W, 2, 1, 0); cvSetReal2D(W, 2, 2, 1); cvTranspose(W, Wt); CvMat *P0 = cvCreateMat(3, 4, CV_32FC1); cvSetIdentity(P0); CvMat *P1 = cvCreateMat(3, 4, CV_32FC1); CvMat *P2 = cvCreateMat(3, 4, CV_32FC1); CvMat *P3 = cvCreateMat(3, 4, CV_32FC1); CvMat *P4 = cvCreateMat(3, 4, CV_32FC1); CvMat *R1 = cvCreateMat(3, 3, CV_32FC1); CvMat *R2 = cvCreateMat(3, 3, CV_32FC1); CvMat *t1 = cvCreateMat(3, 1, CV_32FC1); CvMat *t2 = cvCreateMat(3, 1, CV_32FC1); CvMat *temp33 = cvCreateMat(3, 3, CV_32FC1); cvMatMul(U, W, temp33); cvMatMul(temp33, Vt, R1); cvMatMul(U, Wt, temp33); cvMatMul(temp33, Vt, R2); cvSetReal2D(t1, 0, 0, cvGetReal2D(U,0,2)); cvSetReal2D(t1, 1, 0, cvGetReal2D(U,1,2)); cvSetReal2D(t1, 2, 0, cvGetReal2D(U,2,2)); ScalarMul(t1, -1, t2); SetSubMat(P1, 0, 0, R1); SetSubMat(P1, 0, 3, t1); SetSubMat(P2, 0, 0, R1); SetSubMat(P2, 0, 3, t2); SetSubMat(P3, 0, 0, R2); SetSubMat(P3, 0, 3, t1); SetSubMat(P4, 0, 0, R2); SetSubMat(P4, 0, 3, t2); if (cvDet(R1) < 0) { ScalarMul(P1, -1, P1); ScalarMul(P2, -1, P2); } if (cvDet(R2) < 0) { ScalarMul(P3, -1, P3); ScalarMul(P4, -1, P4); } CvMat *X1 = cvCreateMat(x1->rows, 3, CV_32FC1); LinearTriangulation(x1, P0, x2, P1, X1); CvMat *X2 = cvCreateMat(x1->rows, 3, CV_32FC1);; LinearTriangulation(x1, P0, x2, P2, X2); CvMat *X3 = cvCreateMat(x1->rows, 3, CV_32FC1);; LinearTriangulation(x1, P0, x2, P3, X3); CvMat *X4 = cvCreateMat(x1->rows, 3, CV_32FC1);; LinearTriangulation(x1, P0, x2, P4, X4); int x1neg = 0, x2neg = 0, x3neg = 0, x4neg = 0; CvMat *H1 = cvCreateMat(4, 4, CV_32FC1); CvMat *invH1 = cvCreateMat(4, 4, CV_32FC1); CvMat *HX1 = cvCreateMat(X1->rows, X1->cols, CV_32FC1); cvSetIdentity(H1); SetSubMat(H1, 0, 0, P1); cvInvert(H1, invH1); Pxx_inhomo(H1, X1, HX1); CvMat *H2 = cvCreateMat(4, 4, CV_32FC1); CvMat *invH2 = cvCreateMat(4, 4, CV_32FC1); CvMat *HX2 = cvCreateMat(X1->rows, X1->cols, CV_32FC1); cvSetIdentity(H2); SetSubMat(H2, 0, 0, P2); cvInvert(H2, invH2); Pxx_inhomo(H2, X2, HX2); CvMat *H3 = cvCreateMat(4, 4, CV_32FC1); CvMat *invH3 = cvCreateMat(4, 4, CV_32FC1); CvMat *HX3 = cvCreateMat(X1->rows, X1->cols, CV_32FC1); cvSetIdentity(H3); SetSubMat(H3, 0, 0, P3); cvInvert(H3, invH3); Pxx_inhomo(H3, X3, HX3); CvMat *H4 = cvCreateMat(4, 4, CV_32FC1); CvMat *invH4 = cvCreateMat(4, 4, CV_32FC1); CvMat *HX4 = cvCreateMat(X1->rows, X1->cols, CV_32FC1); cvSetIdentity(H4); SetSubMat(H4, 0, 0, P4); cvInvert(H4, invH4); Pxx_inhomo(H4, X4, HX4); for (int ix = 0; ix < x1->rows; ix++) { if ((cvGetReal2D(X1, ix, 2)<0) || (cvGetReal2D(HX1, ix, 2)<0)) x1neg++; if ((cvGetReal2D(X2, ix, 2)<0) || (cvGetReal2D(HX2, ix, 2)<0)) x2neg++; if ((cvGetReal2D(X3, ix, 2)<0) || (cvGetReal2D(HX3, ix, 2)<0)) x3neg++; if ((cvGetReal2D(X4, ix, 2)<0) || (cvGetReal2D(HX4, ix, 2)<0)) x4neg++; } CvMat *temp34 = cvCreateMat(3, 4, CV_32FC1); if ((x1neg <= x2neg) && (x1neg <= x3neg) && (x1neg <= x4neg)) SetSubMat(P, 0, 0, P1); else if ((x2neg <= x1neg) && (x2neg <= x3neg) && (x2neg <= x4neg)) SetSubMat(P, 0, 0, P2); else if ((x3neg <= x1neg) && (x3neg <= x2neg) && (x3neg <= x4neg)) SetSubMat(P, 0, 0, P3); else SetSubMat(P, 0, 0, P4); //cout << x1neg << " " << x2neg << " " << " " << x3neg << " " << x4neg << endl; cvReleaseMat(&W); cvReleaseMat(&U); cvReleaseMat(&D); cvReleaseMat(&Vt); cvReleaseMat(&Wt); cvReleaseMat(&P0); cvReleaseMat(&P1); cvReleaseMat(&P2); cvReleaseMat(&P3); cvReleaseMat(&P4); cvReleaseMat(&R1); cvReleaseMat(&R2); cvReleaseMat(&t1); cvReleaseMat(&t2); cvReleaseMat(&temp33); cvReleaseMat(&temp34); cvReleaseMat(&H1); cvReleaseMat(&invH1); cvReleaseMat(&H2); cvReleaseMat(&invH2); cvReleaseMat(&H3); cvReleaseMat(&invH3); cvReleaseMat(&H4); cvReleaseMat(&invH4); cvReleaseMat(&X1); cvReleaseMat(&X2); cvReleaseMat(&X3); cvReleaseMat(&X4); cvReleaseMat(&HX1); cvReleaseMat(&HX2); cvReleaseMat(&HX3); cvReleaseMat(&HX4); } void LinearTriangulation(CvMat *x1, CvMat *P1, CvMat *x2, CvMat *P2, CvMat &X) { X = *cvCreateMat(x1->rows, 3, CV_32FC1); cvSetZero(&X); for (int ix = 0; ix < x1->rows; ix++) { CvMat *A = cvCreateMat(4, 4, CV_32FC1); CvMat *A1 = cvCreateMat(1, 4, CV_32FC1); CvMat *A2 = cvCreateMat(1, 4, CV_32FC1); CvMat *A3 = cvCreateMat(1, 4, CV_32FC1); CvMat *A4 = cvCreateMat(1, 4, CV_32FC1); CvMat *P1_1 = cvCreateMat(1, 4, CV_32FC1); CvMat *P1_2 = cvCreateMat(1, 4, CV_32FC1); CvMat *P1_3 = cvCreateMat(1, 4, CV_32FC1); CvMat *P2_1 = cvCreateMat(1, 4, CV_32FC1); CvMat *P2_2 = cvCreateMat(1, 4, CV_32FC1); CvMat *P2_3 = cvCreateMat(1, 4, CV_32FC1); CvMat *temp14_1 = cvCreateMat(1, 4, CV_32FC1); GetSubMatRowwise(P1, 0, 0, P1_1); GetSubMatRowwise(P1, 1, 1, P1_2); GetSubMatRowwise(P1, 2, 2, P1_3); GetSubMatRowwise(P2, 0, 0, P2_1); GetSubMatRowwise(P2, 1, 1, P2_2); GetSubMatRowwise(P2, 2, 2, P2_3); ScalarMul(P1_3, cvGetReal2D(x1, ix, 0), temp14_1); cvSub(temp14_1, P1_1, A1); ScalarMul(P1_3, cvGetReal2D(x1, ix, 1), temp14_1); cvSub(temp14_1, P1_2, A2); ScalarMul(P2_3, cvGetReal2D(x2, ix, 0), temp14_1); cvSub(temp14_1, P2_1, A3); ScalarMul(P2_3, cvGetReal2D(x2, ix, 1), temp14_1); cvSub(temp14_1, P2_2, A4); SetSubMat(A, 0, 0, A1); SetSubMat(A, 1, 0, A2); SetSubMat(A, 2, 0, A3); SetSubMat(A, 3, 0, A4); CvMat x; LS_homogeneous(A, x); double v = cvGetReal2D(&x, 3, 0); cvSetReal2D(&X, ix, 0, cvGetReal2D(&x, 0, 0)/v); cvSetReal2D(&X, ix, 1, cvGetReal2D(&x, 1, 0)/v); cvSetReal2D(&X, ix, 2, cvGetReal2D(&x, 2, 0)/v); cvReleaseMat(&A); cvReleaseMat(&A1); cvReleaseMat(&A2); cvReleaseMat(&A3); cvReleaseMat(&A4); cvReleaseMat(&P1_1); cvReleaseMat(&P1_2); cvReleaseMat(&P1_3); cvReleaseMat(&P2_1); cvReleaseMat(&P2_2); cvReleaseMat(&P2_3); cvReleaseMat(&temp14_1); } } void LinearTriangulation(CvMat *x1, CvMat *P1, CvMat *x2, CvMat *P2, CvMat *X) { for (int ix = 0; ix < x1->rows; ix++) { CvMat *A = cvCreateMat(4, 4, CV_32FC1); CvMat *A1 = cvCreateMat(1, 4, CV_32FC1); CvMat *A2 = cvCreateMat(1, 4, CV_32FC1); CvMat *A3 = cvCreateMat(1, 4, CV_32FC1); CvMat *A4 = cvCreateMat(1, 4, CV_32FC1); CvMat *P1_1 = cvCreateMat(1, 4, CV_32FC1); CvMat *P1_2 = cvCreateMat(1, 4, CV_32FC1); CvMat *P1_3 = cvCreateMat(1, 4, CV_32FC1); CvMat *P2_1 = cvCreateMat(1, 4, CV_32FC1); CvMat *P2_2 = cvCreateMat(1, 4, CV_32FC1); CvMat *P2_3 = cvCreateMat(1, 4, CV_32FC1); CvMat *temp14_1 = cvCreateMat(1, 4, CV_32FC1); GetSubMatRowwise(P1, 0, 0, P1_1); GetSubMatRowwise(P1, 1, 1, P1_2); GetSubMatRowwise(P1, 2, 2, P1_3); GetSubMatRowwise(P2, 0, 0, P2_1); GetSubMatRowwise(P2, 1, 1, P2_2); GetSubMatRowwise(P2, 2, 2, P2_3); ScalarMul(P1_3, cvGetReal2D(x1, ix, 0), temp14_1); cvSub(temp14_1, P1_1, A1); ScalarMul(P1_3, cvGetReal2D(x1, ix, 1), temp14_1); cvSub(temp14_1, P1_2, A2); ScalarMul(P2_3, cvGetReal2D(x2, ix, 0), temp14_1); cvSub(temp14_1, P2_1, A3); ScalarMul(P2_3, cvGetReal2D(x2, ix, 1), temp14_1); cvSub(temp14_1, P2_2, A4); SetSubMat(A, 0, 0, A1); SetSubMat(A, 1, 0, A2); SetSubMat(A, 2, 0, A3); SetSubMat(A, 3, 0, A4); CvMat *x = cvCreateMat(A->cols, 1, CV_32FC1); LS_homogeneous(A, x); double v = cvGetReal2D(x, 3, 0); cvSetReal2D(X, ix, 0, cvGetReal2D(x, 0, 0)/v); cvSetReal2D(X, ix, 1, cvGetReal2D(x, 1, 0)/v); cvSetReal2D(X, ix, 2, cvGetReal2D(x, 2, 0)/v); cvReleaseMat(&A); cvReleaseMat(&A1); cvReleaseMat(&A2); cvReleaseMat(&A3); cvReleaseMat(&A4); cvReleaseMat(&P1_1); cvReleaseMat(&P1_2); cvReleaseMat(&P1_3); cvReleaseMat(&P2_1); cvReleaseMat(&P2_2); cvReleaseMat(&P2_3); cvReleaseMat(&temp14_1); cvReleaseMat(&x); } } int LinearTriangulation(CvMat *x1, CvMat *P1, CvMat *x2, CvMat *P2, vector<int> featureID, CvMat &X, vector<int> &filteredFeatureID) { //X = *cvCreateMat(x1->rows, 3, CV_32FC1); //cvSetZero(&X); vector<double> X1, X2, X3; filteredFeatureID.clear(); for (int ix = 0; ix < x1->rows; ix++) { CvMat *A = cvCreateMat(4, 4, CV_32FC1); CvMat *A1 = cvCreateMat(1, 4, CV_32FC1); CvMat *A2 = cvCreateMat(1, 4, CV_32FC1); CvMat *A3 = cvCreateMat(1, 4, CV_32FC1); CvMat *A4 = cvCreateMat(1, 4, CV_32FC1); CvMat *P1_1 = cvCreateMat(1, 4, CV_32FC1); CvMat *P1_2 = cvCreateMat(1, 4, CV_32FC1); CvMat *P1_3 = cvCreateMat(1, 4, CV_32FC1); CvMat *P2_1 = cvCreateMat(1, 4, CV_32FC1); CvMat *P2_2 = cvCreateMat(1, 4, CV_32FC1); CvMat *P2_3 = cvCreateMat(1, 4, CV_32FC1); CvMat *temp14_1 = cvCreateMat(1, 4, CV_32FC1); GetSubMatRowwise(P1, 0, 0, P1_1); GetSubMatRowwise(P1, 1, 1, P1_2); GetSubMatRowwise(P1, 2, 2, P1_3); GetSubMatRowwise(P2, 0, 0, P2_1); GetSubMatRowwise(P2, 1, 1, P2_2); GetSubMatRowwise(P2, 2, 2, P2_3); ScalarMul(P1_3, cvGetReal2D(x1, ix, 0), temp14_1); cvSub(temp14_1, P1_1, A1); ScalarMul(P1_3, cvGetReal2D(x1, ix, 1), temp14_1); cvSub(temp14_1, P1_2, A2); ScalarMul(P2_3, cvGetReal2D(x2, ix, 0), temp14_1); cvSub(temp14_1, P2_1, A3); ScalarMul(P2_3, cvGetReal2D(x2, ix, 1), temp14_1); cvSub(temp14_1, P2_2, A4); SetSubMat(A, 0, 0, A1); SetSubMat(A, 1, 0, A2); SetSubMat(A, 2, 0, A3); SetSubMat(A, 3, 0, A4); CvMat x; LS_homogeneous(A, x); double v = cvGetReal2D(&x, 3, 0); //cout << v << " " << abs(v)<< endl; if (abs(v) < POINT_AT_INFINITY_ZERO) continue; X1.push_back(cvGetReal2D(&x, 0, 0)/v); X2.push_back(cvGetReal2D(&x, 1, 0)/v); X3.push_back(cvGetReal2D(&x, 2, 0)/v); filteredFeatureID.push_back(featureID[ix]); cvReleaseMat(&A); cvReleaseMat(&A1); cvReleaseMat(&A2); cvReleaseMat(&A3); cvReleaseMat(&A4); cvReleaseMat(&P1_1); cvReleaseMat(&P1_2); cvReleaseMat(&P1_3); cvReleaseMat(&P2_1); cvReleaseMat(&P2_2); cvReleaseMat(&P2_3); cvReleaseMat(&temp14_1); } if (X1.size() == 0) return 0; X = *cvCreateMat(X1.size(), 3, CV_32FC1); for (int i = 0; i < X1.size(); i++) { cvSetReal2D(&X, i, 0, X1[i]); cvSetReal2D(&X, i, 1, X2[i]); cvSetReal2D(&X, i, 2, X3[i]); } return 1; } int LinearTriangulation_mem(CvMat *x1, CvMat *P1, CvMat *x2, CvMat *P2, vector<int> featureID, vector<vector<double> > &X, vector<int> &filteredFeatureID) { vector<double> X1, X2, X3; filteredFeatureID.clear(); for (int ix = 0; ix < x1->rows; ix++) { CvMat *A = cvCreateMat(4, 4, CV_32FC1); CvMat *A1 = cvCreateMat(1, 4, CV_32FC1); CvMat *A2 = cvCreateMat(1, 4, CV_32FC1); CvMat *A3 = cvCreateMat(1, 4, CV_32FC1); CvMat *A4 = cvCreateMat(1, 4, CV_32FC1); CvMat *P1_1 = cvCreateMat(1, 4, CV_32FC1); CvMat *P1_2 = cvCreateMat(1, 4, CV_32FC1); CvMat *P1_3 = cvCreateMat(1, 4, CV_32FC1); CvMat *P2_1 = cvCreateMat(1, 4, CV_32FC1); CvMat *P2_2 = cvCreateMat(1, 4, CV_32FC1); CvMat *P2_3 = cvCreateMat(1, 4, CV_32FC1); CvMat *temp14_1 = cvCreateMat(1, 4, CV_32FC1); GetSubMatRowwise(P1, 0, 0, P1_1); GetSubMatRowwise(P1, 1, 1, P1_2); GetSubMatRowwise(P1, 2, 2, P1_3); GetSubMatRowwise(P2, 0, 0, P2_1); GetSubMatRowwise(P2, 1, 1, P2_2); GetSubMatRowwise(P2, 2, 2, P2_3); ScalarMul(P1_3, cvGetReal2D(x1, ix, 0), temp14_1); cvSub(temp14_1, P1_1, A1); ScalarMul(P1_3, cvGetReal2D(x1, ix, 1), temp14_1); cvSub(temp14_1, P1_2, A2); ScalarMul(P2_3, cvGetReal2D(x2, ix, 0), temp14_1); cvSub(temp14_1, P2_1, A3); ScalarMul(P2_3, cvGetReal2D(x2, ix, 1), temp14_1); cvSub(temp14_1, P2_2, A4); SetSubMat(A, 0, 0, A1); SetSubMat(A, 1, 0, A2); SetSubMat(A, 2, 0, A3); SetSubMat(A, 3, 0, A4); CvMat *x = cvCreateMat(A->cols, 1, CV_32FC1); LS_homogeneous(A, x); double v = cvGetReal2D(x, 3, 0); if (abs(v) < POINT_AT_INFINITY_ZERO) { cvReleaseMat(&A); cvReleaseMat(&A1); cvReleaseMat(&A2); cvReleaseMat(&A3); cvReleaseMat(&A4); cvReleaseMat(&P1_1); cvReleaseMat(&P1_2); cvReleaseMat(&P1_3); cvReleaseMat(&P2_1); cvReleaseMat(&P2_2); cvReleaseMat(&P2_3); cvReleaseMat(&temp14_1); cvReleaseMat(&x); continue; } X1.push_back(cvGetReal2D(x, 0, 0)/v); X2.push_back(cvGetReal2D(x, 1, 0)/v); X3.push_back(cvGetReal2D(x, 2, 0)/v); filteredFeatureID.push_back(featureID[ix]); cvReleaseMat(&A); cvReleaseMat(&A1); cvReleaseMat(&A2); cvReleaseMat(&A3); cvReleaseMat(&A4); cvReleaseMat(&P1_1); cvReleaseMat(&P1_2); cvReleaseMat(&P1_3); cvReleaseMat(&P2_1); cvReleaseMat(&P2_2); cvReleaseMat(&P2_3); cvReleaseMat(&temp14_1); cvReleaseMat(&x); } if (X1.size() == 0) return 0; for (int i = 0; i < X1.size(); i++) { vector<double> X_vec; X_vec.push_back(X1[i]); X_vec.push_back(X2[i]); X_vec.push_back(X3[i]); X.push_back(X_vec); } return X.size(); } int LinearTriangulation_mem_fast(CvMat *x1, CvMat *P1, CvMat *x2, CvMat *P2, vector<int> &featureID, vector<vector<double> > &X, vector<int> &filteredFeatureID) { filteredFeatureID.clear(); CvMat *A = cvCreateMat(4, 4, CV_32FC1); CvMat *A1 = cvCreateMat(1, 4, CV_32FC1); CvMat *A2 = cvCreateMat(1, 4, CV_32FC1); CvMat *A3 = cvCreateMat(1, 4, CV_32FC1); CvMat *A4 = cvCreateMat(1, 4, CV_32FC1); CvMat *P1_1 = cvCreateMat(1, 4, CV_32FC1); CvMat *P1_2 = cvCreateMat(1, 4, CV_32FC1); CvMat *P1_3 = cvCreateMat(1, 4, CV_32FC1); CvMat *P2_1 = cvCreateMat(1, 4, CV_32FC1); CvMat *P2_2 = cvCreateMat(1, 4, CV_32FC1); CvMat *P2_3 = cvCreateMat(1, 4, CV_32FC1); CvMat *temp14_1 = cvCreateMat(1, 4, CV_32FC1); CvMat *x = cvCreateMat(A->cols, 1, CV_32FC1); for (int ix = 0; ix < x1->rows; ix++) { GetSubMatRowwise(P1, 0, 0, P1_1); GetSubMatRowwise(P1, 1, 1, P1_2); GetSubMatRowwise(P1, 2, 2, P1_3); GetSubMatRowwise(P2, 0, 0, P2_1); GetSubMatRowwise(P2, 1, 1, P2_2); GetSubMatRowwise(P2, 2, 2, P2_3); ScalarMul(P1_3, cvGetReal2D(x1, ix, 0), temp14_1); cvSub(temp14_1, P1_1, A1); ScalarMul(P1_3, cvGetReal2D(x1, ix, 1), temp14_1); cvSub(temp14_1, P1_2, A2); ScalarMul(P2_3, cvGetReal2D(x2, ix, 0), temp14_1); cvSub(temp14_1, P2_1, A3); ScalarMul(P2_3, cvGetReal2D(x2, ix, 1), temp14_1); cvSub(temp14_1, P2_2, A4); SetSubMat(A, 0, 0, A1); SetSubMat(A, 1, 0, A2); SetSubMat(A, 2, 0, A3); SetSubMat(A, 3, 0, A4); LS_homogeneous(A, x); double v = cvGetReal2D(x, 3, 0); if (abs(v) < POINT_AT_INFINITY_ZERO) { continue; } vector<double> X_vec; X_vec.push_back(cvGetReal2D(x, 0, 0)/v); X_vec.push_back(cvGetReal2D(x, 1, 0)/v); X_vec.push_back(cvGetReal2D(x, 2, 0)/v); X.push_back(X_vec); filteredFeatureID.push_back(featureID[ix]); } cvReleaseMat(&A); cvReleaseMat(&A1); cvReleaseMat(&A2); cvReleaseMat(&A3); cvReleaseMat(&A4); cvReleaseMat(&P1_1); cvReleaseMat(&P1_2); cvReleaseMat(&P1_3); cvReleaseMat(&P2_1); cvReleaseMat(&P2_2); cvReleaseMat(&P2_3); cvReleaseMat(&temp14_1); cvReleaseMat(&x); if (filteredFeatureID.size() == 0) return 0; return X.size(); } bool LinearTriangulation(vector<CvMat *> vP, vector<double> vx, vector<double> vy, double &X, double &Y, double &Z) { if (vP.size() < 2) return false; CvMat *A = cvCreateMat(2*vP.size(), 4, CV_32FC1); CvMat *A1 = cvCreateMat(1, 4, CV_32FC1); CvMat *A2 = cvCreateMat(1, 4, CV_32FC1); CvMat *P_1 = cvCreateMat(1, 4, CV_32FC1); CvMat *P_2 = cvCreateMat(1, 4, CV_32FC1); CvMat *P_3 = cvCreateMat(1, 4, CV_32FC1); CvMat *temp14_1 = cvCreateMat(1, 4, CV_32FC1); CvMat *x = cvCreateMat(A->cols, 1, CV_32FC1); for (int iP = 0; iP < vP.size(); iP++) { GetSubMatRowwise(vP[iP], 0, 0, P_1); GetSubMatRowwise(vP[iP], 1, 1, P_2); GetSubMatRowwise(vP[iP], 2, 2, P_3); ScalarMul(P_3, vx[iP], temp14_1); cvSub(temp14_1, P_1, A1); ScalarMul(P_3, vy[iP], temp14_1); cvSub(temp14_1, P_2, A2); SetSubMat(A, 2*iP, 0, A1); SetSubMat(A, 2*iP+1, 0, A2); } LS_homogeneous(A, x); CvMat *Ax = cvCreateMat(A->rows, 1, CV_32FC1); cvMatMul(A, x, Ax); //PrintMat(Ax); double v = cvGetReal2D(x, 3, 0); if (abs(v) < POINT_AT_INFINITY_ZERO) { return false; } X = cvGetReal2D(x, 0, 0)/v; Y = cvGetReal2D(x, 1, 0)/v; Z = cvGetReal2D(x, 2, 0)/v; cvReleaseMat(&A); cvReleaseMat(&A1); cvReleaseMat(&A2); cvReleaseMat(&P_1); cvReleaseMat(&P_2); cvReleaseMat(&P_3); cvReleaseMat(&temp14_1); cvReleaseMat(&x); return true; } int DLT_ExtrinsicCameraParamEstimation(CvMat *X, CvMat *x, CvMat *K, CvMat *P) { if (X->rows < 6) return 0; CvMat *Xtilde = cvCreateMat(X->rows, 3, CV_32FC1); CvMat *xtilde = cvCreateMat(x->rows, 2, CV_32FC1); CvMat *U = cvCreateMat(4,4, CV_32FC1); CvMat *T = cvCreateMat(3,3, CV_32FC1); Normalization3D(X, Xtilde, U); Normalization(x, xtilde, T); CvMat *A = cvCreateMat(X->rows*2,12,CV_32FC1); for (int iX = 0; iX < X->rows; iX++) { CvMat *A1 = cvCreateMat(1, 12, CV_32FC1); CvMat *A2 = cvCreateMat(1, 12, CV_32FC1); cvSetZero(A1); cvSetZero(A2); CvMat *A1_2 = cvCreateMat(1, 4, CV_32FC1); CvMat *A1_3 = cvCreateMat(1, 4, CV_32FC1); CvMat *A2_1 = cvCreateMat(1, 4, CV_32FC1); CvMat *A2_3 = cvCreateMat(1, 4, CV_32FC1); // A1_2 cvSetReal2D(A1_2, 0, 0, -cvGetReal2D(Xtilde, iX, 0)); cvSetReal2D(A1_2, 0, 1, -cvGetReal2D(Xtilde, iX, 1)); cvSetReal2D(A1_2, 0, 2, -cvGetReal2D(Xtilde, iX, 2)); cvSetReal2D(A1_2, 0, 3, -1); // A1_3 cvSetReal2D(A1_3, 0, 0, cvGetReal2D(xtilde, iX, 1)*cvGetReal2D(Xtilde, iX, 0)); cvSetReal2D(A1_3, 0, 1, cvGetReal2D(xtilde, iX, 1)*cvGetReal2D(Xtilde, iX, 1)); cvSetReal2D(A1_3, 0, 2, cvGetReal2D(xtilde, iX, 1)*cvGetReal2D(Xtilde, iX, 2)); cvSetReal2D(A1_3, 0, 3, cvGetReal2D(xtilde, iX, 1)); // A2_1 cvSetReal2D(A2_1, 0, 0, cvGetReal2D(Xtilde, iX, 0)); cvSetReal2D(A2_1, 0, 1, cvGetReal2D(Xtilde, iX, 1)); cvSetReal2D(A2_1, 0, 2, cvGetReal2D(Xtilde, iX, 2)); cvSetReal2D(A2_1, 0, 3, 1); // A1_3 cvSetReal2D(A2_3, 0, 0, -cvGetReal2D(xtilde, iX, 0)*cvGetReal2D(Xtilde, iX, 0)); cvSetReal2D(A2_3, 0, 1, -cvGetReal2D(xtilde, iX, 0)*cvGetReal2D(Xtilde, iX, 1)); cvSetReal2D(A2_3, 0, 2, -cvGetReal2D(xtilde, iX, 0)*cvGetReal2D(Xtilde, iX, 2)); cvSetReal2D(A2_3, 0, 3, -cvGetReal2D(xtilde, iX, 0)); SetSubMat(A1, 0, 4, A1_2); SetSubMat(A1, 0, 8, A1_3); SetSubMat(A2, 0, 0, A2_1); SetSubMat(A2, 0, 8, A2_3); SetSubMat(A, 2*iX, 0, A1); SetSubMat(A, 2*iX+1, 0, A2); cvReleaseMat(&A1); cvReleaseMat(&A2); cvReleaseMat(&A1_2); cvReleaseMat(&A1_3); cvReleaseMat(&A2_1); cvReleaseMat(&A2_3); } CvMat *p = cvCreateMat(A->cols, 1, CV_32FC1); LS_homogeneous(A, p); cvSetReal2D(P, 0, 0, cvGetReal2D(p, 0, 0)); cvSetReal2D(P, 0, 1, cvGetReal2D(p, 1, 0)); cvSetReal2D(P, 0, 2, cvGetReal2D(p, 2, 0)); cvSetReal2D(P, 0, 3, cvGetReal2D(p, 3, 0)); cvSetReal2D(P, 1, 0, cvGetReal2D(p, 4, 0)); cvSetReal2D(P, 1, 1, cvGetReal2D(p, 5, 0)); cvSetReal2D(P, 1, 2, cvGetReal2D(p, 6, 0)); cvSetReal2D(P, 1, 3, cvGetReal2D(p, 7, 0)); cvSetReal2D(P, 2, 0, cvGetReal2D(p, 8, 0)); cvSetReal2D(P, 2, 1, cvGetReal2D(p, 9, 0)); cvSetReal2D(P, 2, 2, cvGetReal2D(p, 10, 0)); cvSetReal2D(P, 2, 3, cvGetReal2D(p, 11, 0)); CvMat *temp34 = cvCreateMat(3,4,CV_32FC1); CvMat *invT = cvCreateMat(3,3,CV_32FC1); cvInvert(T, invT); cvMatMul(invT, P, temp34); cvMatMul(temp34, U, P); CvMat *P_ = cvCreateMat(3,4, CV_32FC1); CvMat *invK = cvCreateMat(3,3,CV_32FC1); cvInvert(K, invK); cvMatMul(invK, P, P_); CvMat *P1 = cvCreateMat(3,1,CV_32FC1); GetSubMatColwise(P_, 0, 0, P1); CvMat *R = cvCreateMat(3,3,CV_32FC1); GetSubMatColwise(P_, 0, 2, R); double norm = NormL2(P1); double determinant = cvDet(R); double sign = 1; if (determinant < 0) sign = -1; ScalarMul(P_,sign/norm, P); cvMatMul(K, P, P); cvReleaseMat(&temp34); cvReleaseMat(&invT); cvReleaseMat(&P_); cvReleaseMat(&invK); cvReleaseMat(&P1); cvReleaseMat(&R); cvReleaseMat(&Xtilde); cvReleaseMat(&xtilde); cvReleaseMat(&U); cvReleaseMat(&T); cvReleaseMat(&A); cvReleaseMat(&p); return 1; } int EPNP_ExtrinsicCameraParamEstimation(CvMat *X, CvMat *x, CvMat *K, CvMat *P) { epnp PnP; PnP.set_internal_parameters(cvGetReal2D(K, 0, 2), cvGetReal2D(K, 1, 2), cvGetReal2D(K, 0, 0), cvGetReal2D(K, 1, 1)); PnP.set_maximum_number_of_correspondences(X->rows); PnP.reset_correspondences(); for(int i = 0; i < X->rows; i++) { PnP.add_correspondence(cvGetReal2D(X, i, 0), cvGetReal2D(X, i, 1), cvGetReal2D(X, i, 2), cvGetReal2D(x, i, 0), cvGetReal2D(x, i, 1)); } double R_est[3][3], t_est[3]; double err2 = PnP.compute_pose(R_est, t_est); cvSetReal2D(P, 0, 3, t_est[0]); cvSetReal2D(P, 1, 3, t_est[1]); cvSetReal2D(P, 2, 3, t_est[2]); cvSetReal2D(P, 0, 0, R_est[0][0]); cvSetReal2D(P, 0, 1, R_est[0][1]); cvSetReal2D(P, 0, 2, R_est[0][2]); cvSetReal2D(P, 1, 0, R_est[1][0]); cvSetReal2D(P, 1, 1, R_est[1][1]); cvSetReal2D(P, 1, 2, R_est[1][2]); cvSetReal2D(P, 2, 0, R_est[2][0]); cvSetReal2D(P, 2, 1, R_est[2][1]); cvSetReal2D(P, 2, 2, R_est[2][2]); cvMatMul(K, P, P); return 1; } int DLT_ExtrinsicCameraParamEstimation_KRT(CvMat *X, CvMat *x, CvMat *K, CvMat *P) { if (X->rows < 6) return 0; CvMat *Xtilde = cvCreateMat(X->rows, 3, CV_32FC1); CvMat *xtilde = cvCreateMat(x->rows, 2, CV_32FC1); CvMat *U = cvCreateMat(4,4, CV_32FC1); CvMat *T = cvCreateMat(3,3, CV_32FC1); Normalization3D(X, Xtilde, U); Normalization(x, xtilde, T); CvMat *A = cvCreateMat(X->rows*2,12,CV_32FC1); for (int iX = 0; iX < X->rows; iX++) { CvMat *A1 = cvCreateMat(1, 12, CV_32FC1); CvMat *A2 = cvCreateMat(1, 12, CV_32FC1); cvSetZero(A1); cvSetZero(A2); CvMat *A1_2 = cvCreateMat(1, 4, CV_32FC1); CvMat *A1_3 = cvCreateMat(1, 4, CV_32FC1); CvMat *A2_1 = cvCreateMat(1, 4, CV_32FC1); CvMat *A2_3 = cvCreateMat(1, 4, CV_32FC1); // A1_2 cvSetReal2D(A1_2, 0, 0, -cvGetReal2D(Xtilde, iX, 0)); cvSetReal2D(A1_2, 0, 1, -cvGetReal2D(Xtilde, iX, 1)); cvSetReal2D(A1_2, 0, 2, -cvGetReal2D(Xtilde, iX, 2)); cvSetReal2D(A1_2, 0, 3, -1); // A1_3 cvSetReal2D(A1_3, 0, 0, cvGetReal2D(xtilde, iX, 1)*cvGetReal2D(Xtilde, iX, 0)); cvSetReal2D(A1_3, 0, 1, cvGetReal2D(xtilde, iX, 1)*cvGetReal2D(Xtilde, iX, 1)); cvSetReal2D(A1_3, 0, 2, cvGetReal2D(xtilde, iX, 1)*cvGetReal2D(Xtilde, iX, 2)); cvSetReal2D(A1_3, 0, 3, cvGetReal2D(xtilde, iX, 1)); // A2_1 cvSetReal2D(A2_1, 0, 0, cvGetReal2D(Xtilde, iX, 0)); cvSetReal2D(A2_1, 0, 1, cvGetReal2D(Xtilde, iX, 1)); cvSetReal2D(A2_1, 0, 2, cvGetReal2D(Xtilde, iX, 2)); cvSetReal2D(A2_1, 0, 3, 1); // A1_3 cvSetReal2D(A2_3, 0, 0, -cvGetReal2D(xtilde, iX, 0)*cvGetReal2D(Xtilde, iX, 0)); cvSetReal2D(A2_3, 0, 1, -cvGetReal2D(xtilde, iX, 0)*cvGetReal2D(Xtilde, iX, 1)); cvSetReal2D(A2_3, 0, 2, -cvGetReal2D(xtilde, iX, 0)*cvGetReal2D(Xtilde, iX, 2)); cvSetReal2D(A2_3, 0, 3, -cvGetReal2D(xtilde, iX, 0)); SetSubMat(A1, 0, 4, A1_2); SetSubMat(A1, 0, 8, A1_3); SetSubMat(A2, 0, 0, A2_1); SetSubMat(A2, 0, 8, A2_3); SetSubMat(A, 2*iX, 0, A1); SetSubMat(A, 2*iX+1, 0, A2); cvReleaseMat(&A1); cvReleaseMat(&A2); cvReleaseMat(&A1_2); cvReleaseMat(&A1_3); cvReleaseMat(&A2_1); cvReleaseMat(&A2_3); } CvMat *p = cvCreateMat(A->cols, 1, CV_32FC1); LS_homogeneous(A, p); cvSetReal2D(P, 0, 0, cvGetReal2D(p, 0, 0)); cvSetReal2D(P, 0, 1, cvGetReal2D(p, 1, 0)); cvSetReal2D(P, 0, 2, cvGetReal2D(p, 2, 0)); cvSetReal2D(P, 0, 3, cvGetReal2D(p, 3, 0)); cvSetReal2D(P, 1, 0, cvGetReal2D(p, 4, 0)); cvSetReal2D(P, 1, 1, cvGetReal2D(p, 5, 0)); cvSetReal2D(P, 1, 2, cvGetReal2D(p, 6, 0)); cvSetReal2D(P, 1, 3, cvGetReal2D(p, 7, 0)); cvSetReal2D(P, 2, 0, cvGetReal2D(p, 8, 0)); cvSetReal2D(P, 2, 1, cvGetReal2D(p, 9, 0)); cvSetReal2D(P, 2, 2, cvGetReal2D(p, 10, 0)); cvSetReal2D(P, 2, 3, cvGetReal2D(p, 11, 0)); //for (int i = 0; i < X->rows; i++) //{ // CvMat *tX = cvCreateMat(4,1,CV_32FC1); // cvSetReal2D(tX, 0, 0, cvGetReal2D(Xtilde, i, 0)); // cvSetReal2D(tX, 1, 0, cvGetReal2D(Xtilde, i, 1)); // cvSetReal2D(tX, 2, 0, cvGetReal2D(Xtilde, i, 2)); // cvSetReal2D(tX, 3, 0, 1); // CvMat *tx = cvCreateMat(3,1, CV_32FC1); // cvMatMul(P, tX, tx); // ScalarMul(tx, 1/cvGetReal2D(tx, 2, 0), tx); // PrintMat(tx, "tx"); // CvMat *ttx = cvCreateMat(2,1,CV_32FC1); // cvSetReal2D(ttx, 0, 0, cvGetReal2D(xtilde, i, 0)); // cvSetReal2D(ttx, 1, 0, cvGetReal2D(xtilde, i, 1)); // PrintMat(ttx, "ttx"); //} CvMat *temp34 = cvCreateMat(3,4,CV_32FC1); CvMat *invT = cvCreateMat(3,3,CV_32FC1); cvInvert(T, invT); cvMatMul(invT, P, temp34); cvMatMul(temp34, U, P); ScalarMul(P, 1/cvGetReal2D(P, 2, 3), P); CvMat *R = cvCreateMat(3,3, CV_32FC1); CvMat *C = cvCreateMat(4,1, CV_32FC1); //ScalarMul(P, -1, P); cvDecomposeProjectionMatrix(P, K, R, C); //cout << "det " << cvDet(R) << endl; //PrintMat(C, "C"); //CvMat *P_ = cvCreateMat(3,4, CV_32FC1); //CvMat *invK = cvCreateMat(3,3,CV_32FC1); //cvInvert(K, invK); //cvMatMul(invK, P, P_); //CvMat *P1 = cvCreateMat(3,1,CV_32FC1); //GetSubMatColwise(P_, 0, 0, P1); //CvMat *R = cvCreateMat(3,3,CV_32FC1); //GetSubMatColwise(P_, 0, 2, R); //double norm = NormL2(P1); //double determinant = cvDet(R); //double sign = 1; //if (determinant < 0) // sign = -1; //ScalarMul(P_,sign/norm, P); //cvMatMul(K, P, P); cvReleaseMat(&temp34); cvReleaseMat(&invT); //cvReleaseMat(&P_); //cvReleaseMat(&invK); //cvReleaseMat(&P1); cvReleaseMat(&R); cvReleaseMat(&Xtilde); cvReleaseMat(&xtilde); cvReleaseMat(&U); cvReleaseMat(&T); cvReleaseMat(&A); cvReleaseMat(&p); cvReleaseMat(&C); return 1; } int DLT_ExtrinsicCameraParamEstimationWRansac(CvMat *X, CvMat *x, CvMat *K, CvMat &P, double ransacThreshold, int ransacMaxIter) { int min_set = 5; if (X->rows < min_set) return 0; ///////////////////////////////////////////////////////////////// // Ransac vector<int> vInlierIndex, vOutlierIndex; vInlierIndex.clear(); vOutlierIndex.clear(); vector<int> vInlier, vOutlier; int maxInlier = 0; CvMat *X_homoT = cvCreateMat(4, X->rows, CV_32FC1); CvMat *X_homo = cvCreateMat(X->rows, 4, CV_32FC1); CvMat *x_homoT = cvCreateMat(3, x->rows, CV_32FC1); CvMat *x_homo = cvCreateMat(x->rows, 3, CV_32FC1); Inhomo2Homo(X, X_homo); cvTranspose(X_homo, X_homoT); Inhomo2Homo(x, x_homo); cvTranspose(x_homo, x_homoT); int nIter = 0; for (int iRansacIter = 0; iRansacIter < ransacMaxIter; iRansacIter++) { nIter++; if (nIter > 1e+4) return 0; int *randIdx = (int *) malloc(min_set * sizeof(int)); for (int iIdx = 0; iIdx < min_set; iIdx++) randIdx[iIdx] = rand()%X->rows; CvMat *randx = cvCreateMat(min_set, 2, CV_32FC1); CvMat *randX = cvCreateMat(min_set, 3, CV_32FC1); CvMat *randP = cvCreateMat(3,4,CV_32FC1); for (int iIdx = 0; iIdx < min_set; iIdx++) { cvSetReal2D(randx, iIdx, 0, cvGetReal2D(x, randIdx[iIdx], 0)); cvSetReal2D(randx, iIdx, 1, cvGetReal2D(x, randIdx[iIdx], 1)); cvSetReal2D(randX, iIdx, 0, cvGetReal2D(X, randIdx[iIdx], 0)); cvSetReal2D(randX, iIdx, 1, cvGetReal2D(X, randIdx[iIdx], 1)); cvSetReal2D(randX, iIdx, 2, cvGetReal2D(X, randIdx[iIdx], 2)); } free(randIdx); DLT_ExtrinsicCameraParamEstimation(randX, randx, K, randP); CvMat *H = cvCreateMat(4, 4, CV_32FC1); CvMat *HX = cvCreateMat(randX->rows, randX->cols, CV_32FC1); cvSetIdentity(H); SetSubMat(H, 0, 0, randP); Pxx_inhomo(H, randX, HX); bool isFront = true; for (int i = 0; i < min_set; i++) { if (cvGetReal2D(HX, i, 2) < 0) isFront = false; } cvReleaseMat(&H); cvReleaseMat(&HX); if (!isFront) { cvReleaseMat(&randx); cvReleaseMat(&randX); cvReleaseMat(&randP); iRansacIter--; continue; } vInlier.clear(); vOutlier.clear(); for (int ip = 0; ip < X->rows; ip++) { CvMat *reproj = cvCreateMat(3,1,CV_32FC1); CvMat *homo_X = cvCreateMat(4,1,CV_32FC1); cvSetReal2D(homo_X, 0, 0, cvGetReal2D(X, ip, 0)); cvSetReal2D(homo_X, 1, 0, cvGetReal2D(X, ip, 1)); cvSetReal2D(homo_X, 2, 0, cvGetReal2D(X, ip, 2)); cvSetReal2D(homo_X, 3, 0, 1); cvMatMul(randP, homo_X, reproj); double u = cvGetReal2D(reproj, 0, 0)/cvGetReal2D(reproj, 2, 0); double v = cvGetReal2D(reproj, 1, 0)/cvGetReal2D(reproj, 2, 0); //if ((ip == randIdx[0]) || (ip == randIdx[1]) || (ip == randIdx[2]) || (ip == randIdx[3])) // cout << cvGetReal2D(x, ip, 0) << " " << u << " " << cvGetReal2D(x, ip, 1) << " " << v << endl; double dist = (u-cvGetReal2D(x, ip, 0))*(u-cvGetReal2D(x, ip, 0))+(v-cvGetReal2D(x, ip, 1))*(v-cvGetReal2D(x, ip, 1)); if (dist < ransacThreshold) { vInlier.push_back(ip); } else { vOutlier.push_back(ip); } cvReleaseMat(&reproj); cvReleaseMat(&homo_X); } // Distance function //CvMat *x_ = cvCreateMat(3, X->rows, CV_32FC1); //CvMat *e = cvCreateMat(3, X->rows, CV_32FC1); //cvMatMul(randP, X_homoT, x_); //NormalizingByRow(x_, 2); //cvSub(x_homoT, x_, e); //for (int ie = 0; ie < e->cols; ie++) //{ // CvMat *ei = cvCreateMat(3,1,CV_32FC1); // CvMat *xi = cvCreateMat(3,1, CV_32FC1); // GetSubMatColwise(x_homoT, ie, ie, xi); // GetSubMatColwise(e, ie, ie, ei); // double norm = NormL2(ei); // double denorm = NormL2(xi); // double d = norm; // if (d < ransacThreshold) // vInlier.push_back(ie); // else // vOutlier.push_back(ie); // cvReleaseMat(&ei); // cvReleaseMat(&xi); //} //if (vInlier.size() > maxInlier) //{ // maxInlier = vInlier.size(); // P = *cvCloneMat(randP); // vInlierIndex = vInlier; // vOutlierIndex = vOutlier; //} //cvReleaseMat(&x_); //cvReleaseMat(&e); cvReleaseMat(&randx); cvReleaseMat(&randX); cvReleaseMat(&randP); } cvReleaseMat(&X_homoT); cvReleaseMat(&X_homo); cvReleaseMat(&x_homoT); cvReleaseMat(&X_homo); if (vInlierIndex.size() < min_set) return 0; cout << "Number of features to do DLT camera pose estimation: " << vInlierIndex.size() << endl; return 1; } int DLT_ExtrinsicCameraParamEstimationWRansac_EPNP(CvMat *X, CvMat *x, CvMat *K, CvMat &P, double ransacThreshold, int ransacMaxIter) { int min_set = 4; if (X->rows < min_set) return 0; ///////////////////////////////////////////////////////////////// // Ransac vector<int> vInlierIndex, vOutlierIndex; vInlierIndex.clear(); vOutlierIndex.clear(); vector<int> vInlier, vOutlier; int maxInlier = 0; CvMat *X_homoT = cvCreateMat(4, X->rows, CV_32FC1); CvMat *X_homo = cvCreateMat(X->rows, 4, CV_32FC1); CvMat *x_homoT = cvCreateMat(3, x->rows, CV_32FC1); CvMat *x_homo = cvCreateMat(x->rows, 3, CV_32FC1); Inhomo2Homo(X, X_homo); cvTranspose(X_homo, X_homoT); Inhomo2Homo(x, x_homo); cvTranspose(x_homo, x_homoT); for (int iRansacIter = 0; iRansacIter < ransacMaxIter; iRansacIter++) { int *randIdx = (int *) malloc(min_set * sizeof(int)); for (int iIdx = 0; iIdx < min_set; iIdx++) randIdx[iIdx] = rand()%X->rows; CvMat *randx = cvCreateMat(min_set, 2, CV_32FC1); CvMat *randX = cvCreateMat(min_set, 3, CV_32FC1); CvMat *randP = cvCreateMat(3,4,CV_32FC1); for (int iIdx = 0; iIdx < min_set; iIdx++) { cvSetReal2D(randx, iIdx, 0, cvGetReal2D(x, randIdx[iIdx], 0)); cvSetReal2D(randx, iIdx, 1, cvGetReal2D(x, randIdx[iIdx], 1)); cvSetReal2D(randX, iIdx, 0, cvGetReal2D(X, randIdx[iIdx], 0)); cvSetReal2D(randX, iIdx, 1, cvGetReal2D(X, randIdx[iIdx], 1)); cvSetReal2D(randX, iIdx, 2, cvGetReal2D(X, randIdx[iIdx], 2)); } //DLT_ExtrinsicCameraParamEstimation(randX, randx, K, randP); EPNP_ExtrinsicCameraParamEstimation(randX, randx, K, randP); vInlier.clear(); vOutlier.clear(); for (int ip = 0; ip < X->rows; ip++) { CvMat *reproj = cvCreateMat(3,1,CV_32FC1); CvMat *homo_X = cvCreateMat(4,1,CV_32FC1); cvSetReal2D(homo_X, 0, 0, cvGetReal2D(X, ip, 0)); cvSetReal2D(homo_X, 1, 0, cvGetReal2D(X, ip, 1)); cvSetReal2D(homo_X, 2, 0, cvGetReal2D(X, ip, 2)); cvSetReal2D(homo_X, 3, 0, 1); cvMatMul(randP, homo_X, reproj); double u = cvGetReal2D(reproj, 0, 0)/cvGetReal2D(reproj, 2, 0); double v = cvGetReal2D(reproj, 1, 0)/cvGetReal2D(reproj, 2, 0); //if ((ip == randIdx[0]) || (ip == randIdx[1]) || (ip == randIdx[2]) || (ip == randIdx[3])) // cout << cvGetReal2D(x, ip, 0) << " " << u << " " << cvGetReal2D(x, ip, 1) << " " << v << endl; double dist = (u-cvGetReal2D(x, ip, 0))*(u-cvGetReal2D(x, ip, 0))+(v-cvGetReal2D(x, ip, 1))*(v-cvGetReal2D(x, ip, 1)); if (dist < ransacThreshold) { vInlier.push_back(ip); } else { vOutlier.push_back(ip); } cvReleaseMat(&reproj); cvReleaseMat(&homo_X); } free(randIdx); if (vInlier.size() > maxInlier) { maxInlier = vInlier.size(); P = *cvCloneMat(randP); vInlierIndex = vInlier; vOutlierIndex = vOutlier; } cvReleaseMat(&randx); cvReleaseMat(&randX); cvReleaseMat(&randP); } cvReleaseMat(&X_homoT); cvReleaseMat(&X_homo); cvReleaseMat(&x_homoT); cvReleaseMat(&X_homo); if (vInlierIndex.size() < 20) return 0; cout << "Number of features to do DLT camera pose estimation: " << vInlierIndex.size() << endl; return 1; } int DLT_ExtrinsicCameraParamEstimationWRansac_EPNP_mem(CvMat *X, CvMat *x, CvMat *K, CvMat *P, double ransacThreshold, int ransacMaxIter) { int min_set = 4; if (X->rows < min_set) return 0; ///////////////////////////////////////////////////////////////// // Ransac vector<int> vInlierIndex, vOutlierIndex; vInlierIndex.clear(); vOutlierIndex.clear(); vector<int> vInlier, vOutlier; int maxInlier = 0; CvMat *X_homoT = cvCreateMat(4, X->rows, CV_32FC1); CvMat *X_homo = cvCreateMat(X->rows, 4, CV_32FC1); CvMat *x_homoT = cvCreateMat(3, x->rows, CV_32FC1); CvMat *x_homo = cvCreateMat(x->rows, 3, CV_32FC1); Inhomo2Homo(X, X_homo); cvTranspose(X_homo, X_homoT); Inhomo2Homo(x, x_homo); cvTranspose(x_homo, x_homoT); CvMat *randx = cvCreateMat(min_set, 2, CV_32FC1); CvMat *randX = cvCreateMat(min_set, 3, CV_32FC1); CvMat *randP = cvCreateMat(3,4,CV_32FC1); int *randIdx = (int *) malloc(min_set * sizeof(int)); CvMat *reproj = cvCreateMat(3,1,CV_32FC1); CvMat *homo_X = cvCreateMat(4,1,CV_32FC1); for (int iRansacIter = 0; iRansacIter < ransacMaxIter; iRansacIter++) { for (int iIdx = 0; iIdx < min_set; iIdx++) randIdx[iIdx] = rand()%X->rows; for (int iIdx = 0; iIdx < min_set; iIdx++) { cvSetReal2D(randx, iIdx, 0, cvGetReal2D(x, randIdx[iIdx], 0)); cvSetReal2D(randx, iIdx, 1, cvGetReal2D(x, randIdx[iIdx], 1)); cvSetReal2D(randX, iIdx, 0, cvGetReal2D(X, randIdx[iIdx], 0)); cvSetReal2D(randX, iIdx, 1, cvGetReal2D(X, randIdx[iIdx], 1)); cvSetReal2D(randX, iIdx, 2, cvGetReal2D(X, randIdx[iIdx], 2)); } EPNP_ExtrinsicCameraParamEstimation(randX, randx, K, randP); vInlier.clear(); vOutlier.clear(); for (int ip = 0; ip < X->rows; ip++) { cvSetReal2D(homo_X, 0, 0, cvGetReal2D(X, ip, 0)); cvSetReal2D(homo_X, 1, 0, cvGetReal2D(X, ip, 1)); cvSetReal2D(homo_X, 2, 0, cvGetReal2D(X, ip, 2)); cvSetReal2D(homo_X, 3, 0, 1); cvMatMul(randP, homo_X, reproj); double u = cvGetReal2D(reproj, 0, 0)/cvGetReal2D(reproj, 2, 0); double v = cvGetReal2D(reproj, 1, 0)/cvGetReal2D(reproj, 2, 0); double dist = sqrt((u-cvGetReal2D(x, ip, 0))*(u-cvGetReal2D(x, ip, 0))+(v-cvGetReal2D(x, ip, 1))*(v-cvGetReal2D(x, ip, 1))); if (dist < ransacThreshold) { vInlier.push_back(ip); } else { vOutlier.push_back(ip); } } if (vInlier.size() > maxInlier) { maxInlier = vInlier.size(); SetSubMat(P, 0, 0, randP); vInlierIndex = vInlier; vOutlierIndex = vOutlier; } if (vInlier.size() > X->rows * 0.8) { break; } } CvMat *Xin = cvCreateMat(vInlierIndex.size(), 3, CV_32FC1); CvMat *xin = cvCreateMat(vInlierIndex.size(), 2, CV_32FC1); for (int iInlier = 0; iInlier < vInlierIndex.size(); iInlier++) { cvSetReal2D(Xin, iInlier, 0, cvGetReal2D(X, vInlierIndex[iInlier], 0)); cvSetReal2D(Xin, iInlier, 1, cvGetReal2D(X, vInlierIndex[iInlier], 1)); cvSetReal2D(Xin, iInlier, 2, cvGetReal2D(X, vInlierIndex[iInlier], 2)); cvSetReal2D(xin, iInlier, 0, cvGetReal2D(x, vInlierIndex[iInlier], 0)); cvSetReal2D(xin, iInlier, 1, cvGetReal2D(x, vInlierIndex[iInlier], 1)); } EPNP_ExtrinsicCameraParamEstimation(Xin, xin, K, P); cvReleaseMat(&Xin); cvReleaseMat(&xin); cvReleaseMat(&reproj); cvReleaseMat(&homo_X); free(randIdx); cvReleaseMat(&randx); cvReleaseMat(&randX); cvReleaseMat(&randP); cvReleaseMat(&X_homoT); cvReleaseMat(&x_homo); cvReleaseMat(&x_homoT); cvReleaseMat(&X_homo); if (vInlierIndex.size() < 40) return 0; cout << "Number of features ePnP: " << vInlierIndex.size() << endl; return vInlierIndex.size(); } int DLT_ExtrinsicCameraParamEstimationWRansac_EPNP_mem_AD(CvMat *X, CvMat *x, CvMat *K, CvMat *P, double ransacThreshold, int ransacMaxIter, vector<int> &vInlier1) { int min_set = 4; if (X->rows < min_set) return 0; ///////////////////////////////////////////////////////////////// // Ransac vector<int> vInlierIndex, vOutlierIndex; vInlierIndex.clear(); vOutlierIndex.clear(); vector<int> vInlier, vOutlier; int maxInlier = 0; CvMat *X_homoT = cvCreateMat(4, X->rows, CV_32FC1); CvMat *X_homo = cvCreateMat(X->rows, 4, CV_32FC1); CvMat *x_homoT = cvCreateMat(3, x->rows, CV_32FC1); CvMat *x_homo = cvCreateMat(x->rows, 3, CV_32FC1); Inhomo2Homo(X, X_homo); cvTranspose(X_homo, X_homoT); Inhomo2Homo(x, x_homo); cvTranspose(x_homo, x_homoT); CvMat *randx = cvCreateMat(min_set, 2, CV_32FC1); CvMat *randX = cvCreateMat(min_set, 3, CV_32FC1); CvMat *randP = cvCreateMat(3,4,CV_32FC1); int *randIdx = (int *) malloc(min_set * sizeof(int)); CvMat *reproj = cvCreateMat(3,1,CV_32FC1); CvMat *homo_X = cvCreateMat(4,1,CV_32FC1); for (int iRansacIter = 0; iRansacIter < ransacMaxIter; iRansacIter++) { for (int iIdx = 0; iIdx < min_set; iIdx++) randIdx[iIdx] = rand()%X->rows; for (int iIdx = 0; iIdx < min_set; iIdx++) { cvSetReal2D(randx, iIdx, 0, cvGetReal2D(x, randIdx[iIdx], 0)); cvSetReal2D(randx, iIdx, 1, cvGetReal2D(x, randIdx[iIdx], 1)); cvSetReal2D(randX, iIdx, 0, cvGetReal2D(X, randIdx[iIdx], 0)); cvSetReal2D(randX, iIdx, 1, cvGetReal2D(X, randIdx[iIdx], 1)); cvSetReal2D(randX, iIdx, 2, cvGetReal2D(X, randIdx[iIdx], 2)); } EPNP_ExtrinsicCameraParamEstimation(randX, randx, K, randP); vInlier.clear(); vOutlier.clear(); for (int ip = 0; ip < X->rows; ip++) { cvSetReal2D(homo_X, 0, 0, cvGetReal2D(X, ip, 0)); cvSetReal2D(homo_X, 1, 0, cvGetReal2D(X, ip, 1)); cvSetReal2D(homo_X, 2, 0, cvGetReal2D(X, ip, 2)); cvSetReal2D(homo_X, 3, 0, 1); cvMatMul(randP, homo_X, reproj); double u = cvGetReal2D(reproj, 0, 0)/cvGetReal2D(reproj, 2, 0); double v = cvGetReal2D(reproj, 1, 0)/cvGetReal2D(reproj, 2, 0); double dist = sqrt((u-cvGetReal2D(x, ip, 0))*(u-cvGetReal2D(x, ip, 0))+(v-cvGetReal2D(x, ip, 1))*(v-cvGetReal2D(x, ip, 1))); if (dist < ransacThreshold) { vInlier.push_back(ip); } else { vOutlier.push_back(ip); } } if (vInlier.size() > maxInlier) { maxInlier = vInlier.size(); SetSubMat(P, 0, 0, randP); vInlierIndex = vInlier; vOutlierIndex = vOutlier; } if (vInlier.size() > X->rows * 0.8) { break; } } CvMat *Xin = cvCreateMat(vInlierIndex.size(), 3, CV_32FC1); CvMat *xin = cvCreateMat(vInlierIndex.size(), 2, CV_32FC1); for (int iInlier = 0; iInlier < vInlierIndex.size(); iInlier++) { cvSetReal2D(Xin, iInlier, 0, cvGetReal2D(X, vInlierIndex[iInlier], 0)); cvSetReal2D(Xin, iInlier, 1, cvGetReal2D(X, vInlierIndex[iInlier], 1)); cvSetReal2D(Xin, iInlier, 2, cvGetReal2D(X, vInlierIndex[iInlier], 2)); cvSetReal2D(xin, iInlier, 0, cvGetReal2D(x, vInlierIndex[iInlier], 0)); cvSetReal2D(xin, iInlier, 1, cvGetReal2D(x, vInlierIndex[iInlier], 1)); } EPNP_ExtrinsicCameraParamEstimation(Xin, xin, K, P); cvReleaseMat(&Xin); cvReleaseMat(&xin); cvReleaseMat(&reproj); cvReleaseMat(&homo_X); free(randIdx); cvReleaseMat(&randx); cvReleaseMat(&randX); cvReleaseMat(&randP); cvReleaseMat(&X_homoT); cvReleaseMat(&x_homo); cvReleaseMat(&x_homoT); cvReleaseMat(&X_homo); vInlier1 = vInlierIndex; if (vInlierIndex.size() < 40) return 0; cout << "Number of features ePnP: " << vInlierIndex.size() << endl; return vInlierIndex.size(); } int DLT_ExtrinsicCameraParamEstimationWRansac_EPNP_mem_abs(CvMat *X, CvMat *x, CvMat *K, CvMat *P, double ransacThreshold, int ransacMaxIter, vector<int> &vInlierIndex) { int min_set = 4; if (X->rows < min_set) return 0; ///////////////////////////////////////////////////////////////// // Ransac vector<int> vOutlierIndex; vInlierIndex.clear(); vOutlierIndex.clear(); vector<int> vInlier, vOutlier; int maxInlier = 0; CvMat *X_homoT = cvCreateMat(4, X->rows, CV_32FC1); CvMat *X_homo = cvCreateMat(X->rows, 4, CV_32FC1); CvMat *x_homoT = cvCreateMat(3, x->rows, CV_32FC1); CvMat *x_homo = cvCreateMat(x->rows, 3, CV_32FC1); Inhomo2Homo(X, X_homo); cvTranspose(X_homo, X_homoT); Inhomo2Homo(x, x_homo); cvTranspose(x_homo, x_homoT); CvMat *randx = cvCreateMat(min_set, 2, CV_32FC1); CvMat *randX = cvCreateMat(min_set, 3, CV_32FC1); CvMat *randP = cvCreateMat(3,4,CV_32FC1); int *randIdx = (int *) malloc(min_set * sizeof(int)); CvMat *reproj = cvCreateMat(3,1,CV_32FC1); CvMat *homo_X = cvCreateMat(4,1,CV_32FC1); for (int iRansacIter = 0; iRansacIter < ransacMaxIter; iRansacIter++) { for (int iIdx = 0; iIdx < min_set; iIdx++) randIdx[iIdx] = rand()%X->rows; for (int iIdx = 0; iIdx < min_set; iIdx++) { cvSetReal2D(randx, iIdx, 0, cvGetReal2D(x, randIdx[iIdx], 0)); cvSetReal2D(randx, iIdx, 1, cvGetReal2D(x, randIdx[iIdx], 1)); cvSetReal2D(randX, iIdx, 0, cvGetReal2D(X, randIdx[iIdx], 0)); cvSetReal2D(randX, iIdx, 1, cvGetReal2D(X, randIdx[iIdx], 1)); cvSetReal2D(randX, iIdx, 2, cvGetReal2D(X, randIdx[iIdx], 2)); } EPNP_ExtrinsicCameraParamEstimation(randX, randx, K, randP); vInlier.clear(); vOutlier.clear(); for (int ip = 0; ip < X->rows; ip++) { cvSetReal2D(homo_X, 0, 0, cvGetReal2D(X, ip, 0)); cvSetReal2D(homo_X, 1, 0, cvGetReal2D(X, ip, 1)); cvSetReal2D(homo_X, 2, 0, cvGetReal2D(X, ip, 2)); cvSetReal2D(homo_X, 3, 0, 1); cvMatMul(randP, homo_X, reproj); double u = cvGetReal2D(reproj, 0, 0)/cvGetReal2D(reproj, 2, 0); double v = cvGetReal2D(reproj, 1, 0)/cvGetReal2D(reproj, 2, 0); double dist = sqrt((u-cvGetReal2D(x, ip, 0))*(u-cvGetReal2D(x, ip, 0))+(v-cvGetReal2D(x, ip, 1))*(v-cvGetReal2D(x, ip, 1))); if (dist < ransacThreshold) { vInlier.push_back(ip); } else { vOutlier.push_back(ip); } } if (vInlier.size() > maxInlier) { maxInlier = vInlier.size(); SetSubMat(P, 0, 0, randP); vInlierIndex = vInlier; vOutlierIndex = vOutlier; } //if (vInlier.size() > X->rows * 0.8) //{ // break; //} } CvMat *Xin = cvCreateMat(vInlierIndex.size(), 3, CV_32FC1); CvMat *xin = cvCreateMat(vInlierIndex.size(), 2, CV_32FC1); for (int iInlier = 0; iInlier < vInlierIndex.size(); iInlier++) { cvSetReal2D(Xin, iInlier, 0, cvGetReal2D(X, vInlierIndex[iInlier], 0)); cvSetReal2D(Xin, iInlier, 1, cvGetReal2D(X, vInlierIndex[iInlier], 1)); cvSetReal2D(Xin, iInlier, 2, cvGetReal2D(X, vInlierIndex[iInlier], 2)); cvSetReal2D(xin, iInlier, 0, cvGetReal2D(x, vInlierIndex[iInlier], 0)); cvSetReal2D(xin, iInlier, 1, cvGetReal2D(x, vInlierIndex[iInlier], 1)); } EPNP_ExtrinsicCameraParamEstimation(Xin, xin, K, P); cvReleaseMat(&Xin); cvReleaseMat(&xin); cvReleaseMat(&reproj); cvReleaseMat(&homo_X); free(randIdx); cvReleaseMat(&randx); cvReleaseMat(&randX); cvReleaseMat(&randP); cvReleaseMat(&X_homoT); cvReleaseMat(&x_homo); cvReleaseMat(&x_homoT); cvReleaseMat(&X_homo); //if (vInlierIndex.size() < 20) // return 0; cout << "Number of features to do ePNP camera pose estimation: " << vInlierIndex.size() << endl; return vInlierIndex.size(); } int DLT_ExtrinsicCameraParamEstimationWRansac_EPNP_face(CvMat *X, CvMat *x, CvMat *K, CvMat &P) { CvMat *P_ = cvCreateMat(3,4,CV_32FC1); EPNP_ExtrinsicCameraParamEstimation(X, x, K, P_); P = *cvCloneMat(P_); cvReleaseMat(&P_); return 1; } int DLT_ExtrinsicCameraParamEstimationWRansac_KRT(CvMat *X, CvMat *x, CvMat *K, CvMat &P, double ransacThreshold, int ransacMaxIter) { if (X->rows < 6) return 0; ///////////////////////////////////////////////////////////////// // Ransac vector<int> vInlierIndex, vOutlierIndex; vInlierIndex.clear(); vOutlierIndex.clear(); vector<int> vInlier, vOutlier; int maxInlier = 0; CvMat *X_homoT = cvCreateMat(4, X->rows, CV_32FC1); CvMat *X_homo = cvCreateMat(X->rows, 4, CV_32FC1); CvMat *x_homoT = cvCreateMat(3, x->rows, CV_32FC1); CvMat *x_homo = cvCreateMat(x->rows, 3, CV_32FC1); Inhomo2Homo(X, X_homo); cvTranspose(X_homo, X_homoT); Inhomo2Homo(x, x_homo); cvTranspose(x_homo, x_homoT); for (int iRansacIter = 0; iRansacIter < ransacMaxIter; iRansacIter++) { int *randIdx = (int *) malloc(6 * sizeof(int)); for (int iIdx = 0; iIdx < 6; iIdx++) randIdx[iIdx] = rand()%X->rows; CvMat *randx = cvCreateMat(6, 2, CV_32FC1); CvMat *randX = cvCreateMat(6, 3, CV_32FC1); CvMat *randP = cvCreateMat(3,4,CV_32FC1); for (int iIdx = 0; iIdx < 6; iIdx++) { cvSetReal2D(randx, iIdx, 0, cvGetReal2D(x, randIdx[iIdx], 0)); cvSetReal2D(randx, iIdx, 1, cvGetReal2D(x, randIdx[iIdx], 1)); cvSetReal2D(randX, iIdx, 0, cvGetReal2D(X, randIdx[iIdx], 0)); cvSetReal2D(randX, iIdx, 1, cvGetReal2D(X, randIdx[iIdx], 1)); cvSetReal2D(randX, iIdx, 2, cvGetReal2D(X, randIdx[iIdx], 2)); } free(randIdx); CvMat *K_ = cvCreateMat(3,3,CV_32FC1); DLT_ExtrinsicCameraParamEstimation_KRT(randX, randx, K_, randP); double k33 = cvGetReal2D(K_, 2, 2); ScalarMul(K_, 1/k33, K_); CvMat *H = cvCreateMat(4, 4, CV_32FC1); CvMat *HX = cvCreateMat(randX->rows, randX->cols, CV_32FC1); cvSetIdentity(H); SetSubMat(H, 0, 0, randP); Pxx_inhomo(H, randX, HX); bool isFront = true; for (int i = 0; i < 6; i++) { if (cvGetReal2D(HX, i, 2) < 0) isFront = false; } cvReleaseMat(&H); cvReleaseMat(&HX); if ((!isFront) || (cvGetReal2D(K, 0,0) < 0)) { cvReleaseMat(&randx); cvReleaseMat(&randX); cvReleaseMat(&randP); iRansacIter--; continue; } vInlier.clear(); vOutlier.clear(); // Distance function CvMat *x_ = cvCreateMat(3, X->rows, CV_32FC1); CvMat *e = cvCreateMat(3, X->rows, CV_32FC1); cvMatMul(randP, X_homoT, x_); NormalizingByRow(x_, 2); cvSub(x_homoT, x_, e); for (int ie = 0; ie < e->cols; ie++) { CvMat *ei = cvCreateMat(3,1,CV_32FC1); CvMat *xi = cvCreateMat(3,1, CV_32FC1); GetSubMatColwise(x_homoT, ie, ie, xi); GetSubMatColwise(e, ie, ie, ei); double norm = NormL2(ei); double denorm = NormL2(xi); double d = norm; if (d < ransacThreshold) vInlier.push_back(ie); else vOutlier.push_back(ie); cvReleaseMat(&ei); cvReleaseMat(&xi); } if (vInlier.size() > maxInlier) { maxInlier = vInlier.size(); P = *cvCloneMat(randP); K = cvCloneMat(K_); vInlierIndex = vInlier; vOutlierIndex = vOutlier; } cvReleaseMat(&x_); cvReleaseMat(&e); cvReleaseMat(&randx); cvReleaseMat(&randX); cvReleaseMat(&randP); cvReleaseMat(&K_); } cvReleaseMat(&X_homoT); cvReleaseMat(&X_homo); cvReleaseMat(&x_homoT); cvReleaseMat(&X_homo); if (vInlierIndex.size() < 10) return 0; cout << "Number of features to do DLT camera pose estimation: " << vInlierIndex.size() << endl; return 1; } int DLT_ExtrinsicCameraParamEstimation_KRT(CvMat *X, CvMat *x, CvMat *K, CvMat &P) { if (X->rows < 6) return 0; CvMat *P_ = cvCreateMat(3,4,CV_32FC1); DLT_ExtrinsicCameraParamEstimation_KRT(X, x, K, P_); P = *cvCloneMat(P_); return 1; } void SparseBundleAdjustment_MOT(vector<Feature> vFeature, vector<int> vUsedFrame, vector<CvMat *> &cP, CvMat *X, CvMat *K, vector<int> visibleStructureID) { //PrintAlgorithm("Sparse bundle adjustment motion only"); //vector<double> cameraParameter, feature2DParameter; //vector<char> vMask; //double *dCovFeatures = 0; //AdditionalData adata;// focal_x focal_y princ_x princ_y //double intrinsic[4]; //intrinsic[0] = cvGetReal2D(K, 0, 0); //intrinsic[1] = cvGetReal2D(K, 1, 1); //intrinsic[2] = cvGetReal2D(K, 0, 2); //intrinsic[3] = cvGetReal2D(K, 1, 2); //adata.intrinsic = intrinsic; //GetParameterForSBA(vFeature, vUsedFrame, cP, X, K, visibleStructureID, cameraParameter, feature2DParameter, vMask); //double nCameraParam = 7; //int nFeatures = vFeature.size(); //int nFrames = vUsedFrame.size(); //char *dVMask = (char *) malloc(vMask.size() * sizeof(char)); //double *dFeature2DParameter = (double *) malloc(feature2DParameter.size() * sizeof(double)); //double *dCameraParameter = (double *) malloc(cameraParameter.size() * sizeof(double)); // //for (int i = 0; i < cameraParameter.size(); i++) // dCameraParameter[i] = cameraParameter[i]; //for (int i = 0; i < vMask.size(); i++) // dVMask[i] = vMask[i]; //for (int i = 0; i < feature2DParameter.size(); i++) // dFeature2DParameter[i] = feature2DParameter[i]; //adata.XYZ = &(dCameraParameter[7*vUsedFrame.size()]); //double opt[5]; //opt[0] = 1e-3; //opt[1] = 1e-12; //opt[2] = 1e-12; //opt[3] = 1e-12; //opt[4] = 0; //double info[12]; //sba_mot_levmar(visibleStructureID.size(), vUsedFrame.size(), 1, dVMask, dCameraParameter, 7, dFeature2DParameter, dCovFeatures, 2, Projection3Donto2D_MOT, NULL, &adata, // 1e+3, 0, opt, info); //PrintSBAInfo(info); //RetrieveParameterFromSBA(dCameraParameter, K, cP, X, visibleStructureID); //free(dVMask); //free(dFeature2DParameter); //free(dCameraParameter); } void SparseBundleAdjustment_MOTSTR(vector<Feature> vFeature, vector<int> vUsedFrame, vector<CvMat *> &cP, CvMat *X, CvMat *K, vector<int> visibleStructureID) { //PrintAlgorithm("Sparse bundle adjustment motion and structure"); //vector<double> cameraParameter, feature2DParameter; //vector<char> vMask; //double *dCovFeatures = 0; //AdditionalData adata;// focal_x focal_y princ_x princ_y //double intrinsic[4]; //intrinsic[0] = cvGetReal2D(K, 0, 0); //intrinsic[1] = cvGetReal2D(K, 1, 1); //intrinsic[2] = cvGetReal2D(K, 0, 2); //intrinsic[3] = cvGetReal2D(K, 1, 2); //adata.intrinsic = intrinsic; //GetParameterForSBA(vFeature, vUsedFrame, cP, X, K, visibleStructureID, cameraParameter, feature2DParameter, vMask); //int NZ = 0; //for (int i = 0; i < vMask.size(); i++) //{ // if (vMask[i]) // NZ++; //} //double nCameraParam = 7; //int nFeatures = vFeature.size(); //int nFrames = vUsedFrame.size(); //char *dVMask = (char *) malloc(vMask.size() * sizeof(char)); //double *dFeature2DParameter = (double *) malloc(feature2DParameter.size() * sizeof(double)); //double *dCameraParameter = (double *) malloc(cameraParameter.size() * sizeof(double)); //for (int i = 0; i < cameraParameter.size(); i++) // dCameraParameter[i] = cameraParameter[i]; //for (int i = 0; i < vMask.size(); i++) // dVMask[i] = vMask[i]; //for (int i = 0; i < feature2DParameter.size(); i++) // dFeature2DParameter[i] = feature2DParameter[i]; //double opt[5]; //opt[0] = 1e-3; //opt[1] = 1e-5;//1e-12; //opt[2] = 1e-5;//1e-12; //opt[3] = 1e-5;//1e-12; //opt[4] = 0; //double info[12]; //sba_motstr_levmar(visibleStructureID.size(), 0, vUsedFrame.size(), 1, dVMask, dCameraParameter, nCameraParam, 3, dFeature2DParameter, dCovFeatures, 2, Projection3Donto2D_MOTSTR, NULL, &adata, // 1e+3, 0, opt, info); //PrintSBAInfo(info); //RetrieveParameterFromSBA(dCameraParameter, K, cP, X, visibleStructureID); //free(dVMask); //free(dFeature2DParameter); //free(dCameraParameter); } void SparseBundleAdjustment_MOTSTR(vector<Feature> vFeature, vector<int> vUsedFrame, vector<CvMat *> &cP, CvMat *X, vector<Camera> vCamera, vector<int> visibleStructureID) { PrintAlgorithm("Sparse bundle adjustment motion and structure"); vector<double> cameraParameter, feature2DParameter; vector<char> vMask; double *dCovFeatures = 0; AdditionalData adata;// focal_x focal_y princ_x princ_y for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) { double *intrinsic = (double *) malloc(4 * sizeof(double)); intrinsic[0] = cvGetReal2D(vCamera[iCamera].K, 0, 0); intrinsic[1] = cvGetReal2D(vCamera[iCamera].K, 1, 1); intrinsic[2] = cvGetReal2D(vCamera[iCamera].K, 0, 2); intrinsic[3] = cvGetReal2D(vCamera[iCamera].K, 1, 2); adata.vIntrinsic.push_back(intrinsic); } int max_nFrames = 0; for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) { for (int iFrame = 0; iFrame < vCamera[iCamera].vTakenFrame.size(); iFrame++) { if (vCamera[iCamera].vTakenFrame[iFrame] > max_nFrames) max_nFrames = vCamera[iCamera].vTakenFrame[iFrame]; } } max_nFrames++; adata.max_nFrames = max_nFrames; adata.vUsedFrame = vUsedFrame; GetParameterForSBA(vFeature, vUsedFrame, cP, X, vCamera, max_nFrames, visibleStructureID, cameraParameter, feature2DParameter, vMask); int NZ = 0; for (int i = 0; i < vMask.size(); i++) { if (vMask[i]) NZ++; } double nCameraParam = 7; int nFeatures = vFeature.size(); int nFrames = vUsedFrame.size(); char *dVMask = (char *) malloc(vMask.size() * sizeof(char)); double *dFeature2DParameter = (double *) malloc(feature2DParameter.size() * sizeof(double)); double *dCameraParameter = (double *) malloc(cameraParameter.size() * sizeof(double)); for (int i = 0; i < cameraParameter.size(); i++) dCameraParameter[i] = cameraParameter[i]; for (int i = 0; i < vMask.size(); i++) dVMask[i] = vMask[i]; for (int i = 0; i < feature2DParameter.size(); i++) dFeature2DParameter[i] = feature2DParameter[i]; double opt[5]; opt[0] = 1e-3; opt[1] = 1e-12; opt[2] = 1e-12; opt[3] = 1e-12; opt[4] = 0; double info[12]; sba_motstr_levmar(visibleStructureID.size(), 0, vUsedFrame.size(), 1, dVMask, dCameraParameter, nCameraParam, 3, dFeature2DParameter, dCovFeatures, 2, Projection3Donto2D_MOTSTR, NULL, &adata, 1e+3, 0, opt, info); PrintSBAInfo(info, feature2DParameter.size()/2); RetrieveParameterFromSBA(dCameraParameter, vCamera, cP, X, visibleStructureID, vUsedFrame, max_nFrames); cout << "kk" << endl; free(dVMask); free(dFeature2DParameter); free(dCameraParameter); free(dCovFeatures); cout << "kk" << endl; for (int i = 0; i < adata.vIntrinsic.size(); i++) { free(adata.vIntrinsic[i]); } cout << "kk" << endl; } void SparseBundleAdjustment_MOTSTR_mem(vector<Feature> vFeature, vector<int> vUsedFrame, vector<CvMat *> &cP, CvMat *X, vector<Camera> vCamera, vector<int> visibleStructureID) { PrintAlgorithm("Sparse bundle adjustment motion and structure"); vector<double> cameraParameter, feature2DParameter; vector<char> vMask; double *dCovFeatures = 0; AdditionalData adata;// focal_x focal_y princ_x princ_y for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) { double *intrinsic = (double *) malloc(4 * sizeof(double)); intrinsic[0] = cvGetReal2D(vCamera[iCamera].K, 0, 0); intrinsic[1] = cvGetReal2D(vCamera[iCamera].K, 1, 1); intrinsic[2] = cvGetReal2D(vCamera[iCamera].K, 0, 2); intrinsic[3] = cvGetReal2D(vCamera[iCamera].K, 1, 2); adata.vIntrinsic.push_back(intrinsic); } int max_nFrames = 0; for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) { for (int iFrame = 0; iFrame < vCamera[iCamera].vTakenFrame.size(); iFrame++) { if (vCamera[iCamera].vTakenFrame[iFrame] > max_nFrames) max_nFrames = vCamera[iCamera].vTakenFrame[iFrame]; } } max_nFrames++; adata.max_nFrames = max_nFrames; adata.vUsedFrame = vUsedFrame; GetParameterForSBA(vFeature, vUsedFrame, cP, X, vCamera, max_nFrames, visibleStructureID, cameraParameter, feature2DParameter, vMask); int NZ = 0; for (int i = 0; i < vMask.size(); i++) { if (vMask[i]) NZ++; } double nCameraParam = 7; int nFeatures = vFeature.size(); int nFrames = vUsedFrame.size(); char *dVMask = (char *) malloc(vMask.size() * sizeof(char)); double *dFeature2DParameter = (double *) malloc(feature2DParameter.size() * sizeof(double)); double *dCameraParameter = (double *) malloc(cameraParameter.size() * sizeof(double)); for (int i = 0; i < cameraParameter.size(); i++) dCameraParameter[i] = cameraParameter[i]; for (int i = 0; i < vMask.size(); i++) dVMask[i] = vMask[i]; for (int i = 0; i < feature2DParameter.size(); i++) dFeature2DParameter[i] = feature2DParameter[i]; double opt[5]; opt[0] = 1e-3; opt[1] = 1e-12; opt[2] = 1e-12; opt[3] = 1e-12; opt[4] = 0; double info[12]; PrintMat(cP[1]); sba_motstr_levmar(visibleStructureID.size(), 0, vUsedFrame.size(), 1, dVMask, dCameraParameter, nCameraParam, 3, dFeature2DParameter, dCovFeatures, 2, Projection3Donto2D_MOTSTR_fast, NULL, &adata, 1e+3, 0, opt, info); PrintSBAInfo(info, feature2DParameter.size()/2); RetrieveParameterFromSBA_mem(dCameraParameter, vCamera, cP, X, visibleStructureID, vUsedFrame, max_nFrames); PrintMat(cP[1]); cout << "----------------" << endl; free(dVMask); free(dFeature2DParameter); free(dCameraParameter); free(dCovFeatures); for (int i = 0; i < adata.vIntrinsic.size(); i++) { free(adata.vIntrinsic[i]); } adata.vIntrinsic.clear(); } void SparseBundleAdjustment_MOTSTR_mem_fast(vector<Feature> &vFeature, vector<int> vUsedFrame, vector<CvMat *> &cP, CvMat *X, vector<Camera> vCamera) { PrintAlgorithm("Sparse bundle adjustment motion and structure"); vector<int> visibleStructureID; for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) { if (vFeature[iFeature].isRegistered) { visibleStructureID.push_back(vFeature[iFeature].id); } } vector<double> cameraParameter, feature2DParameter; vector<char> vMask; double *dCovFeatures = 0; AdditionalData adata;// focal_x focal_y princ_x princ_y for (int iFrame = 0; iFrame < vCamera[0].vTakenFrame.size(); iFrame++) { double *intrinsic = (double *) malloc(4 * sizeof(double)); intrinsic[0] = cvGetReal2D(vCamera[0].vK[iFrame], 0, 0); intrinsic[1] = cvGetReal2D(vCamera[0].vK[iFrame], 1, 1); intrinsic[2] = cvGetReal2D(vCamera[0].vK[iFrame], 0, 2); intrinsic[3] = cvGetReal2D(vCamera[0].vK[iFrame], 1, 2); adata.vIntrinsic.push_back(intrinsic); } int max_nFrames = 0; for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) { for (int iFrame = 0; iFrame < vCamera[iCamera].vTakenFrame.size(); iFrame++) { if (vCamera[iCamera].vTakenFrame[iFrame] > max_nFrames) max_nFrames = vCamera[iCamera].vTakenFrame[iFrame]; } } max_nFrames++; adata.max_nFrames = max_nFrames; adata.vUsedFrame = vUsedFrame; GetParameterForSBA(vFeature, vUsedFrame, cP, X, vCamera, max_nFrames, visibleStructureID, cameraParameter, feature2DParameter, vMask); int NZ = 0; for (int i = 0; i < vMask.size(); i++) { if (vMask[i]) NZ++; } double nCameraParam = 7; int nFeatures = vFeature.size(); int nFrames = vUsedFrame.size(); char *dVMask = (char *) malloc(vMask.size() * sizeof(char)); double *dFeature2DParameter = (double *) malloc(feature2DParameter.size() * sizeof(double)); double *dCameraParameter = (double *) malloc(cameraParameter.size() * sizeof(double)); for (int i = 0; i < cameraParameter.size(); i++) dCameraParameter[i] = cameraParameter[i]; for (int i = 0; i < vMask.size(); i++) dVMask[i] = vMask[i]; for (int i = 0; i < feature2DParameter.size(); i++) dFeature2DParameter[i] = feature2DParameter[i]; double opt[5]; opt[0] = 1e-3; opt[1] = 1e-12; opt[2] = 1e-12; opt[3] = 1e-12; opt[4] = 0; double info[12]; sba_motstr_levmar(visibleStructureID.size(), 0, vUsedFrame.size(), 1, dVMask, dCameraParameter, nCameraParam, 3, dFeature2DParameter, dCovFeatures, 2, Projection3Donto2D_MOTSTR_fast, NULL, &adata, 1e+2, 0, opt, info); PrintSBAInfo(info, feature2DParameter.size()/2); RetrieveParameterFromSBA_mem(dCameraParameter, vCamera, cP, X, visibleStructureID, vUsedFrame, max_nFrames); free(dVMask); free(dFeature2DParameter); free(dCameraParameter); free(dCovFeatures); for (int i = 0; i < adata.vIntrinsic.size(); i++) { free(adata.vIntrinsic[i]); } adata.vIntrinsic.clear(); } void SparseBundleAdjustment_MOTSTR_mem_fast_Distortion(vector<Feature> &vFeature, vector<int> vUsedFrame, vector<CvMat *> &cP, CvMat *X, vector<Camera> vCamera, double omega) { PrintAlgorithm("Sparse bundle adjustment motion and structure"); vector<int> visibleStructureID; for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) { if (vFeature[iFeature].isRegistered) { visibleStructureID.push_back(vFeature[iFeature].id); } } vector<double> cameraParameter, feature2DParameter; vector<char> vMask; double *dCovFeatures = 0; AdditionalData adata;// focal_x focal_y princ_x princ_y for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) { double *intrinsic = (double *) malloc(6 * sizeof(double)); intrinsic[0] = cvGetReal2D(vCamera[iCamera].K, 0, 0); intrinsic[1] = cvGetReal2D(vCamera[iCamera].K, 1, 1); intrinsic[2] = cvGetReal2D(vCamera[iCamera].K, 0, 2); intrinsic[3] = cvGetReal2D(vCamera[iCamera].K, 1, 2); intrinsic[4] = omega; intrinsic[5] = 2*tan(omega/2); adata.vIntrinsic.push_back(intrinsic); } int max_nFrames = 0; for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) { for (int iFrame = 0; iFrame < vCamera[iCamera].vTakenFrame.size(); iFrame++) { if (vCamera[iCamera].vTakenFrame[iFrame] > max_nFrames) max_nFrames = vCamera[iCamera].vTakenFrame[iFrame]; } } max_nFrames++; adata.max_nFrames = max_nFrames; adata.vUsedFrame = vUsedFrame; GetParameterForSBA_Distortion(vFeature, vUsedFrame, cP, X, vCamera, max_nFrames, visibleStructureID, cameraParameter, feature2DParameter, vMask); int NZ = 0; for (int i = 0; i < vMask.size(); i++) { if (vMask[i]) NZ++; } double nCameraParam = 7; int nFeatures = vFeature.size(); int nFrames = vUsedFrame.size(); char *dVMask = (char *) malloc(vMask.size() * sizeof(char)); double *dFeature2DParameter = (double *) malloc(feature2DParameter.size() * sizeof(double)); double *dCameraParameter = (double *) malloc(cameraParameter.size() * sizeof(double)); for (int i = 0; i < cameraParameter.size(); i++) dCameraParameter[i] = cameraParameter[i]; for (int i = 0; i < vMask.size(); i++) dVMask[i] = vMask[i]; for (int i = 0; i < feature2DParameter.size(); i++) dFeature2DParameter[i] = feature2DParameter[i]; double opt[5]; opt[0] = 1e-3; opt[1] = 1e-12; opt[2] = 1e-12; opt[3] = 1e-12; opt[4] = 0; double info[12]; sba_motstr_levmar(visibleStructureID.size(), 0, vUsedFrame.size(), 1, dVMask, dCameraParameter, nCameraParam, 3, dFeature2DParameter, dCovFeatures, 2, Projection3Donto2D_MOTSTR_fast_Distortion, NULL, &adata, 1e+2, 0, opt, info); PrintSBAInfo(info, feature2DParameter.size()/2); RetrieveParameterFromSBA_mem(dCameraParameter, vCamera, cP, X, visibleStructureID, vUsedFrame, max_nFrames); free(dVMask); free(dFeature2DParameter); free(dCameraParameter); free(dCovFeatures); for (int i = 0; i < adata.vIntrinsic.size(); i++) { free(adata.vIntrinsic[i]); } adata.vIntrinsic.clear(); } void SparseBundleAdjustment_MOTSTR_mem_fast_Distortion_ObstacleDetection(vector<Feature> &vFeature, vector<int> vUsedFrame, vector<CvMat *> &cP, CvMat *X, vector<Camera> vCamera, double omega, double princ_x1, double princ_y1) { PrintAlgorithm("Sparse bundle adjustment motion and structure"); vector<int> visibleStructureID; for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) { if (vFeature[iFeature].isRegistered) { visibleStructureID.push_back(vFeature[iFeature].id); } } vector<double> cameraParameter, feature2DParameter; vector<char> vMask; double *dCovFeatures = 0; AdditionalData adata;// focal_x focal_y princ_x princ_y for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) { double *intrinsic = (double *) malloc(8 * sizeof(double)); intrinsic[0] = cvGetReal2D(vCamera[iCamera].K, 0, 0); intrinsic[1] = cvGetReal2D(vCamera[iCamera].K, 1, 1); intrinsic[2] = cvGetReal2D(vCamera[iCamera].K, 0, 2); intrinsic[3] = cvGetReal2D(vCamera[iCamera].K, 1, 2); intrinsic[4] = omega; intrinsic[5] = 2*tan(omega/2); intrinsic[6] = princ_x1; intrinsic[7] = princ_y1; adata.vIntrinsic.push_back(intrinsic); } int max_nFrames = 0; for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) { for (int iFrame = 0; iFrame < vCamera[iCamera].vTakenFrame.size(); iFrame++) { if (vCamera[iCamera].vTakenFrame[iFrame] > max_nFrames) max_nFrames = vCamera[iCamera].vTakenFrame[iFrame]; } } max_nFrames++; adata.max_nFrames = max_nFrames; adata.vUsedFrame = vUsedFrame; //cout << "OK" << endl; //for (int i = 0; i < cP.size(); i++) //{ // PrintMat(cP[i]); //} //for (int i = 0; i < visibleStructureID.size(); i++) //{ // cout << cvGetReal2D(X, visibleStructureID[i], 0) << " " <<cvGetReal2D(X, visibleStructureID[i], 1) << " " <<cvGetReal2D(X, visibleStructureID[i], 2) << " " << endl; //} GetParameterForSBA_Distortion(vFeature, vUsedFrame, cP, X, vCamera, max_nFrames, visibleStructureID, cameraParameter, feature2DParameter, vMask); cout << "OK" << endl; int NZ = 0; for (int i = 0; i < vMask.size(); i++) { if (vMask[i]) NZ++; } double nCameraParam = 7; int nFeatures = vFeature.size(); int nFrames = vUsedFrame.size(); char *dVMask = (char *) malloc(vMask.size() * sizeof(char)); double *dFeature2DParameter = (double *) malloc(feature2DParameter.size() * sizeof(double)); double *dCameraParameter = (double *) malloc(cameraParameter.size() * sizeof(double)); for (int i = 0; i < cameraParameter.size(); i++) dCameraParameter[i] = cameraParameter[i]; for (int i = 0; i < vMask.size(); i++) dVMask[i] = vMask[i]; for (int i = 0; i < feature2DParameter.size(); i++) dFeature2DParameter[i] = feature2DParameter[i]; double opt[5]; opt[0] = 1e-3; opt[1] = 1e-12; opt[2] = 1e-12; opt[3] = 1e-12; opt[4] = 0; double info[12]; cout << "OK" << endl; sba_motstr_levmar(visibleStructureID.size(), 0, vUsedFrame.size(), 1, dVMask, dCameraParameter, nCameraParam, 3, dFeature2DParameter, dCovFeatures, 2, Projection3Donto2D_MOTSTR_fast_Distortion_ObstacleDetection, NULL, &adata, 1e+2, 0, opt, info); PrintSBAInfo(info, feature2DParameter.size()/2); RetrieveParameterFromSBA_mem(dCameraParameter, vCamera, cP, X, visibleStructureID, vUsedFrame, max_nFrames); free(dVMask); free(dFeature2DParameter); free(dCameraParameter); free(dCovFeatures); for (int i = 0; i < adata.vIntrinsic.size(); i++) { free(adata.vIntrinsic[i]); } adata.vIntrinsic.clear(); } void SparseBundleAdjustment_KMOTSTR(vector<Feature> vFeature, vector<int> vUsedFrame, vector<CvMat *> &cP, CvMat *X, vector<Camera> vCamera, vector<int> visibleStructureID) { PrintAlgorithm("Sparse bundle adjustment motion and structure"); vector<double> cameraParameter, feature2DParameter; vector<char> vMask; double *dCovFeatures = 0; AdditionalData adata;// focal_x focal_y princ_x princ_y //for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) //{ // double *intrinsic = (double *) malloc(4 * sizeof(double)); // intrinsic[0] = cvGetReal2D(vCamera[iCamera].K, 0, 0); // intrinsic[1] = cvGetReal2D(vCamera[iCamera].K, 1, 1); // intrinsic[2] = cvGetReal2D(vCamera[iCamera].K, 0, 2); // intrinsic[3] = cvGetReal2D(vCamera[iCamera].K, 1, 2); // adata.vIntrinsic.push_back(intrinsic); //} int max_nFrames = 0; for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) { for (int iFrame = 0; iFrame < vCamera[iCamera].vTakenFrame.size(); iFrame++) { if (vCamera[iCamera].vTakenFrame[iFrame] > max_nFrames) max_nFrames = vCamera[iCamera].vTakenFrame[iFrame]; } } max_nFrames++; adata.max_nFrames = max_nFrames; adata.vUsedFrame = vUsedFrame; GetParameterForSBA_KRT(vFeature, vUsedFrame, cP, X, vCamera, max_nFrames, visibleStructureID, cameraParameter, feature2DParameter, vMask); int NZ = 0; for (int i = 0; i < vMask.size(); i++) { if (vMask[i]) NZ++; } double nCameraParam = 7+4; int nFeatures = visibleStructureID.size(); int nFrames = vUsedFrame.size(); char *dVMask = (char *) malloc(vMask.size() * sizeof(char)); double *dFeature2DParameter = (double *) malloc(feature2DParameter.size() * sizeof(double)); double *dCameraParameter = (double *) malloc(cameraParameter.size() * sizeof(double)); for (int i = 0; i < cameraParameter.size(); i++) dCameraParameter[i] = cameraParameter[i]; for (int i = 0; i < vMask.size(); i++) { dVMask[i] = vMask[i]; } for (int i = 0; i < feature2DParameter.size(); i++) dFeature2DParameter[i] = feature2DParameter[i]; double opt[5]; opt[0] = 1e-3; opt[1] = 1e-12; opt[2] = 1e-12; opt[3] = 1e-12; opt[4] = 0; double info[12]; sba_motstr_levmar(visibleStructureID.size(), 0, vUsedFrame.size(), 1, dVMask, dCameraParameter, nCameraParam, 3, dFeature2DParameter, dCovFeatures, 2, Projection3Donto2D_KMOTSTR, NULL, &adata, 1e+3, 0, opt, info); PrintSBAInfo(info, feature2DParameter.size()/2); RetrieveParameterFromSBA_KRT(dCameraParameter, vCamera, cP, X, visibleStructureID, vUsedFrame, max_nFrames); free(dVMask); free(dFeature2DParameter); free(dCameraParameter); } void SparseBundleAdjustment_KMOTSTR_x(vector<Feature> vFeature, vector<int> vUsedFrame, vector<CvMat *> &cP, CvMat *X, vector<Camera> vCamera, vector<int> visibleStructureID) { PrintAlgorithm("Sparse bundle adjustment motion and structure"); vector<double> cameraParameter, feature2DParameter; vector<char> vMask; double *dCovFeatures = 0; AdditionalData adata;// focal_x focal_y princ_x princ_y //for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) //{ // double *intrinsic = (double *) malloc(4 * sizeof(double)); // intrinsic[0] = cvGetReal2D(vCamera[iCamera].K, 0, 0); // intrinsic[1] = cvGetReal2D(vCamera[iCamera].K, 1, 1); // intrinsic[2] = cvGetReal2D(vCamera[iCamera].K, 0, 2); // intrinsic[3] = cvGetReal2D(vCamera[iCamera].K, 1, 2); // adata.vIntrinsic.push_back(intrinsic); //} int max_nFrames = 0; for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) { for (int iFrame = 0; iFrame < vCamera[iCamera].vTakenFrame.size(); iFrame++) { if (vCamera[iCamera].vTakenFrame[iFrame] > max_nFrames) max_nFrames = vCamera[iCamera].vTakenFrame[iFrame]; } } max_nFrames++; adata.max_nFrames = max_nFrames; adata.vUsedFrame = vUsedFrame; GetParameterForSBA_KRT(vFeature, vUsedFrame, cP, X, vCamera, max_nFrames, visibleStructureID, cameraParameter, feature2DParameter, vMask); int NZ = 0; for (int i = 0; i < vMask.size(); i++) { if (vMask[i]) NZ++; } double nCameraParam = 7+4; int nFeatures = visibleStructureID.size(); int nFrames = vUsedFrame.size(); char *dVMask = (char *) malloc(vMask.size() * sizeof(char)); double *dFeature2DParameter = (double *) malloc(feature2DParameter.size() * sizeof(double)); double *dCameraParameter = (double *) malloc(cameraParameter.size() * sizeof(double)); for (int i = 0; i < cameraParameter.size(); i++) dCameraParameter[i] = cameraParameter[i]; for (int i = 0; i < vMask.size(); i++) { dVMask[i] = vMask[i]; } for (int i = 0; i < feature2DParameter.size(); i++) dFeature2DParameter[i] = feature2DParameter[i]; double opt[5]; opt[0] = 1e-3; opt[1] = 1e-12; opt[2] = 1e-12; opt[3] = 1e-12; opt[4] = 0; double info[12]; sba_motstr_levmar(visibleStructureID.size(), 0, vUsedFrame.size(), 1, dVMask, dCameraParameter, nCameraParam, 3, dFeature2DParameter, dCovFeatures, 2, Projection3Donto2D_KMOTSTR, NULL, &adata, 1e+3, 0, opt, info); PrintSBAInfo(info); RetrieveParameterFromSBA_KRT(dCameraParameter, vCamera, cP, X, visibleStructureID, vUsedFrame, max_nFrames); free(dVMask); free(dFeature2DParameter); free(dCameraParameter); } void SparseBundleAdjustment_KDMOTSTR(vector<Feature> vFeature, vector<int> vUsedFrame, vector<CvMat *> &cP, CvMat *X, vector<Camera> vCamera, vector<int> visibleStructureID) { PrintAlgorithm("Sparse bundle adjustment motion and structure"); vector<double> cameraParameter, feature2DParameter; vector<char> vMask; double *dCovFeatures = 0; AdditionalData adata;// focal_x focal_y princ_x princ_y int max_nFrames = 0; for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) { for (int iFrame = 0; iFrame < vCamera[iCamera].vTakenFrame.size(); iFrame++) { if (vCamera[iCamera].vTakenFrame[iFrame] > max_nFrames) max_nFrames = vCamera[iCamera].vTakenFrame[iFrame]; } } max_nFrames++; adata.max_nFrames = max_nFrames; adata.vUsedFrame = vUsedFrame; GetParameterForSBA_KDRT(vFeature, vUsedFrame, cP, X, vCamera, max_nFrames, visibleStructureID, cameraParameter, feature2DParameter, vMask); int NZ = 0; for (int i = 0; i < vMask.size(); i++) { if (vMask[i]) NZ++; } double nCameraParam = 7+4+2; int nFeatures = vFeature.size(); int nFrames = vUsedFrame.size(); char *dVMask = (char *) malloc(vMask.size() * sizeof(char)); double *dFeature2DParameter = (double *) malloc(feature2DParameter.size() * sizeof(double)); double *dCameraParameter = (double *) malloc(cameraParameter.size() * sizeof(double)); for (int i = 0; i < cameraParameter.size(); i++) dCameraParameter[i] = cameraParameter[i]; for (int i = 0; i < vMask.size(); i++) dVMask[i] = vMask[i]; for (int i = 0; i < feature2DParameter.size(); i++) dFeature2DParameter[i] = feature2DParameter[i]; double opt[5]; opt[0] = 1e-3; opt[1] = 1e-12; opt[2] = 1e-12; opt[3] = 1e-12; opt[4] = 0; double info[12]; sba_motstr_levmar(visibleStructureID.size(), 0, vUsedFrame.size(), 1, dVMask, dCameraParameter, nCameraParam, 3, dFeature2DParameter, dCovFeatures, 2, Projection3Donto2D_KDMOTSTR, NULL, &adata, 1e+3, 0, opt, info); PrintSBAInfo(info); RetrieveParameterFromSBA_KDRT(dCameraParameter, vCamera, cP, X, visibleStructureID, vUsedFrame, max_nFrames); free(dVMask); free(dFeature2DParameter); free(dCameraParameter); } void PatchTriangulationRefinement(CvMat *K, vector<CvMat *> vC, vector<CvMat *> vR, vector<double> vx11, vector<double> vy11, vector<double> vx12, vector<double> vy12, vector<double> vx21, vector<double> vy21, vector<double> vx22, vector<double> vy22, double X, double Y, double Z, CvMat *X11, CvMat *X12, CvMat *X21, CvMat *X22, CvMat *pi) { PrintAlgorithm("Patch Triangulation Refinement"); vector<CvMat *> vP; for (int i = 0; i < vC.size(); i++) { CvMat *P = cvCreateMat(3,4,CV_32FC1); CvMat *t = cvCreateMat(3,1,CV_32FC1); ScalarMul(vC[i], -1, t); cvSetIdentity(P); SetSubMat(P, 0, 3, t); cvMatMul(vR[i], P, P); cvMatMul(K, P, P); vP.push_back(P); } AdditionalData adata; adata.vP = vP; adata.X = X; adata.Y = Y; adata.Z = Z; vector<double> XParameter, feature2DParameter; XParameter.push_back(cvGetReal2D(pi, 0, 0)); XParameter.push_back(cvGetReal2D(pi, 1, 0)); XParameter.push_back(cvGetReal2D(pi, 2, 0)); XParameter.push_back(cvGetReal2D(X11, 0, 0)); XParameter.push_back(cvGetReal2D(X11, 1, 0)); XParameter.push_back(cvGetReal2D(X12, 0, 0)); XParameter.push_back(cvGetReal2D(X12, 1, 0)); XParameter.push_back(cvGetReal2D(X21, 0, 0)); XParameter.push_back(cvGetReal2D(X21, 1, 0)); XParameter.push_back(cvGetReal2D(X22, 0, 0)); XParameter.push_back(cvGetReal2D(X22, 1, 0)); for (int iFeature = 0; iFeature < vx11.size(); iFeature++) { feature2DParameter.push_back(vx11[iFeature]); feature2DParameter.push_back(vy11[iFeature]); feature2DParameter.push_back(vx12[iFeature]); feature2DParameter.push_back(vy12[iFeature]); feature2DParameter.push_back(vx21[iFeature]); feature2DParameter.push_back(vy21[iFeature]); feature2DParameter.push_back(vx22[iFeature]); feature2DParameter.push_back(vy22[iFeature]); } //for (int i = 0; i < feature2DParameter.size(); i++) //{ // cout << feature2DParameter[i] << " "; //} //cout << endl; int nFeatures = vx11.size(); double *dFeature2DParameter = (double *) malloc(feature2DParameter.size() * sizeof(double)); double *dXParameter = (double *) malloc(XParameter.size() * sizeof(double)); for (int i = 0; i < XParameter.size(); i++) dXParameter[i] = XParameter[i]; for (int i = 0; i < feature2DParameter.size(); i++) dFeature2DParameter[i] = feature2DParameter[i]; double opt[5]; opt[0] = 1e-3; opt[1] = 1e-12; opt[2] = 1e-12; opt[3] = 1e-12; opt[4] = 0; double info[12]; double *work = (double*)malloc((LM_DIF_WORKSZ(XParameter.size(), feature2DParameter.size())+XParameter.size()*XParameter.size())*sizeof(double)); if(!work) fprintf(stderr, "memory allocation request failed in main()\n"); int ret = dlevmar_dif(Projection3Donto2D_Patch, dXParameter, dFeature2DParameter, XParameter.size(), feature2DParameter.size(), 1e+3, opt, info, work, NULL, &adata); double pi1 = dXParameter[0]; double pi2 = dXParameter[1]; double pi3 = dXParameter[2]; double pi4 = -pi1*X-pi2*Y-pi3*Z; cvSetReal2D(pi, 0, 0, dXParameter[0]); cvSetReal2D(pi, 1, 0, dXParameter[1]); cvSetReal2D(pi, 2, 0, dXParameter[2]); cvSetReal2D(pi, 3, 0, pi4); cvSetReal2D(X11, 0, 0, dXParameter[3]); cvSetReal2D(X11, 1, 0, dXParameter[4]); double Z11 = (-pi4-pi1*cvGetReal2D(X11, 0, 0)-pi2*cvGetReal2D(X11, 1, 0))/pi3; cvSetReal2D(X11, 2, 0, Z11); cvSetReal2D(X12, 0, 0, dXParameter[5]); cvSetReal2D(X12, 1, 0, dXParameter[6]); double Z12 = (-pi4-pi1*cvGetReal2D(X12, 0, 0)-pi2*cvGetReal2D(X12, 1, 0))/pi3; cvSetReal2D(X12, 2, 0, Z12); cvSetReal2D(X21, 0, 0, dXParameter[7]); cvSetReal2D(X21, 1, 0, dXParameter[8]); double Z21 = (-pi4-pi1*cvGetReal2D(X21, 0, 0)-pi2*cvGetReal2D(X21, 1, 0))/pi3; cvSetReal2D(X21, 2, 0, Z21); cvSetReal2D(X22, 0, 0, dXParameter[9]); cvSetReal2D(X22, 1, 0, dXParameter[10]); double Z22 = (-pi4-pi1*cvGetReal2D(X22, 0, 0)-pi2*cvGetReal2D(X22, 1, 0))/pi3; cvSetReal2D(X22, 2, 0, Z22); PrintSBAInfo(info, feature2DParameter.size()); free(dFeature2DParameter); free(dXParameter); free(work); for (int i = 0; i < vP.size(); i++) { cvReleaseMat(&vP[i]); } } void TriangulationRefinement(CvMat *K, double omega, vector<CvMat *> vP, vector<double> vx, vector<double> vy, double &X, double &Y, double &Z) { PrintAlgorithm("Point Triangulation Refinement"); AdditionalData adata; double intrinsic[5] = {cvGetReal2D(K, 0, 0), cvGetReal2D(K, 1, 1), cvGetReal2D(K, 0, 2), cvGetReal2D(K, 1, 2), omega}; adata.vIntrinsic.push_back(intrinsic); adata.vP = vP; vector<double> XParameter, feature2DParameter; XParameter.push_back(X); XParameter.push_back(Y); XParameter.push_back(Z); for (int iFeature = 0; iFeature < vx.size(); iFeature++) { feature2DParameter.push_back(vx[iFeature]); feature2DParameter.push_back(vy[iFeature]); } int nFeatures = vx.size(); double *dFeature2DParameter = (double *) malloc(feature2DParameter.size() * sizeof(double)); double *dXParameter = (double *) malloc(XParameter.size() * sizeof(double)); for (int i = 0; i < XParameter.size(); i++) dXParameter[i] = XParameter[i]; for (int i = 0; i < feature2DParameter.size(); i++) dFeature2DParameter[i] = feature2DParameter[i]; double opt[5]; opt[0] = 1e-3; opt[1] = 1e-12; opt[2] = 1e-12; opt[3] = 1e-12; opt[4] = 0; double info[12]; double *work = (double*)malloc((LM_DIF_WORKSZ(XParameter.size(), feature2DParameter.size())+XParameter.size()*XParameter.size())*sizeof(double)); if(!work) fprintf(stderr, "memory allocation request failed in main()\n"); int ret = dlevmar_dif(Projection3Donto2D_STR_fast_SO, dXParameter, dFeature2DParameter, XParameter.size(), feature2DParameter.size(), 1e+3, opt, info, work, NULL, &adata); X = dXParameter[0]; Y = dXParameter[1]; Z = dXParameter[2]; PrintSBAInfo(info, feature2DParameter.size()); free(dFeature2DParameter); free(dXParameter); free(work); //for (int i = 0; i < adata.vP.size(); i++) //{ // cvReleaseMat(&adata.vP[i]); //} } void TriangulationRefinement_NoDistortion(CvMat *K, vector<CvMat *> vP, vector<double> vx, vector<double> vy, double &X, double &Y, double &Z) { PrintAlgorithm("Point Triangulation Refinement"); AdditionalData adata; double intrinsic[4] = {cvGetReal2D(K, 0, 0), cvGetReal2D(K, 1, 1), cvGetReal2D(K, 0, 2), cvGetReal2D(K, 1, 2)}; adata.vIntrinsic.push_back(intrinsic); adata.vP = vP; vector<double> XParameter, feature2DParameter; XParameter.push_back(X); XParameter.push_back(Y); XParameter.push_back(Z); for (int iFeature = 0; iFeature < vx.size(); iFeature++) { feature2DParameter.push_back(vx[iFeature]); feature2DParameter.push_back(vy[iFeature]); } int nFeatures = vx.size(); double *dFeature2DParameter = (double *) malloc(feature2DParameter.size() * sizeof(double)); double *dXParameter = (double *) malloc(XParameter.size() * sizeof(double)); for (int i = 0; i < XParameter.size(); i++) dXParameter[i] = XParameter[i]; for (int i = 0; i < feature2DParameter.size(); i++) dFeature2DParameter[i] = feature2DParameter[i]; double opt[5]; opt[0] = 1e-3; opt[1] = 1e-12; opt[2] = 1e-12; opt[3] = 1e-12; opt[4] = 0; double info[12]; double *work = (double*)malloc((LM_DIF_WORKSZ(XParameter.size(), feature2DParameter.size())+XParameter.size()*XParameter.size())*sizeof(double)); if(!work) fprintf(stderr, "memory allocation request failed in main()\n"); int ret = dlevmar_dif(Projection3Donto2D_STR_fast_SO_NoDistortion, dXParameter, dFeature2DParameter, XParameter.size(), feature2DParameter.size(), 1e+3, opt, info, work, NULL, &adata); X = dXParameter[0]; Y = dXParameter[1]; Z = dXParameter[2]; PrintSBAInfo(info, feature2DParameter.size()); free(dFeature2DParameter); free(dXParameter); free(work); //for (int i = 0; i < adata.vP.size(); i++) //{ // cvReleaseMat(&adata.vP[i]); //} } void AbsoluteCameraPoseRefinement(CvMat *X, CvMat *x, CvMat *P, CvMat *K) { PrintAlgorithm("Absolute Camera Pose Refinement"); vector<double> cameraParameter, feature2DParameter; AdditionalData adata;// focal_x focal_y princ_x princ_y double intrinsic[4] = {cvGetReal2D(K, 0, 0), cvGetReal2D(K, 1, 1), cvGetReal2D(K, 0, 2), cvGetReal2D(K, 1, 2)}; adata.vIntrinsic.push_back(intrinsic); CvMat *q = cvCreateMat(4,1,CV_32FC1); CvMat *R = cvCreateMat(3,3,CV_32FC1); CvMat *t = cvCreateMat(3,1,CV_32FC1); CvMat *invK = cvCreateMat(3,3,CV_32FC1); CvMat *invR = cvCreateMat(3,3,CV_32FC1); GetSubMatColwise(P, 0, 2, R); GetSubMatColwise(P, 3, 3, t); cvInvert(K, invK); cvMatMul(invK, R, R); cvInvert(R, invR); cvMatMul(invK, t, t); cvMatMul(invR, t, t); ScalarMul(t, -1, t); Rotation2Quaternion(R, q); cameraParameter.push_back(cvGetReal2D(q, 0, 0)); cameraParameter.push_back(cvGetReal2D(q, 1, 0)); cameraParameter.push_back(cvGetReal2D(q, 2, 0)); cameraParameter.push_back(cvGetReal2D(q, 3, 0)); cameraParameter.push_back(cvGetReal2D(t, 0, 0)); cameraParameter.push_back(cvGetReal2D(t, 1, 0)); cameraParameter.push_back(cvGetReal2D(t, 2, 0)); for (int iFeature = 0; iFeature < X->rows; iFeature++) { feature2DParameter.push_back(cvGetReal2D(x, iFeature, 0)); feature2DParameter.push_back(cvGetReal2D(x, iFeature, 1)); } int nCameraParam = 7; int nFeatures = X->rows; double *dFeature2DParameter = (double *) malloc(feature2DParameter.size() * sizeof(double)); double *dCameraParameter = (double *) malloc(cameraParameter.size() * sizeof(double)); double *dXParameter = (double *) malloc(X->rows * 3 * sizeof(double)); for (int i = 0; i < cameraParameter.size(); i++) dCameraParameter[i] = cameraParameter[i]; for (int i = 0; i < feature2DParameter.size(); i++) dFeature2DParameter[i] = feature2DParameter[i]; for (int i = 0; i < X->rows; i++) { dXParameter[3*i] = cvGetReal2D(X, i, 0); dXParameter[3*i+1] = cvGetReal2D(X, i, 1); dXParameter[3*i+2] = cvGetReal2D(X, i, 2); } adata.XYZ = dXParameter; double opt[5]; opt[0] = 1e-3; opt[1] = 1e-12; opt[2] = 1e-12; opt[3] = 1e-12; opt[4] = 0; double info[12]; double *work = (double*)malloc((LM_DIF_WORKSZ(cameraParameter.size(), feature2DParameter.size())+cameraParameter.size()*cameraParameter.size())*sizeof(double)); if(!work) fprintf(stderr, "memory allocation request failed in main()\n"); int ret = dlevmar_dif(Projection3Donto2D_MOT_fast, dCameraParameter, dFeature2DParameter, cameraParameter.size(), feature2DParameter.size(), 1e+3, opt, info, work, NULL, &adata); cvSetIdentity(P); cvSetReal2D(P, 0, 3, -dCameraParameter[4]); cvSetReal2D(P, 1, 3, -dCameraParameter[5]); cvSetReal2D(P, 2, 3, -dCameraParameter[6]); cvSetReal2D(q, 0, 0, dCameraParameter[0]); cvSetReal2D(q, 1, 0, dCameraParameter[1]); cvSetReal2D(q, 2, 0, dCameraParameter[2]); cvSetReal2D(q, 3, 0, dCameraParameter[3]); Quaternion2Rotation(q, R); cvMatMul(K, R, R); cvMatMul(R, P, P); //cout << ret << endl; PrintSBAInfo(info, X->rows); free(dFeature2DParameter); free(dCameraParameter); cvReleaseMat(&R); cvReleaseMat(&t); cvReleaseMat(&q); cvReleaseMat(&invK); cvReleaseMat(&invR); } void Projection3Donto2D_Patch(double *rt, double *hx, int m, int n, void *adata) { // Set intrinsic parameter double X = ((AdditionalData *) adata)->X; double Y = ((AdditionalData *) adata)->Y; double Z = ((AdditionalData *) adata)->Z; double pi1 = rt[0]; double pi2 = rt[1]; double pi3 = rt[2]; double pi4 = -pi1*X - pi2*Y - pi3*Z; double X11 = rt[3]; double Y11 = rt[4]; double Z11 = (-pi4-pi1*X11-pi2*Y11)/pi3; double X12 = rt[5]; double Y12 = rt[6]; double Z12 = (-pi4-pi1*X12-pi2*Y12)/pi3; double X21 = rt[7]; double Y21 = rt[8]; double Z21 = (-pi4-pi1*X21-pi2*Y21)/pi3; double X22 = rt[9]; double Y22 = rt[10]; double Z22 = (-pi4-pi1*X22-pi2*Y22)/pi3; for (int iP = 0; iP < ((AdditionalData *) adata)->vP.size(); iP++) { double P11 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 0, 0); double P12 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 0, 1); double P13 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 0, 2); double P14 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 0, 3); double P21 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 1, 0); double P22 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 1, 1); double P23 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 1, 2); double P24 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 1, 3); double P31 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 2, 0); double P32 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 2, 1); double P33 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 2, 2); double P34 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 2, 3); double x11 = P11*X11+P12*Y11+P13*Z11+P14; double y11 = P21*X11+P22*Y11+P23*Z11+P24; double z11 = P31*X11+P32*Y11+P33*Z11+P34; double x12 = P11*X12+P12*Y12+P13*Z12+P14; double y12 = P21*X12+P22*Y12+P23*Z12+P24; double z12 = P31*X12+P32*Y12+P33*Z12+P34; double x21 = P11*X21+P12*Y21+P13*Z21+P14; double y21 = P21*X21+P22*Y21+P23*Z21+P24; double z21 = P31*X21+P32*Y21+P33*Z21+P34; double x22 = P11*X22+P12*Y22+P13*Z22+P14; double y22 = P21*X22+P22*Y22+P23*Z22+P24; double z22 = P31*X22+P32*Y22+P33*Z22+P34; hx[8*iP] = x11/z11; hx[8*iP+1] = y11/z11; hx[8*iP+2] = x12/z12; hx[8*iP+3] = y12/z12; hx[8*iP+4] = x21/z21; hx[8*iP+5] = y21/z21; hx[8*iP+6] = x22/z22; hx[8*iP+7] = y22/z22; //cout << x11/z11 << " " << y11/z11 << " "; //cout << x12/z12 << " " << y12/z12 << " "; //cout << x21/z21 << " " << y21/z21 << " "; //cout << x22/z22 << " " << y22/z22 << endl; } } void Projection3Donto2D_STR_fast_SO(double *rt, double *hx, int m, int n, void *adata) { // Set intrinsic parameter double K11 = ((((AdditionalData *) adata)->vIntrinsic)[0])[0]; double K12 = 0; double K13 = ((((AdditionalData *) adata)->vIntrinsic)[0])[2]; double K21 = 0; double K22 = ((((AdditionalData *) adata)->vIntrinsic)[0])[1]; double K23 = ((((AdditionalData *) adata)->vIntrinsic)[0])[3]; double K31 = 0; double K32 = 0; double K33 = 1; double omega = ((((AdditionalData *) adata)->vIntrinsic)[0])[4]; double tan_omega_half_2 = 2*tan(omega/2); double X = rt[0]; double Y = rt[1]; double Z = rt[2]; for (int iP = 0; iP < ((AdditionalData *) adata)->vP.size(); iP++) { double P11 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 0, 0); double P12 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 0, 1); double P13 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 0, 2); double P14 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 0, 3); double P21 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 1, 0); double P22 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 1, 1); double P23 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 1, 2); double P24 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 1, 3); double P31 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 2, 0); double P32 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 2, 1); double P33 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 2, 2); double P34 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 2, 3); double x = P11*X+P12*Y+P13*Z+P14; double y = P21*X+P22*Y+P23*Z+P24; double z = P31*X+P32*Y+P33*Z+P34; x /= z; y /= z; double u_n = x/K11 - K13/K11; double v_n = y/K22 - K23/K22; double r_u = sqrt(u_n*u_n+v_n*v_n); double r_d = 1/omega*atan(r_u*tan_omega_half_2); double u_d_n = r_d/r_u * u_n; double v_d_n = r_d/r_u * v_n; double u_d = u_d_n*K11 + K13; double v_d = v_d_n*K22 + K23; hx[2*iP] = u_d; hx[2*iP+1] = v_d; } } void Projection3Donto2D_STR_fast_SO_NoDistortion(double *rt, double *hx, int m, int n, void *adata) { // Set intrinsic parameter double K11 = ((((AdditionalData *) adata)->vIntrinsic)[0])[0]; double K12 = 0; double K13 = ((((AdditionalData *) adata)->vIntrinsic)[0])[2]; double K21 = 0; double K22 = ((((AdditionalData *) adata)->vIntrinsic)[0])[1]; double K23 = ((((AdditionalData *) adata)->vIntrinsic)[0])[3]; double K31 = 0; double K32 = 0; double K33 = 1; //double omega = ((((AdditionalData *) adata)->vIntrinsic)[0])[4]; //double tan_omega_half_2 = 2*tan(omega/2); double X = rt[0]; double Y = rt[1]; double Z = rt[2]; for (int iP = 0; iP < ((AdditionalData *) adata)->vP.size(); iP++) { double P11 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 0, 0); double P12 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 0, 1); double P13 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 0, 2); double P14 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 0, 3); double P21 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 1, 0); double P22 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 1, 1); double P23 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 1, 2); double P24 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 1, 3); double P31 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 2, 0); double P32 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 2, 1); double P33 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 2, 2); double P34 = cvGetReal2D(((AdditionalData *) adata)->vP[iP], 2, 3); double x = P11*X+P12*Y+P13*Z+P14; double y = P21*X+P22*Y+P23*Z+P24; double z = P31*X+P32*Y+P33*Z+P34; x /= z; y /= z; //double u_n = x/K11 - K13/K11; //double v_n = y/K22 - K23/K22; //double r_u = sqrt(u_n*u_n+v_n*v_n); //double r_d = 1/omega*atan(r_u*tan_omega_half_2); //double u_d_n = r_d/r_u * u_n; //double v_d_n = r_d/r_u * v_n; //double u_d = u_d_n*K11 + K13; //double v_d = v_d_n*K22 + K23; hx[2*iP] = x; hx[2*iP+1] = y; } } void Projection3Donto2D_MOT_fast(double *rt, double *hx, int m, int n, void *adata) { // Set intrinsic parameter double K11 = ((((AdditionalData *) adata)->vIntrinsic)[0])[0]; double K12 = 0; double K13 = ((((AdditionalData *) adata)->vIntrinsic)[0])[2]; double K21 = 0; double K22 = ((((AdditionalData *) adata)->vIntrinsic)[0])[1]; double K23 = ((((AdditionalData *) adata)->vIntrinsic)[0])[3]; double K31 = 0; double K32 = 0; double K33 = 1; // Set orientation double qw = rt[0]; double qx = rt[1]; double qy = rt[2]; double qz = rt[3]; double q_norm = sqrt(qw*qw + qx*qx + qy*qy + qz*qz); qw /= q_norm; qx /= q_norm; qy /= q_norm; qz /= q_norm; double R11 = 1.0-2*qy*qy-2*qz*qz; double R12 = 2*qx*qy-2*qz*qw; double R13 = 2*qx*qz+2*qy*qw; double R21 = 2*qx*qy+2*qz*qw; double R22 = 1.0-2*qx*qx-2*qz*qz; double R23 = 2*qz*qy-2*qx*qw; double R31 = 2*qx*qz-2*qy*qw; double R32 = 2*qy*qz+2*qx*qw; double R33 = 1.0-2*qx*qx-2*qy*qy; // Set translation double C1 = rt[4]; double C2 = rt[5]; double C3 = rt[6]; for (int iPoint = 0; iPoint < n/2; iPoint++) { double X1 = ((AdditionalData *) adata)->XYZ[3*iPoint]; double X2 = ((AdditionalData *) adata)->XYZ[3*iPoint+1]; double X3 = ((AdditionalData *) adata)->XYZ[3*iPoint+2]; // Building projection double RX1 = R11*X1+R12*X2+R13*X3; double RX2 = R21*X1+R22*X2+R23*X3; double RX3 = R31*X1+R32*X2+R33*X3; double KRX1 = K11*RX1+K12*RX2+K13*RX3; double KRX2 = K21*RX1+K22*RX2+K23*RX3; double KRX3 = K31*RX1+K32*RX2+K33*RX3; double RC1 = R11*C1+R12*C2+R13*C3; double RC2 = R21*C1+R22*C2+R23*C3; double RC3 = R31*C1+R32*C2+R33*C3; double KRC1 = K11*RC1+K12*RC2+K13*RC3; double KRC2 = K21*RC1+K22*RC2+K23*RC3; double KRC3 = K31*RC1+K32*RC2+K33*RC3; double proj1 = KRX1-KRC1; double proj2 = KRX2-KRC2; double proj3 = KRX3-KRC3; hx[2*iPoint] = proj1/proj3; hx[2*iPoint+1] = proj2/proj3; } } void ObjectiveOrientationRefinement(double *rt, double *hx, int m, int n, void *adata) { int nFrames = (((AdditionalData *) adata)->nFrames); vector<double> vR11, vR12, vR13, vR21, vR22, vR23, vR31, vR32, vR33; vector<double> vm1, vm2, vm3; for (int iFrame = 0; iFrame < nFrames; iFrame++) { // Set orientation double qw = rt[7*iFrame+0]; double qx = rt[7*iFrame+1]; double qy = rt[7*iFrame+2]; double qz = rt[7*iFrame+3]; double q_norm = sqrt(qw*qw + qx*qx + qy*qy + qz*qz); qw /= q_norm; qx /= q_norm; qy /= q_norm; qz /= q_norm; double R11 = 1.0-2*qy*qy-2*qz*qz; double R12 = 2*qx*qy-2*qz*qw; double R13 = 2*qx*qz+2*qy*qw; double R21 = 2*qx*qy+2*qz*qw; double R22 = 1.0-2*qx*qx-2*qz*qz; double R23 = 2*qz*qy-2*qx*qw; double R31 = 2*qx*qz-2*qy*qw; double R32 = 2*qy*qz+2*qx*qw; double R33 = 1.0-2*qx*qx-2*qy*qy; vR11.push_back(R11); vR12.push_back(R12); vR13.push_back(R13); vR21.push_back(R21); vR22.push_back(R22); vR23.push_back(R23); vR31.push_back(R31); vR32.push_back(R32); vR33.push_back(R33); vm1.push_back(rt[7*iFrame+4]); vm2.push_back(rt[7*iFrame+5]); vm3.push_back(rt[7*iFrame+6]); //cout << R11 << " " << R12 << " " << R13 << endl; //cout << R21 << " " << R22 << " " << R23 << endl; //cout << R31 << " " << R32 << " " << R33 << endl; } //vector<CvMat *> vP = (((AdditionalData *) adata)->vP); double R11 = 1; double R12 = 0; double R13 = 0; double R21 = 0; double R22 = 1; double R23 = 0; double R31 = 0; double R32 = 0; double R33 = 1; for (int iFrame = 0; iFrame < nFrames; iFrame++) { double R11_t, R12_t, R13_t, R21_t, R22_t, R23_t, R31_t, R32_t, R33_t; R11_t = vR11[iFrame]*R11 + vR12[iFrame]*R21 + vR13[iFrame]*R31; R12_t = vR11[iFrame]*R12 + vR12[iFrame]*R22 + vR13[iFrame]*R32; R13_t = vR11[iFrame]*R13 + vR12[iFrame]*R23 + vR13[iFrame]*R33; R21_t = vR21[iFrame]*R11 + vR22[iFrame]*R21 + vR23[iFrame]*R31; R22_t = vR21[iFrame]*R12 + vR22[iFrame]*R22 + vR23[iFrame]*R32; R23_t = vR21[iFrame]*R13 + vR22[iFrame]*R23 + vR23[iFrame]*R33; R31_t = vR31[iFrame]*R11 + vR32[iFrame]*R21 + vR33[iFrame]*R31; R32_t = vR31[iFrame]*R12 + vR32[iFrame]*R22 + vR33[iFrame]*R32; R33_t = vR31[iFrame]*R13 + vR32[iFrame]*R23 + vR33[iFrame]*R33; R11 = R11_t; R12 = R12_t; R13 = R13_t; R21 = R21_t; R22 = R22_t; R23 = R23_t; R31 = R31_t; R32 = R32_t; R33 = R33_t; } double qw = sqrt(abs(1.0+R11+R22+R33))/2; double qx, qy, qz; if (qw > QW_ZERO) { qx = (R32-R23)/4/qw; qy = (R13-R31)/4/qw; qz = (R21-R12)/4/qw; } else { double d = sqrt((R12*R12*R13*R13+R12*R12*R23*R23+R13*R13*R23*R23)); qx = R12*R13/d; qy = R12*R23/d; qz = R13*R23/d; } double norm_q = sqrt(qx*qx+qy*qy+qz*qz+qw*qw); hx[0] = qw/norm_q; hx[1] = qx/norm_q; hx[2] = qy/norm_q; hx[3] = qz/norm_q; //cout << qw/norm_q << " " << qx/norm_q << " " << qy/norm_q << " " << qz/norm_q << endl; vector<CvMat *> *vx1 = (((AdditionalData *) adata)->vx1); vector<CvMat *> *vx2 = (((AdditionalData *) adata)->vx2); int idx = 4; for (int iFrame = 0; iFrame < nFrames; iFrame++) { double E11 = -vm3[iFrame]*vR21[iFrame] + vm2[iFrame]*vR31[iFrame]; double E12 = -vm3[iFrame]*vR22[iFrame] + vm2[iFrame]*vR32[iFrame]; double E13 = -vm3[iFrame]*vR23[iFrame] + vm2[iFrame]*vR33[iFrame]; double E21 = vm3[iFrame]*vR11[iFrame] - vm1[iFrame]*vR31[iFrame]; double E22 = vm3[iFrame]*vR12[iFrame] - vm1[iFrame]*vR32[iFrame]; double E23 = vm3[iFrame]*vR13[iFrame] - vm1[iFrame]*vR33[iFrame]; double E31 = -vm2[iFrame]*vR11[iFrame] + vm1[iFrame]*vR21[iFrame]; double E32 = -vm2[iFrame]*vR12[iFrame] + vm1[iFrame]*vR22[iFrame]; double E33 = -vm2[iFrame]*vR13[iFrame] + vm1[iFrame]*vR23[iFrame]; double out = 0; if ((*vx1)[iFrame]->rows == 1) continue; for (int ix = 0; ix < (*vx1)[iFrame]->rows; ix++) { double x1 = cvGetReal2D((*vx1)[iFrame], ix, 0); double x2 = cvGetReal2D((*vx1)[iFrame], ix, 1); double x3 = 1; double xp1 = cvGetReal2D((*vx2)[iFrame], ix, 0); double xp2 = cvGetReal2D((*vx2)[iFrame], ix, 1); double xp3 = 1; double Ex1 = E11*x1 + E12*x2 + E13*x3; double Ex2 = E21*x1 + E22*x2 + E23*x3; double Ex3 = E31*x1 + E32*x2 + E33*x3; double Etxp1 = E11*xp1 + E21*xp2 + E31*xp3; double Etxp2 = E12*xp1 + E22*xp2 + E32*xp3; double Etxp3 = E13*xp1 + E23*xp2 + E33*xp3; double xpEx = xp1*Ex1 + xp2*Ex2 + xp3*Ex3; double dist = xpEx*xpEx * (1/(Ex1*Ex1+Ex2*Ex2)+1/(Etxp1*Etxp1+Etxp2*Etxp2)); out += sqrt(dist)/(*vx1)[iFrame]->rows; //hx[idx] = dist; //idx++; } for (int j = 0; j < 10; j++) { idx++; hx[idx] = 0.1*out; } } } void ObjectiveOrientationRefinement1(double *rt, double *hx, int m, int n, void *adata) { // Set orientation double qw = (((AdditionalData *) adata)->qw); double qx = (((AdditionalData *) adata)->qx); double qy = (((AdditionalData *) adata)->qy); double qz = (((AdditionalData *) adata)->qz); double q_norm = sqrt(qw*qw + qx*qx + qy*qy + qz*qz); qw /= q_norm; qx /= q_norm; qy /= q_norm; qz /= q_norm; double R11 = 1.0-2*qy*qy-2*qz*qz; double R12 = 2*qx*qy-2*qz*qw; double R13 = 2*qx*qz+2*qy*qw; double R21 = 2*qx*qy+2*qz*qw; double R22 = 1.0-2*qx*qx-2*qz*qz; double R23 = 2*qz*qy-2*qx*qw; double R31 = 2*qx*qz-2*qy*qw; double R32 = 2*qy*qz+2*qx*qw; double R33 = 1.0-2*qx*qx-2*qy*qy; double m1 = rt[0]; double m2 = rt[1]; double m3 = rt[2]; double norm_m = sqrt(m1*m1+m2*m2+m3*m3); m1 /= norm_m; m2 /= norm_m; m3 /= norm_m; vector<double> *vx1 = (((AdditionalData *) adata)->vx1_a); vector<double> *vy1 = (((AdditionalData *) adata)->vy1_a); vector<double> *vx2 = (((AdditionalData *) adata)->vx2_a); vector<double> *vy2 = (((AdditionalData *) adata)->vy2_a); double E11 = -m3*R21 + m2*R31; double E12 = -m3*R22 + m2*R32; double E13 = -m3*R23 + m2*R33; double E21 = m3*R11 - m1*R31; double E22 = m3*R12 - m1*R32; double E23 = m3*R13 - m1*R33; double E31 = -m2*R11 + m1*R21; double E32 = -m2*R12 + m1*R22; double E33 = -m2*R13 + m1*R23; for (int ix = 0; ix < (*vx1).size(); ix++) { double x1 = (*vx1)[ix]; double x2 = (*vy1)[ix]; double x3 = 1; double xp1 = (*vx2)[ix]; double xp2 = (*vy2)[ix]; double xp3 = 1; double Ex1 = E11*x1 + E12*x2 + E13*x3; double Ex2 = E21*x1 + E22*x2 + E23*x3; double Ex3 = E31*x1 + E32*x2 + E33*x3; double Etxp1 = E11*xp1 + E21*xp2 + E31*xp3; double Etxp2 = E12*xp1 + E22*xp2 + E32*xp3; double Etxp3 = E13*xp1 + E23*xp2 + E33*xp3; double xpEx = xp1*Ex1 + xp2*Ex2 + xp3*Ex3; double dist = xpEx*xpEx * (1/(Ex1*Ex1+Ex2*Ex2)+1/(Etxp1*Etxp1+Etxp2*Etxp2)); hx[ix] = 100*dist; } } void CameraCenterInterpolationWithDegree(CvMat *R_1, vector<int> vFrame1, vector<int> vFrame2, vector<CvMat *> vM, vector<CvMat *> vm, vector<int> vFrame1_r, vector<int> vFrame2_r, vector<CvMat *> vM_r, vector<CvMat *> vm_r, vector<CvMat *> vC_c, vector<CvMat *> vR_c, vector<int> vFrame_c, vector<CvMat *> &vC, vector<CvMat *> &vR, double weight) { // Frame normalization int first = vFrame1[0]; for (int iFrame = 0; iFrame < vFrame1.size(); iFrame++) { vFrame1[iFrame] = vFrame1[iFrame] - first; vFrame2[iFrame] = vFrame2[iFrame] - first; double m1 = cvGetReal2D(vm[iFrame], 0, 0); double m2 = cvGetReal2D(vm[iFrame], 1, 0); double m3 = cvGetReal2D(vm[iFrame], 2, 0); double norm_m = sqrt(m1*m1+m2*m2+m3*m3); ScalarMul(vm[iFrame], 1/norm_m, vm[iFrame]); } for (int iFrame = 0; iFrame < vFrame1_r.size(); iFrame++) { vFrame1_r[iFrame] = vFrame1_r[iFrame] - first; vFrame2_r[iFrame] = vFrame2_r[iFrame] - first; double m1 = cvGetReal2D(vm_r[iFrame], 0, 0); double m2 = cvGetReal2D(vm_r[iFrame], 1, 0); double m3 = cvGetReal2D(vm_r[iFrame], 2, 0); double norm_m = sqrt(m1*m1+m2*m2+m3*m3); ScalarMul(vm_r[iFrame], 1/norm_m, vm_r[iFrame]); } for (int iFrame = 0; iFrame < vFrame_c.size(); iFrame++) { vFrame_c[iFrame] = vFrame_c[iFrame] - first; } int nFrames = vFrame_c[vFrame_c.size()-1] - vFrame_c[0]+1; vR.resize(nFrames); vector<bool> vIsR(nFrames, false); for (int ic = 0; ic < vFrame_c.size(); ic++) { vR[vFrame_c[ic]] = cvCloneMat(vR_c[ic]); vIsR[vFrame_c[ic]] = true; } for (int iFrame = 0; iFrame < vFrame1.size(); iFrame++) { CvMat *R = cvCreateMat(3,3,CV_32FC1); int j = 0; if (!vIsR[vFrame1[iFrame]-j]) { while (!vIsR[vFrame1[iFrame]-j]) { j++; } for (int i = j-1; i >= 0; i--) { vR[vFrame1[iFrame]-i] = cvCloneMat(vR[vFrame1[iFrame]-j]); } } cvMatMul(vM[iFrame], vR[vFrame1[iFrame]], R); vR[vFrame2[iFrame]] = cvCloneMat(R); vIsR[vFrame2[iFrame]] = true; cvReleaseMat(&R); } for (int ic = 0; ic < vFrame_c.size(); ic++) { vR[vFrame_c[ic]] = cvCloneMat(vR_c[ic]); } int nBasis = floor((double)nFrames/3); CvMat *theta_all = cvCreateMat(nFrames, nFrames, CV_32FC1); GetIDCTMappingMatrix(theta_all, nFrames); CvMat *theta_i = cvCreateMat(1, nBasis, CV_32FC1); CvMat *Theta_i = cvCreateMat(3, 3*nBasis, CV_32FC1); CvMat *A = cvCreateMat(3*vM.size(), 3*nBasis, CV_32FC1); CvMat *b = cvCreateMat(3*vM.size(), 1, CV_32FC1); cvSetZero(b); for (int im = 0; im < vM.size(); im++) { for (int ith = 0; ith < nBasis; ith++) { cvSetReal2D(theta_i, 0, ith, cvGetReal2D(theta_all, vFrame1[im], ith)-cvGetReal2D(theta_all, vFrame2[im], ith)); } SetSubMat(Theta_i, 0, 0, theta_i); SetSubMat(Theta_i, 1, nBasis, theta_i); SetSubMat(Theta_i, 2, 2*nBasis, theta_i); CvMat *skewm = cvCreateMat(3,3,CV_32FC1); Vec2Skew(vm[im], skewm); CvMat *temp33 = cvCreateMat(3,3,CV_32FC1); cvMatMul(skewm, vR[vFrame2[im]], temp33); CvMat *temp3nBasis = cvCreateMat(3, 3*nBasis, CV_32FC1); cvMatMul(temp33, Theta_i, temp3nBasis); SetSubMat(A, 3*im, 0, temp3nBasis); cvReleaseMat(&skewm); cvReleaseMat(&temp33); cvReleaseMat(&temp3nBasis); } CvMat *A_r = cvCreateMat(3*vM_r.size(), 3*nBasis, CV_32FC1); CvMat *b_r = cvCreateMat(3*vM_r.size(), 1, CV_32FC1); cvSetZero(b_r); for (int im = 0; im < vM_r.size(); im++) { for (int ith = 0; ith < nBasis; ith++) { cvSetReal2D(theta_i, 0, ith, cvGetReal2D(theta_all, vFrame1_r[im], ith)-cvGetReal2D(theta_all, vFrame2_r[im], ith)); } SetSubMat(Theta_i, 0, 0, theta_i); SetSubMat(Theta_i, 1, nBasis, theta_i); SetSubMat(Theta_i, 2, 2*nBasis, theta_i); CvMat *skewm = cvCreateMat(3,3,CV_32FC1); Vec2Skew(vm_r[im], skewm); CvMat *temp33 = cvCreateMat(3,3,CV_32FC1); cvMatMul(skewm, vR[vFrame2_r[im]], temp33); CvMat *temp3nBasis = cvCreateMat(3, 3*nBasis, CV_32FC1); cvMatMul(temp33, Theta_i, temp3nBasis); SetSubMat(A_r, 3*im, 0, temp3nBasis); cvReleaseMat(&skewm); cvReleaseMat(&temp33); cvReleaseMat(&temp3nBasis); } CvMat *A_c = cvCreateMat(3*vFrame_c.size(), 3*nBasis, CV_32FC1); CvMat *b_c = cvCreateMat(3*vFrame_c.size(), 1, CV_32FC1); for (int ic = 0; ic < vFrame_c.size(); ic++) { for (int ith = 0; ith < nBasis; ith++) { cvSetReal2D(theta_i, 0, ith, cvGetReal2D(theta_all, vFrame_c[ic], ith)); } SetSubMat(Theta_i, 0, 0, theta_i); SetSubMat(Theta_i, 1, nBasis, theta_i); SetSubMat(Theta_i, 2, 2*nBasis, theta_i); SetSubMat(A_c, 3*ic, 0, Theta_i); SetSubMat(b_c, 3*ic, 0, vC_c[ic]); } ScalarMul(A_c, weight, A_c); ScalarMul(b_c, weight, b_c); CvMat *At = cvCreateMat(A->rows+A_r->rows+A_c->rows, A->cols, CV_32FC1); CvMat *bt = cvCreateMat(A->rows+A_r->rows+A_c->rows, 1, CV_32FC1); SetSubMat(At, 0, 0, A); SetSubMat(bt, 0, 0, b); SetSubMat(At, A->rows, 0, A_r); SetSubMat(bt, A->rows, 0, b_r); SetSubMat(At, A->rows+A_r->rows, 0, A_c); SetSubMat(bt, A->rows+A_r->rows, 0, b_c); CvMat *beta = cvCreateMat(3*nBasis, 1, CV_32FC1); cvSolve(At, bt, beta); //cvSolve(A_c, b_c, beta); for (int iFrame = 0; iFrame < nFrames; iFrame++) { for (int ith = 0; ith < nBasis; ith++) { cvSetReal2D(theta_i, 0, ith, cvGetReal2D(theta_all, iFrame, ith)); } SetSubMat(Theta_i, 0, 0, theta_i); SetSubMat(Theta_i, 1, nBasis, theta_i); SetSubMat(Theta_i, 2, 2*nBasis, theta_i); CvMat *C = cvCreateMat(3,1,CV_32FC1); cvMatMul(Theta_i, beta, C); vC.push_back(C); } cvReleaseMat(&beta); cvReleaseMat(&At); cvReleaseMat(&bt); cvReleaseMat(&A); cvReleaseMat(&b); cvReleaseMat(&A_r); cvReleaseMat(&b_r); cvReleaseMat(&A_c); cvReleaseMat(&b_c); cvReleaseMat(&theta_all); cvReleaseMat(&theta_i); cvReleaseMat(&Theta_i); } void SparseBundleAdjustment_KDMOT(vector<Feature> vFeature, vector<int> vUsedFrame, vector<CvMat *> &cP, CvMat *X, vector<Camera> vCamera, vector<int> visibleStructureID) { PrintAlgorithm("Sparse bundle adjustment motion only"); vector<double> cameraParameter, feature2DParameter; vector<char> vMask; double *dCovFeatures = 0; AdditionalData adata;// focal_x focal_y princ_x princ_y int max_nFrames = 0; for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) { for (int iFrame = 0; iFrame < vCamera[iCamera].vTakenFrame.size(); iFrame++) { if (vCamera[iCamera].vTakenFrame[iFrame] > max_nFrames) max_nFrames = vCamera[iCamera].vTakenFrame[iFrame]; } } max_nFrames++; adata.max_nFrames = max_nFrames; adata.vUsedFrame = vUsedFrame; GetParameterForSBA_KDRT(vFeature, vUsedFrame, cP, X, vCamera, max_nFrames, visibleStructureID, cameraParameter, feature2DParameter, vMask); int nCameraParam = 7+4+2; int nFeatures = vFeature.size(); int nFrames = vUsedFrame.size(); char *dVMask = (char *) malloc(vMask.size() * sizeof(char)); double *dFeature2DParameter = (double *) malloc(feature2DParameter.size() * sizeof(double)); double *dCameraParameter = (double *) malloc(cameraParameter.size() * sizeof(double)); for (int i = 0; i < cameraParameter.size(); i++) dCameraParameter[i] = cameraParameter[i]; for (int i = 0; i < vMask.size(); i++) dVMask[i] = vMask[i]; for (int i = 0; i < feature2DParameter.size(); i++) dFeature2DParameter[i] = feature2DParameter[i]; adata.XYZ = &(dCameraParameter[nCameraParam*vUsedFrame.size()]); double opt[5]; opt[0] = 1e-3; opt[1] = 1e-12; opt[2] = 1e-12; opt[3] = 1e-12; opt[4] = 0; double info[12]; sba_mot_levmar(visibleStructureID.size(), vUsedFrame.size(), 1, dVMask, dCameraParameter, nCameraParam, dFeature2DParameter, dCovFeatures, 2, Projection3Donto2D_KDMOT, NULL, &adata, 1e+3, 0, opt, info); PrintSBAInfo(info); RetrieveParameterFromSBA_KDRT(dCameraParameter, vCamera, cP, X, visibleStructureID, vUsedFrame, max_nFrames); free(dVMask); free(dFeature2DParameter); free(dCameraParameter); } void SparseBundleAdjustment_TEMPORAL(vector<Feature> vFeature, vector<Theta> &vTheta, vector<Camera> &vCamera) { PrintAlgorithm("Sparse bundle adjustment - Temporal adjustment"); vector<double> cameraParameter, feature2DParameter; vector<char> vMask; double *dCovFeatures = 0; AdditionalData adata;// focal_x focal_y princ_x princ_y int max_nFrames = 0; for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) { for (int iFrame = 0; iFrame < vCamera[iCamera].vTakenFrame.size(); iFrame++) { if (vCamera[iCamera].vTakenFrame[iFrame] > max_nFrames) max_nFrames = vCamera[iCamera].vTakenFrame[iFrame]; } } max_nFrames++; adata.max_nFrames = max_nFrames; vector<int> vUsedFrame; vector<CvMat *> vP; vector<double> vdP; for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) { for (int iFrame = 0; iFrame < vCamera[iCamera].vTakenFrame.size(); iFrame++) { vUsedFrame.push_back(iCamera*max_nFrames+vCamera[iCamera].vTakenFrame[iFrame]); vP.push_back(vCamera[iCamera].vP[iFrame]); for (int iP = 0; iP < 3; iP++) for (int jP = 0; jP < 4; jP++) vdP.push_back(cvGetReal2D(vCamera[iCamera].vP[iFrame], iP, jP)); } } adata.vUsedFrame = vUsedFrame; adata.vP = vP; adata.vdP = vdP; adata.nBase = vTheta[0].thetaX.size(); adata.vTheta = vTheta; GetParameterForSBA_TEMPORAL(vFeature, vTheta, vCamera, max_nFrames, cameraParameter, feature2DParameter, vMask); int nCameraParam = 1; int nFeatures = vTheta.size(); int nFrames = vUsedFrame.size(); char *dVMask = (char *) malloc(vMask.size() * sizeof(char)); double *dFeature2DParameter = (double *) malloc(feature2DParameter.size() * sizeof(double)); double *dCameraParameter = (double *) malloc(cameraParameter.size() * sizeof(double)); for (int i = 0; i < cameraParameter.size(); i++) dCameraParameter[i] = cameraParameter[i]; for (int i = 0; i < vMask.size(); i++) dVMask[i] = vMask[i]; for (int i = 0; i < feature2DParameter.size(); i++) dFeature2DParameter[i] = feature2DParameter[i]; adata.XYZ = &(dCameraParameter[nCameraParam*vUsedFrame.size()]); double opt[5]; opt[0] = 1e-3; opt[1] = 1e-5; opt[2] = 1e-5; opt[3] = 1e-5; opt[4] = 0; double info[12]; sba_motstr_levmar(vTheta.size(), 0, vUsedFrame.size(), 0, dVMask, dCameraParameter, nCameraParam, 3*adata.nBase, dFeature2DParameter, dCovFeatures, 4, ProjectionThetaonto2D_TEMPORAL, NULL, &adata, 1e+3, 0, opt, info); PrintSBAInfo(info); RetrieveParameterFromSBA_TEMPORAL(dCameraParameter, vCamera, vTheta); free(dVMask); free(dFeature2DParameter); free(dCameraParameter); } void SparseBundleAdjustment_TEMPORAL_LEVMAR(vector<Feature> vFeature, vector<Theta> &vTheta, vector<Camera> &vCamera) { //for (int i = 0; i < 106; i++) //{ // vFeature.pop_back(); // vTheta.pop_back(); //} //PrintAlgorithm("Sparse bundle adjustment - Temporal adjustment, Levenburg-Marquedt"); //vector<double> cameraParameter, feature2DParameter; //vector<char> vMask; //double *dCovFeatures = 0; //AdditionalData adata;// focal_x focal_y princ_x princ_y //int max_nFrames = 0; //for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) //{ // for (int iFrame = 0; iFrame < vCamera[iCamera].vTakenFrame.size(); iFrame++) // { // if (vCamera[iCamera].vTakenFrame[iFrame] > max_nFrames) // max_nFrames = vCamera[iCamera].vTakenFrame[iFrame]; // } //} //max_nFrames++; //adata.max_nFrames = max_nFrames; //vector<int> vUsedFrame; //vector<CvMat *> vP; //vector<double> vdP; //for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) //{ // for (int iFrame = 0; iFrame < vCamera[iCamera].vTakenFrame.size(); iFrame++) // { // vUsedFrame.push_back(iCamera*max_nFrames+vCamera[iCamera].vTakenFrame[iFrame]); // vP.push_back(vCamera[iCamera].vP[iFrame]); // for (int iP = 0; iP < 3; iP++) // for (int jP = 0; jP < 4; jP++) // vdP.push_back(cvGetReal2D(vCamera[iCamera].vP[iFrame], iP, jP)); // } //} //adata.vUsedFrame = vUsedFrame; ////adata.vP = vP; //adata.vdP = vdP; //adata.nBase = vTheta[0].thetaX.size(); //adata.nFeatures = vTheta.size(); //adata.vTheta = vTheta; //GetParameterForSBA_TEMPORAL_LEVMAR(vFeature, vTheta, vCamera, max_nFrames, cameraParameter, feature2DParameter); //int nCameraParam = 1; //int nFeatures = vTheta.size(); //int nFrames = vUsedFrame.size(); ////char *dVMask = (char *) malloc(vMask.size() * sizeof(char)); //double *dFeature2DParameter = (double *) malloc((feature2DParameter.size()+nFeatures) * sizeof(double)); //double *dCameraParameter = (double *) malloc(cameraParameter.size() * sizeof(double)); //for (int i = 0; i < cameraParameter.size(); i++) // dCameraParameter[i] = cameraParameter[i]; //for (int i = 0; i < feature2DParameter.size(); i++) // dFeature2DParameter[i] = feature2DParameter[i]/1e-6; //for (int i = 0; i < nFeatures; i++) // dFeature2DParameter[feature2DParameter.size()+i] = 0.0; //adata.isStatic = false; ////adata.XYZ = &(dCameraParameter[nCameraParam*vUsedFrame.size()]); //adata.measurements = feature2DParameter; //double opt[5]; //opt[0] = 1e-1; //opt[1] = 1e-20; //opt[2] = 1e-15; //opt[3] = 1e-15; //opt[4] = 0; //double info[12]; //double *work = (double*)malloc((LM_DIF_WORKSZ(cameraParameter.size(), feature2DParameter.size()+nFeatures)+cameraParameter.size()*cameraParameter.size())*sizeof(double)); //if(!work) // fprintf(stderr, "memory allocation request failed in main()\n"); //int ret = dlevmar_dif(ProjectionThetaonto2D_TEMPORAL_LEVMAR, dCameraParameter, dFeature2DParameter, cameraParameter.size(), feature2DParameter.size()+nFeatures, // 1e+3, opt, info, work, NULL, &adata); //cout << ret << endl; //PrintSBAInfo(info); //RetrieveParameterFromSBA_TEMPORAL(dCameraParameter, vCamera, vTheta); //free(dFeature2DParameter); //free(dCameraParameter); } void GlobalBundleAdjustment(vector<Feature> vFeature, vector<Camera> vCamera, vector<Theta> vTheta, CvMat *K, int nFrames, int nBase, int nFeatures_static) { //PrintAlgorithm("Global bundle adjustment motion and structure"); //vector<double> cameraParameter, feature2DParameter; //vector<char> vMask; //double *dCovFeatures = 0; //AdditionalData adata;// focal_x focal_y princ_x princ_y //double intrinsic[4]; //intrinsic[0] = cvGetReal2D(K, 0, 0); //intrinsic[1] = cvGetReal2D(K, 1, 1); //intrinsic[2] = cvGetReal2D(K, 0, 2); //intrinsic[3] = cvGetReal2D(K, 1, 2); //adata.intrinsic = intrinsic; //adata.nCameraParameters = 7; //adata.nImagePointPrameraters = 2; //adata.nBase = nBase; //adata.nFrames = nFrames; //adata.nFeature_static = nFeatures_static; //bool *isStatic = (bool *) malloc(vFeature.size() * sizeof(bool)); //for (int iStatic = 0; iStatic < vFeature.size(); iStatic++) //{ // if (iStatic < nFeatures_static) // isStatic[iStatic] = true; // else // isStatic[iStatic] = false; //} //adata.isStatic = isStatic; //GetParameterForGBA(vFeature, vCamera, vTheta, K, nFrames, cameraParameter, feature2DParameter, vMask); //int NZ = 0; //for (int i = 0; i < vMask.size(); i++) //{ // if (vMask[i]) // NZ++; //} //double nCameraParam = 7; //int nFeatures = vFeature.size(); //char *dVMask = (char *) malloc(vMask.size() * sizeof(char)); //double *dFeature2DParameter = (double *) malloc(feature2DParameter.size() * sizeof(double)); //double *dCameraParameter = (double *) malloc(cameraParameter.size() * sizeof(double)); //for (int i = 0; i < cameraParameter.size(); i++) // dCameraParameter[i] = cameraParameter[i]; //for (int i = 0; i < vMask.size(); i++) // dVMask[i] = vMask[i]; //for (int i = 0; i < feature2DParameter.size(); i++) // dFeature2DParameter[i] = feature2DParameter[i]; //double opt[5]; //opt[0] = 1e-3; //opt[1] = 1e-5;//1e-12; //opt[2] = 1e-5;//1e-12; //opt[3] = 1e-5;//1e-12; //opt[4] = 0; //double info[12]; //sba_motstr_levmar_x(vFeature.size(), 0, nFrames*vCamera.size(), 1, dVMask, dCameraParameter, nCameraParam, 3*nBase, dFeature2DParameter, dCovFeatures, 2, ProjectionThetaonto2D_MOTSTR_x, NULL, &adata, // 1e+3, 0, opt, info); //PrintSBAInfo(info); //RetrieveParameterFromGBA(dCameraParameter, K, vCamera, vTheta, nFrames); //free(isStatic); //free(dVMask); //free(dFeature2DParameter); //free(dCameraParameter); } void GlobalBundleAdjustment_LEVMAR(vector<Feature> vFeature, vector<Camera> vCamera, vector<Theta> vTheta, CvMat *K, int nFrames, int nBase, int nFeatures_static) { //PrintAlgorithm("Global bundle adjustment motion and structure"); //vector<double> cameraParameter, feature2DParameter; //double *dCovFeatures = 0; //AdditionalData adata;// focal_x focal_y princ_x princ_y //double intrinsic[4]; //intrinsic[0] = cvGetReal2D(K, 0, 0); //intrinsic[1] = cvGetReal2D(K, 1, 1); //intrinsic[2] = cvGetReal2D(K, 0, 2); //intrinsic[3] = cvGetReal2D(K, 1, 2); //adata.intrinsic = intrinsic; //adata.nCameraParameters = 7; //adata.nImagePointPrameraters = 2; //adata.nBase = nBase; //adata.nFrames = nFrames*vCamera.size(); //adata.nFeature_static = nFeatures_static; //bool *isStatic = (bool *) malloc(vFeature.size() * sizeof(bool)); //for (int iStatic = 0; iStatic < vFeature.size(); iStatic++) //{ // if (iStatic < nFeatures_static) // isStatic[iStatic] = true; // else // isStatic[iStatic] = false; //} //adata.isStatic = isStatic; //adata.nNZ = (double)feature2DParameter.size()/2; //CvMat visibilityMask; //GetParameterForGBA(vFeature, vCamera, vTheta, K, nFrames, cameraParameter, feature2DParameter, visibilityMask); //CvMat *vMask = cvCreateMat(visibilityMask.rows, visibilityMask.cols, CV_32FC1); //vMask = cvCloneMat(&visibilityMask); //adata.visibilityMask = vMask; //double nCameraParam = 7; //int nFeatures = vFeature.size(); //double *dFeature2DParameter = (double *) malloc(feature2DParameter.size() * sizeof(double)); //double *dCameraParameter = (double *) malloc(cameraParameter.size() * sizeof(double)); //double opt[5]; //opt[0] = 1e-3; //opt[1] = 1e-5;//1e-12; //opt[2] = 1e-5;//1e-12; //opt[3] = 1e-5;//1e-12; //opt[4] = 0; //double info[12]; //double *work=(double*)malloc((LM_DIF_WORKSZ(cameraParameter.size(), feature2DParameter.size())+cameraParameter.size()*cameraParameter.size())*sizeof(double)); //if(!work) // fprintf(stderr, "memory allocation request failed in main()\n"); //feature2DParameter.clear(); //cameraParameter.clear(); //for (int i = 0; i < 10000;i++) // feature2DParameter.push_back(0); //for (int i = 0; i < 10000-1; i++) // cameraParameter.push_back(0); //for (int i = 0; i < cameraParameter.size(); i++) // dCameraParameter[i] = cameraParameter[i]; //for (int i = 0; i < feature2DParameter.size(); i++) // dFeature2DParameter[i] = feature2DParameter[i]; //slevmar_dif(ProjectionThetaonto2D_MOTSTR_LEVMAR, (float*)dCameraParameter, (float*)dFeature2DParameter, cameraParameter.size(), feature2DParameter.size(), // 1e+3, (float*)opt, (float*)info, (float*)work, NULL, &adata); //PrintSBAInfo(info); //RetrieveParameterFromGBA(dCameraParameter, K, vCamera, vTheta, nFrames); //cvReleaseMat(&vMask); //free(isStatic); //free(dFeature2DParameter); //free(dCameraParameter); } void ProjectionThetaonto2D_MOTSTR_LEVMAR(double *p, double *hx, int m, int n, void *adata_) { //for (int i = 0; i <n; i++) // hx[i] = 1; //return; //AdditionalData *adata = (AdditionalData *)adata_; //bool *isStatic = adata->isStatic; //int nFrames = adata->nFrames; //int nCameraParameters = adata->nCameraParameters; //int nImagePointParameters = adata->nImagePointPrameraters; //int nBase = adata->nBase; //int nFeature_static = adata->nFeature_static; //double *XYZ = p + nCameraParameters*nFrames; //double *rt; //double *xij; // //int last = 0; //for (int iFeature = 0; iFeature < ((AdditionalData*)adata_)->visibilityMask->rows; iFeature++) //{ // for (int iFrame = 0; iFrame < ((AdditionalData*)adata_)->visibilityMask->cols; iFrame++) // { // if (cvGetReal2D(((AdditionalData*)adata_)->visibilityMask, iFeature, iFrame)) // { // if (isStatic[iFeature]) // { // double x, y; // //xij = hx + nImagePointParameters*last; // rt = p + iFrame*nCameraParameters; // XYZ = p + nFrames*nCameraParameters + iFeature*3; // ProjectionThetaonto2D_MOTSTR_LEVMAR(iFrame, iFeature, rt, XYZ, x, y, adata); // hx[nImagePointParameters*last] = 0; // hx[nImagePointParameters*last+1] = 0; // last++; // } // else // { // double x, y; // //xij = hx + nImagePointParameters*last; // rt = p + iFrame*nCameraParameters; // XYZ = p + nFrames*nCameraParameters + nFeature_static*3 + (iFeature-nFeature_static)*3*nBase; // ProjectionThetaonto2D_MOTSTR_LEVMAR(iFrame, iFeature, rt, XYZ, x, y, adata); // hx[nImagePointParameters*last] = 0; // hx[nImagePointParameters*last+1] = 0; // last++; // } // } // } //} } void ProjectionThetaonto2D_TEMPORAL_LEVMAR(double *p, double *hx, int m, int n, void *adata) { if (!((AdditionalData *)adata)->isStatic) { ((AdditionalData *)adata)->isStatic = true; ((AdditionalData *)adata)->ptr = p; } p = ((AdditionalData *)adata)->ptr; for (int ihx = 0; ihx < n; ihx++) hx[ihx] = 0.0; int max_nFrames = ((AdditionalData *) adata)->max_nFrames; int nFeatures = ((AdditionalData *) adata)->nFeatures; vector<int> vUsedFrame = ((AdditionalData *) adata)->vUsedFrame; int nBase = ((AdditionalData*) adata)->nBase; vector<Theta> vTheta = ((AdditionalData *) adata)->vTheta; vector<double> measurements = ((AdditionalData *) adata)->measurements; for (int iFeature = 0; iFeature < nFeatures; iFeature++) { double *xyz = p+vUsedFrame.size()+nBase*3*iFeature; for (int iFrame = 0; iFrame < vUsedFrame.size(); iFrame++) { double *rt = p+iFrame; int iCamera = (int)((double)vUsedFrame[iFrame]/max_nFrames); int cFrame = vUsedFrame[iFrame] % max_nFrames; CvMat *P = cvCreateMat(3,4, CV_32FC1); for (int iP = 0; iP < 3; iP++) for (int jP = 0; jP < 4; jP++) cvSetReal2D(P, iP, jP, ((AdditionalData *) adata)->vdP[12*iFrame+iP*4+jP]); double dt = rt[0]; double t = (double)cFrame + dt; CvMat *B = cvCreateMat(1, nBase, CV_32FC1); cvSetReal2D(B, 0, 0, sqrt(1.0/(double)max_nFrames)); for (int iB = 1; iB < nBase; iB++) cvSetReal2D(B, 0, iB, sqrt(2.0/(double)max_nFrames)*cos((2*t-1)*(iB)*PI/2.0/(double)max_nFrames)); CvMat *thetaX = cvCreateMat(nBase,1, CV_32FC1); CvMat *thetaY = cvCreateMat(nBase,1, CV_32FC1); CvMat *thetaZ = cvCreateMat(nBase,1, CV_32FC1); for (int iTheta = 0; iTheta < nBase; iTheta++) cvSetReal2D(thetaX, iTheta, 0, xyz[iTheta]); for (int iTheta = 0; iTheta < nBase; iTheta++) cvSetReal2D(thetaY, iTheta, 0, xyz[nBase+iTheta]); for (int iTheta = 0; iTheta < nBase; iTheta++) cvSetReal2D(thetaZ, iTheta, 0, xyz[2*nBase+iTheta]); CvMat *X3 = cvCreateMat(1,1,CV_32FC1); CvMat *Y3 = cvCreateMat(1,1,CV_32FC1); CvMat *Z3 = cvCreateMat(1,1,CV_32FC1); cvMatMul(B, thetaX, X3); cvMatMul(B, thetaY, Y3); cvMatMul(B, thetaZ, Z3); CvMat *X = cvCreateMat(4,1,CV_32FC1); cvSetReal2D(X, 0, 0, cvGetReal2D(X3,0,0)); cvSetReal2D(X, 1, 0, cvGetReal2D(Y3,0,0)); cvSetReal2D(X, 2, 0, cvGetReal2D(Z3,0,0)); cvSetReal2D(X, 3, 0, 1); CvMat *x = cvCreateMat(3,1,CV_32FC1); cvMatMul(P, X, x); double pm_x = cvGetReal2D(x, 0, 0)/cvGetReal2D(x, 2, 0); double pm_y = cvGetReal2D(x, 1, 0)/cvGetReal2D(x, 2, 0); double m_x = measurements[2*(iFeature*vUsedFrame.size()+iFrame)]; double m_y = measurements[2*(iFeature*vUsedFrame.size()+iFrame)+1]; //hx[2*(iFeature*vUsedFrame.size()+iFrame)] = (pm_x-m_x)*(pm_x-m_x); //hx[2*(iFeature*vUsedFrame.size()+iFrame)+1] = (pm_y-m_y)*(pm_y-m_y); hx[2*(iFeature*vUsedFrame.size()+iFrame)] = pm_x/1e-6; hx[2*(iFeature*vUsedFrame.size()+iFrame)+1] = pm_y/1e-6; cvReleaseMat(&X); cvReleaseMat(&x); cvReleaseMat(&P); cvReleaseMat(&B); cvReleaseMat(&thetaX); cvReleaseMat(&thetaY); cvReleaseMat(&thetaZ); cvReleaseMat(&X3); cvReleaseMat(&Y3); cvReleaseMat(&Z3); } int error = 0; for (int iBase = 0; iBase < nBase; iBase++) { error += (xyz[iBase]-vTheta[iFeature].thetaX[iBase])*(xyz[iBase]-vTheta[iFeature].thetaX[iBase]); } for (int iBase = 0; iBase < nBase; iBase++) { error += (xyz[nBase+iBase]-vTheta[iFeature].thetaY[iBase])*(xyz[nBase+iBase]-vTheta[iFeature].thetaY[iBase]); } for (int iBase = 0; iBase < nBase; iBase++) { error += (xyz[2*nBase+iBase]-vTheta[iFeature].thetaZ[iBase])*(xyz[2*nBase+iBase]-vTheta[iFeature].thetaZ[iBase]); } hx[2*(nFeatures*vUsedFrame.size())+iFeature] = 0.0;//error/10; } //for (int i = 0; i < n; i++) // cout << hx[i] << " "; //cout << endl; } void ProjectionThetaonto2D_MOTSTR_LEVMAR(float *p, float *hx, int m, int n, void *adata_) { //for (int i = 0; i <n; i++) // hx[i] = 1; //return; //AdditionalData *adata = (AdditionalData *)adata_; //bool *isStatic = adata->isStatic; //int nFrames = adata->nFrames; //int nCameraParameters = adata->nCameraParameters; //int nImagePointParameters = adata->nImagePointPrameraters; //int nBase = adata->nBase; //int nFeature_static = adata->nFeature_static; //float *XYZ = p + nCameraParameters*nFrames; //float *rt; //float *xij; //int last = 0; ////for (int iFeature = 0; iFeature < ((AdditionalData*)adata_)->visibilityMask->rows; iFeature++) ////{ //// for (int iFrame = 0; iFrame < ((AdditionalData*)adata_)->visibilityMask->cols; iFrame++) //// { //// if (cvGetReal2D(((AdditionalData*)adata_)->visibilityMask, iFeature, iFrame)) //// { //// if (isStatic[iFeature]) //// { //// float x, y; //// //xij = hx + nImagePointParameters*last; //// rt = p + iFrame*nCameraParameters; //// XYZ = p + nFrames*nCameraParameters + iFeature*3; //// ProjectionThetaonto2D_MOTSTR_LEVMAR(iFrame, iFeature, (double*)rt, (double*)XYZ, (double)x, (double)y, adata); //// hx[nImagePointParameters*last] = 0; //// hx[nImagePointParameters*last+1] = 0; //// last++; //// } //// else //// { //// float x, y; //// //xij = hx + nImagePointParameters*last; //// rt = p + iFrame*nCameraParameters; //// XYZ = p + nFrames*nCameraParameters + nFeature_static*3 + (iFeature-nFeature_static)*3*nBase; //// ProjectionThetaonto2D_MOTSTR_LEVMAR(iFrame, iFeature, (double*)rt, (double*)XYZ, (double)x, (double)y, adata); //// hx[nImagePointParameters*last] = 0; //// hx[nImagePointParameters*last+1] = 0; //// last++; //// } //// } //// } ////} } void ProjectionThetaonto2D_MOTSTR_x(double *p, struct sba_crsm *idxij, int *rcidxs, int *rcsubs, double *hx, void *adata) { //int i, j; //int cnp, pnp, mnp; //double *pa, *pb, *pqr, *pt, *ppt, *pmeas, *Kparms, *pr0, lrot[4], trot[4]; ////int n; //int m, nnz; //AdditionalData *gl; //gl= (AdditionalData *)adata; //cnp=gl->nCameraParameters; //mnp=gl->nImagePointPrameraters; ////n=idxij->nr; //m=idxij->nc; //pa=p; // Pointer for camera //pb=p+m*cnp; // Point for xyz //for(j=0; j<m; ++j) //{ // /* j-th camera parameters */ // double *rt = pa + j*cnp; // double *xyz; // nnz=sba_crsm_col_elmidxs(idxij, j, rcidxs, rcsubs); /* find nonzero hx_ij, i=0...n-1 */ // for(i=0; i<nnz; ++i) // { // if (gl->isStatic[i]) // { // xyz = pb + rcsubs[i]*3; // } // else // { // xyz = pb + gl->nFeature_static*3 + (rcsubs[i]-gl->nFeature_static)*3*gl->nBase; // } // double *xij = hx + idxij->val[rcidxs[i]]*mnp; // set pmeas to point to hx_ij // ProjectionThetaonto2D_MOTSTR(j, i, rt, xyz, xij, adata); // //calcImgProjFullR(Kparms, trot, pt, ppt, pmeas); // evaluate Q in pmeas // //calcImgProj(Kparms, pr0, pqr, pt, ppt, pmeas); // evaluate Q in pmeas // } //} } void PrintSBAInfo(double *info) { cout << "SBA result -------" << endl; cout << "Mean squared reprojection error: " << info[0] << " ==> " << info[1] << endl; cout << "Total number of iteration: " << info[5] << endl; cout << "Reason for terminating: "; if (info[6] == 1) cout << "Stopped by small ||J^T e||" <<endl; else if (info[6] == 2) cout << "Stopped by small ||delta||" << endl; else if (info[6] == 3) cout << "Stopped by maximum iteration" << endl; else if (info[6] == 4) cout << "Stopped by small relative reduction in ||e||" << endl; else if (info[6] == 5) cout << "Stopped by small ||e||" << endl; else if (info[6] == 6) cout << "Stopped due to excessive failed attempts to increase damping for getting a positive definite normal equations" << endl; else if (info[6] == 7) cout << "Stopped due to infinite values in the coordinates of the set of predicted projections x" << endl; cout << "Total number of projection function evaluation: " << info[7] <<endl; cout << "Total number of times that normal equations were solved: " << info[9] << endl; } void PrintSBAInfo(double *info, int nVisiblePoints) { cout << "SBA result -------" << endl; cout << "Mean squared reprojection error: " << info[0]/(double)nVisiblePoints << " ==> " << info[1]/(double)nVisiblePoints << endl; cout << "Total number of iteration: " << info[5] << endl; cout << "Reason for terminating: "; if (info[6] == 1) cout << "Stopped by small ||J^T e||" <<endl; else if (info[6] == 2) cout << "Stopped by small ||delta||" << endl; else if (info[6] == 3) cout << "Stopped by maximum iteration" << endl; else if (info[6] == 4) cout << "Stopped by small relative reduction in ||e||" << endl; else if (info[6] == 5) cout << "Stopped by small ||e||" << endl; else if (info[6] == 6) cout << "Stopped due to excessive failed attempts to increase damping for getting a positive definite normal equations" << endl; else if (info[6] == 7) cout << "Stopped due to infinite values in the coordinates of the set of predicted projections x" << endl; cout << "Total number of projection function evaluation: " << info[7] <<endl; cout << "Total number of times that normal equations were solved: " << info[9] << endl; } void RetrieveParameterFromSBA(double *dCameraParameter, CvMat *K, vector<CvMat *> &cP, CvMat *X, vector<int> visibleStructureID) { int nFrames = cP.size(); cP.clear(); CvMat *P; for (int iFrame = 0; iFrame < nFrames; iFrame++) { CvMat *q = cvCreateMat(4,1,CV_32FC1); CvMat *C = cvCreateMat(3,1,CV_32FC1); cvSetReal2D(q, 0, 0, dCameraParameter[7*iFrame]); cvSetReal2D(q, 1, 0, dCameraParameter[7*iFrame+1]); cvSetReal2D(q, 2, 0, dCameraParameter[7*iFrame+2]); cvSetReal2D(q, 3, 0, dCameraParameter[7*iFrame+3]); cvSetReal2D(C, 0, 0, dCameraParameter[7*iFrame+4]); cvSetReal2D(C, 1, 0, dCameraParameter[7*iFrame+5]); cvSetReal2D(C, 2, 0, dCameraParameter[7*iFrame+6]); CvMat *R = cvCreateMat(3,3,CV_32FC1); CvMat *P_ = cvCreateMat(3,4,CV_32FC1); P = cvCreateMat(3,4,CV_32FC1); Quaternion2Rotation(q, R); CreateCameraMatrix(R, C, K, P_); P = cvCloneMat(P_); cP.push_back(P); cvReleaseMat(&q); cvReleaseMat(&C); cvReleaseMat(&R); cvReleaseMat(&P_); } P = cvCreateMat(3,4,CV_32FC1); cvReleaseMat(&P); CvMat *X_ = cvCreateMat(visibleStructureID.size(), 3, CV_32FC1); for (int iFeature = 0; iFeature < visibleStructureID.size(); iFeature++) { cvSetReal2D(X_, iFeature, 0, dCameraParameter[7*cP.size()+3*iFeature]); cvSetReal2D(X_, iFeature, 1, dCameraParameter[7*cP.size()+3*iFeature+1]); cvSetReal2D(X_, iFeature, 2, dCameraParameter[7*cP.size()+3*iFeature+2]); } SetIndexedMatRowwise(X, visibleStructureID, X_); } void RetrieveParameterFromSBA_mem(double *dCameraParameter, vector<Camera> vCamera, vector<CvMat *> &cP, CvMat *X, vector<int> visibleStructureID, vector<int> vUsedFrame, int max_nFrames) { int nFrames = cP.size(); for (int i = 0; i < cP.size(); i++) cvReleaseMat(&(cP[i])); cP.clear(); for (int iFrame = 0; iFrame < nFrames; iFrame++) { int frame = vUsedFrame[iFrame]%max_nFrames; int cam = (int) vUsedFrame[iFrame]/max_nFrames; CvMat *q = cvCreateMat(4,1,CV_32FC1); CvMat *C = cvCreateMat(3,1,CV_32FC1); cvSetReal2D(q, 0, 0, dCameraParameter[7*iFrame]); cvSetReal2D(q, 1, 0, dCameraParameter[7*iFrame+1]); cvSetReal2D(q, 2, 0, dCameraParameter[7*iFrame+2]); cvSetReal2D(q, 3, 0, dCameraParameter[7*iFrame+3]); cvSetReal2D(C, 0, 0, dCameraParameter[7*iFrame+4]); cvSetReal2D(C, 1, 0, dCameraParameter[7*iFrame+5]); cvSetReal2D(C, 2, 0, dCameraParameter[7*iFrame+6]); CvMat *R = cvCreateMat(3,3,CV_32FC1); CvMat *P = cvCreateMat(3,4,CV_32FC1); Quaternion2Rotation(q, R); CreateCameraMatrix(R, C, vCamera[cam].vK[frame], P); cP.push_back(P); cvReleaseMat(&q); cvReleaseMat(&C); cvReleaseMat(&R); } CvMat *X_ = cvCreateMat(visibleStructureID.size(), 3, CV_32FC1); for (int iFeature = 0; iFeature < visibleStructureID.size(); iFeature++) { cvSetReal2D(X_, iFeature, 0, dCameraParameter[7*cP.size()+3*iFeature]); cvSetReal2D(X_, iFeature, 1, dCameraParameter[7*cP.size()+3*iFeature+1]); cvSetReal2D(X_, iFeature, 2, dCameraParameter[7*cP.size()+3*iFeature+2]); } SetIndexedMatRowwise(X, visibleStructureID, X_); cvReleaseMat(&X_); } void RetrieveParameterFromSBA(double *dCameraParameter, vector<Camera> vCamera, vector<CvMat *> &cP, CvMat *X, vector<int> visibleStructureID, vector<int> vUsedFrame, int max_nFrames) { int nFrames = cP.size(); cP.clear(); for (int iFrame = 0; iFrame < nFrames; iFrame++) { int frame = vUsedFrame[iFrame]%max_nFrames; int cam = (int) vUsedFrame[iFrame]/max_nFrames; CvMat *q = cvCreateMat(4,1,CV_32FC1); CvMat *C = cvCreateMat(3,1,CV_32FC1); cvSetReal2D(q, 0, 0, dCameraParameter[7*iFrame]); cvSetReal2D(q, 1, 0, dCameraParameter[7*iFrame+1]); cvSetReal2D(q, 2, 0, dCameraParameter[7*iFrame+2]); cvSetReal2D(q, 3, 0, dCameraParameter[7*iFrame+3]); cvSetReal2D(C, 0, 0, dCameraParameter[7*iFrame+4]); cvSetReal2D(C, 1, 0, dCameraParameter[7*iFrame+5]); cvSetReal2D(C, 2, 0, dCameraParameter[7*iFrame+6]); CvMat *R = cvCreateMat(3,3,CV_32FC1); CvMat *P = cvCreateMat(3,4,CV_32FC1); Quaternion2Rotation(q, R); CreateCameraMatrix(R, C, vCamera[cam].K, P); cP.push_back(P); cvReleaseMat(&q); cvReleaseMat(&C); cvReleaseMat(&R); } CvMat *X_ = cvCreateMat(visibleStructureID.size(), 3, CV_32FC1); for (int iFeature = 0; iFeature < visibleStructureID.size(); iFeature++) { cvSetReal2D(X_, iFeature, 0, dCameraParameter[7*cP.size()+3*iFeature]); cvSetReal2D(X_, iFeature, 1, dCameraParameter[7*cP.size()+3*iFeature+1]); cvSetReal2D(X_, iFeature, 2, dCameraParameter[7*cP.size()+3*iFeature+2]); } SetIndexedMatRowwise(X, visibleStructureID, X_); cvReleaseMat(&X_); } void RetrieveParameterFromSBA_KRT(double *dCameraParameter, vector<Camera> vCamera, vector<CvMat *> &cP, CvMat *X, vector<int> visibleStructureID, vector<int> vUsedFrame, int max_nFrames) { int nFrames = cP.size(); cP.clear(); CvMat *P; for (int iFrame = 0; iFrame < nFrames; iFrame++) { int frame = vUsedFrame[iFrame]%max_nFrames; int cam = (int) vUsedFrame[iFrame]/max_nFrames; CvMat *q = cvCreateMat(4,1,CV_32FC1); CvMat *C = cvCreateMat(3,1,CV_32FC1); cvSetReal2D(q, 0, 0, dCameraParameter[11*iFrame]); cvSetReal2D(q, 1, 0, dCameraParameter[11*iFrame+1]); cvSetReal2D(q, 2, 0, dCameraParameter[11*iFrame+2]); cvSetReal2D(q, 3, 0, dCameraParameter[11*iFrame+3]); cvSetReal2D(C, 0, 0, dCameraParameter[11*iFrame+4]); cvSetReal2D(C, 1, 0, dCameraParameter[11*iFrame+5]); cvSetReal2D(C, 2, 0, dCameraParameter[11*iFrame+6]); vector<int>::const_iterator it = find(vCamera[cam].vTakenFrame.begin(), vCamera[cam].vTakenFrame.end(), frame); if (it == vCamera[cam].vTakenFrame.end()) return; int iTakenFrame = (int) (it - vCamera[cam].vTakenFrame.begin()); cvSetReal2D(vCamera[cam].vK[iTakenFrame], 0, 0, dCameraParameter[11*iFrame+7]); cvSetReal2D(vCamera[cam].vK[iTakenFrame], 1, 1, dCameraParameter[11*iFrame+8]); cvSetReal2D(vCamera[cam].vK[iTakenFrame], 0, 2, dCameraParameter[11*iFrame+9]); cvSetReal2D(vCamera[cam].vK[iTakenFrame], 1, 2, dCameraParameter[11*iFrame+10]); CvMat *R = cvCreateMat(3,3,CV_32FC1); CvMat *P_ = cvCreateMat(3,4,CV_32FC1); P = cvCreateMat(3,4,CV_32FC1); Quaternion2Rotation(q, R); CreateCameraMatrix(R, C, vCamera[cam].vK[iTakenFrame], P_); P = cvCloneMat(P_); cP.push_back(P); cvReleaseMat(&q); cvReleaseMat(&C); cvReleaseMat(&R); cvReleaseMat(&P_); } P = cvCreateMat(3,4,CV_32FC1); cvReleaseMat(&P); CvMat *X_ = cvCreateMat(visibleStructureID.size(), 3, CV_32FC1); for (int iFeature = 0; iFeature < visibleStructureID.size(); iFeature++) { cvSetReal2D(X_, iFeature, 0, dCameraParameter[11*cP.size()+3*iFeature]); cvSetReal2D(X_, iFeature, 1, dCameraParameter[11*cP.size()+3*iFeature+1]); cvSetReal2D(X_, iFeature, 2, dCameraParameter[11*cP.size()+3*iFeature+2]); } SetIndexedMatRowwise(X, visibleStructureID, X_); cvReleaseMat(&X_); } void RetrieveParameterFromSBA_TEMPORAL(double *dCameraParameter, vector<Camera> &vCamera, vector<Theta> &vTheta) { int cFrame = 0; for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) { for (int iFrame = 0; iFrame < vCamera[iCamera].vTakenFrame.size(); iFrame++) { vCamera[iCamera].vTakenInstant.push_back(vCamera[iCamera].vTakenFrame[iFrame]+dCameraParameter[cFrame]); cout << vCamera[iCamera].vTakenFrame[iFrame]+dCameraParameter[cFrame] << " "; cFrame++; } } for (int iTheta = 0; iTheta < vTheta.size(); iTheta++) { Theta theta; theta = vTheta[iTheta]; theta.thetaX.clear(); theta.thetaY.clear(); theta.thetaZ.clear(); for (int i = 0; i < vTheta[0].thetaX.size(); i++) { theta.thetaX.push_back(dCameraParameter[cFrame]); cFrame++; } for (int i = 0; i < vTheta[0].thetaX.size(); i++) { theta.thetaY.push_back(dCameraParameter[cFrame]); cFrame++; } for (int i = 0; i < vTheta[0].thetaX.size(); i++) { theta.thetaZ.push_back(dCameraParameter[cFrame]); cFrame++; } vTheta[iTheta] = theta; } } void RetrieveParameterFromSBA_KDRT(double *dCameraParameter, vector<Camera> vCamera, vector<CvMat *> &cP, CvMat *X, vector<int> visibleStructureID, vector<int> vUsedFrame, int max_nFrames) { int nFrames = cP.size(); cP.clear(); CvMat *P; for (int iFrame = 0; iFrame < nFrames; iFrame++) { int frame = vUsedFrame[iFrame]%max_nFrames; int cam = (int) vUsedFrame[iFrame]/max_nFrames; CvMat *q = cvCreateMat(4,1,CV_32FC1); CvMat *C = cvCreateMat(3,1,CV_32FC1); cvSetReal2D(q, 0, 0, dCameraParameter[13*iFrame]); cvSetReal2D(q, 1, 0, dCameraParameter[13*iFrame+1]); cvSetReal2D(q, 2, 0, dCameraParameter[13*iFrame+2]); cvSetReal2D(q, 3, 0, dCameraParameter[13*iFrame+3]); cvSetReal2D(C, 0, 0, dCameraParameter[13*iFrame+4]); cvSetReal2D(C, 1, 0, dCameraParameter[13*iFrame+5]); cvSetReal2D(C, 2, 0, dCameraParameter[13*iFrame+6]); vector<int>::const_iterator it = find(vCamera[cam].vTakenFrame.begin(), vCamera[cam].vTakenFrame.end(), frame); if (it == vCamera[cam].vTakenFrame.end()) return; int iTakenFrame = (int) (it - vCamera[cam].vTakenFrame.begin()); cvSetReal2D(vCamera[cam].vK[iTakenFrame], 0, 0, dCameraParameter[13*iFrame+7]); cvSetReal2D(vCamera[cam].vK[iTakenFrame], 1, 1, dCameraParameter[13*iFrame+8]); cvSetReal2D(vCamera[cam].vK[iTakenFrame], 0, 2, dCameraParameter[13*iFrame+9]); cvSetReal2D(vCamera[cam].vK[iTakenFrame], 1, 2, dCameraParameter[13*iFrame+10]); vCamera[cam].vk1[iTakenFrame] = dCameraParameter[13*iFrame+11]; vCamera[cam].vk2[iTakenFrame] = dCameraParameter[13*iFrame+12]; CvMat *R = cvCreateMat(3,3,CV_32FC1); CvMat *P_ = cvCreateMat(3,4,CV_32FC1); P = cvCreateMat(3,4,CV_32FC1); Quaternion2Rotation(q, R); CreateCameraMatrix(R, C, vCamera[cam].vK[iTakenFrame], P_); P = cvCloneMat(P_); cP.push_back(P); cvReleaseMat(&q); cvReleaseMat(&C); cvReleaseMat(&R); cvReleaseMat(&P_); } P = cvCreateMat(3,4,CV_32FC1); cvReleaseMat(&P); CvMat *X_ = cvCreateMat(visibleStructureID.size(), 3, CV_32FC1); for (int iFeature = 0; iFeature < visibleStructureID.size(); iFeature++) { cvSetReal2D(X_, iFeature, 0, dCameraParameter[13*cP.size()+3*iFeature]); cvSetReal2D(X_, iFeature, 1, dCameraParameter[13*cP.size()+3*iFeature+1]); cvSetReal2D(X_, iFeature, 2, dCameraParameter[13*cP.size()+3*iFeature+2]); } SetIndexedMatRowwise(X, visibleStructureID, X_); cvReleaseMat(&X_); } void RetrieveParameterFromGBA(double *dCameraParameter, CvMat *K, vector<Camera> &vCamera, vector<Theta> &vTheta, int nFrames) { CvMat *P; for (int cFrame = 0; cFrame < nFrames*vCamera.size(); cFrame++) { int iFrame = cFrame % nFrames; int iCamera = (int) cFrame / nFrames; vector<int>::const_iterator it = find(vCamera[iCamera].vTakenFrame.begin(), vCamera[iCamera].vTakenFrame.end(), iFrame); if (it == vCamera[iCamera].vTakenFrame.end()) continue; CvMat *q = cvCreateMat(4,1,CV_32FC1); CvMat *C = cvCreateMat(3,1,CV_32FC1); cvSetReal2D(q, 0, 0, dCameraParameter[7*cFrame]); cvSetReal2D(q, 1, 0, dCameraParameter[7*cFrame+1]); cvSetReal2D(q, 2, 0, dCameraParameter[7*cFrame+2]); cvSetReal2D(q, 3, 0, dCameraParameter[7*cFrame+3]); cvSetReal2D(C, 0, 0, dCameraParameter[7*cFrame+4]); cvSetReal2D(C, 1, 0, dCameraParameter[7*cFrame+5]); cvSetReal2D(C, 2, 0, dCameraParameter[7*cFrame+6]); CvMat *R = cvCreateMat(3,3,CV_32FC1); CvMat *P_ = cvCreateMat(3,4,CV_32FC1); P = cvCreateMat(3,4,CV_32FC1); Quaternion2Rotation(q, R); CreateCameraMatrix(R, C, K, P_); P = cvCloneMat(P_); int idx = (int) (it - vCamera[iCamera].vTakenFrame.begin()); vCamera[iCamera].vP[idx] = P; cvReleaseMat(&q); cvReleaseMat(&C); cvReleaseMat(&R); cvReleaseMat(&P_); } P = cvCreateMat(3,4,CV_32FC1); cvReleaseMat(&P); CvMat *A = cvCreateMat(nFrames, nFrames, CV_32FC1); GetDCTMappingMatrix(A, nFrames); CvMat *A1 = cvCreateMat(1, nFrames, CV_32FC1); GetSubMatRowwise(A, 0, 0, A1); for (int iTheta = 0; iTheta < vTheta.size(); iTheta++) { int nBase = vTheta[iTheta].thetaX.size(); if (vTheta[iTheta].isStatic) { CvMat *X = cvCreateMat(nFrames, 1, CV_32FC1); CvMat *theta1 = cvCreateMat(1,1,CV_32FC1); for (int iX = 0; iX < nFrames; iX++) { cvSetReal2D(X, iX, 0, dCameraParameter[7*nFrames*vCamera.size()+3*(1+nBase)*iTheta]); } cvMatMul(A1, X, theta1); vTheta[iTheta].thetaX[0] = cvGetReal2D(theta1, 0, 0); for (int iBase = 1; iBase < nBase; iBase++) vTheta[iTheta].thetaX[iBase] = 0; for (int iX = 0; iX < nFrames; iX++) { cvSetReal2D(X, iX, 0, dCameraParameter[7*nFrames*vCamera.size()+3*(1+nBase)*iTheta+1]); } cvMatMul(A1, X, theta1); vTheta[iTheta].thetaY[0] = cvGetReal2D(theta1, 0, 0); for (int iBase = 1; iBase < nBase; iBase++) vTheta[iTheta].thetaY[iBase] = 0; for (int iX = 0; iX < nFrames; iX++) { cvSetReal2D(X, iX, 0, dCameraParameter[7*nFrames*vCamera.size()+3*(1+nBase)*iTheta+2]); } cvMatMul(A1, X, theta1); vTheta[iTheta].thetaZ[0] = cvGetReal2D(theta1, 0, 0); for (int iBase = 1; iBase < nBase; iBase++) vTheta[iTheta].thetaZ[iBase] = 0; } else { for (int iBase = 0; iBase < nBase; iBase++) vTheta[iTheta].thetaX[iBase] = dCameraParameter[7*nFrames*vCamera.size()+3*(1+nBase)*iTheta+3+iBase]; for (int iBase = 0; iBase < nBase; iBase++) vTheta[iTheta].thetaY[iBase] = dCameraParameter[7*nFrames*vCamera.size()+3*(1+nBase)*iTheta+3+nBase+iBase]; for (int iBase = 0; iBase < nBase; iBase++) vTheta[iTheta].thetaZ[iBase] = dCameraParameter[7*nFrames*vCamera.size()+3*(1+nBase)*iTheta+3+2*nBase+iBase]; } } } void Projection3Donto2D_MOTSTR(int j, int i, double *rt, double *xyz, double *xij, void *adata) { CvMat *K = cvCreateMat(3,3,CV_32FC1); cvSetIdentity(K); int max_nFrames = ((AdditionalData *) adata)->max_nFrames; vector<int> vUsedFrame = ((AdditionalData *) adata)->vUsedFrame; int iCamera = (int)((double)vUsedFrame[j]/max_nFrames); //double *intrinsic = (((AdditionalData *) adata)->vIntrinsic)[iCamera]; cvSetReal2D(K, 0, 0, ((((AdditionalData *) adata)->vIntrinsic)[iCamera])[0]); cvSetReal2D(K, 1, 1, ((((AdditionalData *) adata)->vIntrinsic)[iCamera])[1]); cvSetReal2D(K, 0, 2, ((((AdditionalData *) adata)->vIntrinsic)[iCamera])[2]); cvSetReal2D(K, 1, 2, ((((AdditionalData *) adata)->vIntrinsic)[iCamera])[3]); CvMat *q = cvCreateMat(4,1,CV_32FC1); CvMat *C = cvCreateMat(3,1,CV_32FC1); CvMat *R = cvCreateMat(3,3,CV_32FC1); cvSetReal2D(q, 0, 0, rt[0]); cvSetReal2D(q, 1, 0, rt[1]); cvSetReal2D(q, 2, 0, rt[2]); cvSetReal2D(q, 3, 0, rt[3]); cvSetReal2D(C, 0, 0, rt[4]); cvSetReal2D(C, 1, 0, rt[5]); cvSetReal2D(C, 2, 0, rt[6]); Quaternion2Rotation(q, R); CvMat *temp33 = cvCreateMat(3,3,CV_32FC1); CvMat *P = cvCreateMat(3,4,CV_32FC1); cvMatMul(K, R, temp33); cvSetIdentity(P); ScalarMul(C, -1, C); SetSubMat(P, 0,3,C); cvMatMul(temp33, P, P); CvMat *X = cvCreateMat(4,1,CV_32FC1); cvSetReal2D(X, 0, 0, xyz[0]); cvSetReal2D(X, 1, 0, xyz[1]); cvSetReal2D(X, 2, 0, xyz[2]); cvSetReal2D(X, 3, 0, 1); CvMat *x = cvCreateMat(3,1,CV_32FC1); cvMatMul(P, X, x); if (j == 1) int k = 1; xij[0] = cvGetReal2D(x, 0, 0)/cvGetReal2D(x, 2, 0); xij[1] = cvGetReal2D(x, 1, 0)/cvGetReal2D(x, 2, 0); cvReleaseMat(&K); cvReleaseMat(&X); cvReleaseMat(&x); cvReleaseMat(&P); cvReleaseMat(&temp33); cvReleaseMat(&q); cvReleaseMat(&C); cvReleaseMat(&R); } void Projection3Donto2D_MOTSTR_fast(int j, int i, double *rt, double *xyz, double *xij, void *adata) { int max_nFrames = ((AdditionalData *) adata)->max_nFrames; vector<int> vUsedFrame = ((AdditionalData *) adata)->vUsedFrame; int iCamera = (int)((double)vUsedFrame[j]/max_nFrames); int iFrame = vUsedFrame[j] % max_nFrames; if (j == 1) int k = 1; // Set intrinsic parameter double K11 = ((((AdditionalData *) adata)->vIntrinsic)[iFrame])[0]; double K12 = 0; double K13 = ((((AdditionalData *) adata)->vIntrinsic)[iFrame])[2]; double K21 = 0; double K22 = ((((AdditionalData *) adata)->vIntrinsic)[iFrame])[1]; double K23 = ((((AdditionalData *) adata)->vIntrinsic)[iFrame])[3]; double K31 = 0; double K32 = 0; double K33 = 1; // Set orientation double qw = rt[0]; double qx = rt[1]; double qy = rt[2]; double qz = rt[3]; double q_norm = sqrt(qw*qw + qx*qx + qy*qy + qz*qz); qw /= q_norm; qx /= q_norm; qy /= q_norm; qz /= q_norm; double R11 = 1.0-2*qy*qy-2*qz*qz; double R12 = 2*qx*qy-2*qz*qw; double R13 = 2*qx*qz+2*qy*qw; double R21 = 2*qx*qy+2*qz*qw; double R22 = 1.0-2*qx*qx-2*qz*qz; double R23 = 2*qz*qy-2*qx*qw; double R31 = 2*qx*qz-2*qy*qw; double R32 = 2*qy*qz+2*qx*qw; double R33 = 1.0-2*qx*qx-2*qy*qy; //cout << R11 << " " << R12 << " " << R13 << endl; //cout << R21 << " " << R22 << " " << R23 << endl; //cout << R31 << " " << R32 << " " << R33 << endl; // Set translation double C1 = rt[4]; double C2 = rt[5]; double C3 = rt[6]; double X1 = xyz[0]; double X2 = xyz[1]; double X3 = xyz[2]; // Building projection double RX1 = R11*X1+R12*X2+R13*X3; double RX2 = R21*X1+R22*X2+R23*X3; double RX3 = R31*X1+R32*X2+R33*X3; double KRX1 = K11*RX1+K12*RX2+K13*RX3; double KRX2 = K21*RX1+K22*RX2+K23*RX3; double KRX3 = K31*RX1+K32*RX2+K33*RX3; double RC1 = R11*C1+R12*C2+R13*C3; double RC2 = R21*C1+R22*C2+R23*C3; double RC3 = R31*C1+R32*C2+R33*C3; double KRC1 = K11*RC1+K12*RC2+K13*RC3; double KRC2 = K21*RC1+K22*RC2+K23*RC3; double KRC3 = K31*RC1+K32*RC2+K33*RC3; double proj1 = KRX1-KRC1; double proj2 = KRX2-KRC2; double proj3 = KRX3-KRC3; xij[0] = proj1/proj3; xij[1] = proj2/proj3; } void Projection3Donto2D_MOTSTR_fast_Distortion(int j, int i, double *rt, double *xyz, double *xij, void *adata) { int max_nFrames = ((AdditionalData *) adata)->max_nFrames; vector<int> vUsedFrame = ((AdditionalData *) adata)->vUsedFrame; int iCamera = (int)((double)vUsedFrame[j]/max_nFrames); double omega = ((((AdditionalData *) adata)->vIntrinsic)[iCamera])[4]; double tan_omega_half_2 = ((((AdditionalData *) adata)->vIntrinsic)[iCamera])[5]; if (j == 1) int k = 1; if (j == 2) int k = 1; // Set intrinsic parameter double K11 = ((((AdditionalData *) adata)->vIntrinsic)[iCamera])[0]; double K12 = 0; double K13 = ((((AdditionalData *) adata)->vIntrinsic)[iCamera])[2]; double K21 = 0; double K22 = ((((AdditionalData *) adata)->vIntrinsic)[iCamera])[1]; double K23 = ((((AdditionalData *) adata)->vIntrinsic)[iCamera])[3]; double K31 = 0; double K32 = 0; double K33 = 1; // Set orientation double qw = rt[0]; double qx = rt[1]; double qy = rt[2]; double qz = rt[3]; double q_norm = sqrt(qw*qw + qx*qx + qy*qy + qz*qz); qw /= q_norm; qx /= q_norm; qy /= q_norm; qz /= q_norm; double R11 = 1.0-2*qy*qy-2*qz*qz; double R12 = 2*qx*qy-2*qz*qw; double R13 = 2*qx*qz+2*qy*qw; double R21 = 2*qx*qy+2*qz*qw; double R22 = 1.0-2*qx*qx-2*qz*qz; double R23 = 2*qz*qy-2*qx*qw; double R31 = 2*qx*qz-2*qy*qw; double R32 = 2*qy*qz+2*qx*qw; double R33 = 1.0-2*qx*qx-2*qy*qy; //cout << R11 << " " << R12 << " " << R13 << endl; //cout << R21 << " " << R22 << " " << R23 << endl; //cout << R31 << " " << R32 << " " << R33 << endl; // Set translation double C1 = rt[4]; double C2 = rt[5]; double C3 = rt[6]; double X1 = xyz[0]; double X2 = xyz[1]; double X3 = xyz[2]; // Building projection double RX1 = R11*X1+R12*X2+R13*X3; double RX2 = R21*X1+R22*X2+R23*X3; double RX3 = R31*X1+R32*X2+R33*X3; double KRX1 = K11*RX1+K12*RX2+K13*RX3; double KRX2 = K21*RX1+K22*RX2+K23*RX3; double KRX3 = K31*RX1+K32*RX2+K33*RX3; double RC1 = R11*C1+R12*C2+R13*C3; double RC2 = R21*C1+R22*C2+R23*C3; double RC3 = R31*C1+R32*C2+R33*C3; double KRC1 = K11*RC1+K12*RC2+K13*RC3; double KRC2 = K21*RC1+K22*RC2+K23*RC3; double KRC3 = K31*RC1+K32*RC2+K33*RC3; double proj1 = KRX1-KRC1; double proj2 = KRX2-KRC2; double proj3 = KRX3-KRC3; double u = proj1/proj3; double v = proj2/proj3; double u_n = u/K11 - K13/K11; double v_n = v/K22 - K23/K22; double r_u = sqrt(u_n*u_n+v_n*v_n); double r_d = 1/omega*atan(r_u*tan_omega_half_2); double u_d_n = r_d/r_u * u_n; double v_d_n = r_d/r_u * v_n; double u_d = u_d_n*K11 + K13; double v_d = v_d_n*K22 + K23; xij[0] = u_d; xij[1] = v_d; } void Projection3Donto2D_MOTSTR_fast_Distortion_ObstacleDetection(int j, int i, double *rt, double *xyz, double *xij, void *adata) { int max_nFrames = ((AdditionalData *) adata)->max_nFrames; vector<int> vUsedFrame = ((AdditionalData *) adata)->vUsedFrame; int iCamera = (int)((double)vUsedFrame[j]/max_nFrames); double omega = ((((AdditionalData *) adata)->vIntrinsic)[iCamera])[4]; double tan_omega_half_2 = ((((AdditionalData *) adata)->vIntrinsic)[iCamera])[5]; double princ_x1 = ((((AdditionalData *) adata)->vIntrinsic)[iCamera])[6]; double princ_y1 = ((((AdditionalData *) adata)->vIntrinsic)[iCamera])[7]; // Set intrinsic parameter double K11 = ((((AdditionalData *) adata)->vIntrinsic)[iCamera])[0]; double K12 = 0; double K13 = ((((AdditionalData *) adata)->vIntrinsic)[iCamera])[2]; double K21 = 0; double K22 = ((((AdditionalData *) adata)->vIntrinsic)[iCamera])[1]; double K23 = ((((AdditionalData *) adata)->vIntrinsic)[iCamera])[3]; double K31 = 0; double K32 = 0; double K33 = 1; // Set orientation double qw = rt[0]; double qx = rt[1]; double qy = rt[2]; double qz = rt[3]; double q_norm = sqrt(qw*qw + qx*qx + qy*qy + qz*qz); qw /= q_norm; qx /= q_norm; qy /= q_norm; qz /= q_norm; double R11 = 1.0-2*qy*qy-2*qz*qz; double R12 = 2*qx*qy-2*qz*qw; double R13 = 2*qx*qz+2*qy*qw; double R21 = 2*qx*qy+2*qz*qw; double R22 = 1.0-2*qx*qx-2*qz*qz; double R23 = 2*qz*qy-2*qx*qw; double R31 = 2*qx*qz-2*qy*qw; double R32 = 2*qy*qz+2*qx*qw; double R33 = 1.0-2*qx*qx-2*qy*qy; //cout << R11 << " " << R12 << " " << R13 << endl; //cout << R21 << " " << R22 << " " << R23 << endl; //cout << R31 << " " << R32 << " " << R33 << endl; // Set translation double C1 = rt[4]; double C2 = rt[5]; double C3 = rt[6]; double X1 = xyz[0]; double X2 = xyz[1]; double X3 = xyz[2]; // Building projection double RX1 = R11*X1+R12*X2+R13*X3; double RX2 = R21*X1+R22*X2+R23*X3; double RX3 = R31*X1+R32*X2+R33*X3; double KRX1 = K11*RX1+K12*RX2+K13*RX3; double KRX2 = K21*RX1+K22*RX2+K23*RX3; double KRX3 = K31*RX1+K32*RX2+K33*RX3; double RC1 = R11*C1+R12*C2+R13*C3; double RC2 = R21*C1+R22*C2+R23*C3; double RC3 = R31*C1+R32*C2+R33*C3; double KRC1 = K11*RC1+K12*RC2+K13*RC3; double KRC2 = K21*RC1+K22*RC2+K23*RC3; double KRC3 = K31*RC1+K32*RC2+K33*RC3; double proj1 = KRX1-KRC1; double proj2 = KRX2-KRC2; double proj3 = KRX3-KRC3; double u = proj1/proj3; double v = proj2/proj3; //double u_n = u/K11 - K13/K11; //double v_n = v/K22 - K23/K22; double u_n = u - princ_x1; double v_n = v - princ_y1; double r_u = sqrt(u_n*u_n+v_n*v_n); double r_d = 1/omega*atan(r_u*tan_omega_half_2); double u_d_n = r_d/r_u * u_n; double v_d_n = r_d/r_u * v_n; double u_d = u_d_n + princ_x1; double v_d = v_d_n + princ_y1; xij[0] = u_d; xij[1] = v_d; } void Projection3Donto2D_KMOTSTR(int j, int i, double *rt, double *xyz, double *xij, void *adata) { CvMat *K = cvCreateMat(3,3,CV_32FC1); cvSetIdentity(K); //int max_nFrames = ((AdditionalData *) adata)->max_nFrames; //vector<int> vUsedFrame = ((AdditionalData *) adata)->vUsedFrame; //int iCamera = (int)((double)vUsedFrame[j]/max_nFrames); //double *intrinsic = (((AdditionalData *) adata)->vIntrinsic)[iCamera]; //cvSetReal2D(K, 0, 0, intrinsic[0]); //cvSetReal2D(K, 1, 1, intrinsic[1]); //cvSetReal2D(K, 0, 2, intrinsic[2]); //cvSetReal2D(K, 1, 2, intrinsic[3]); CvMat *q = cvCreateMat(4,1,CV_32FC1); CvMat *C = cvCreateMat(3,1,CV_32FC1); CvMat *R = cvCreateMat(3,3,CV_32FC1); cvSetReal2D(q, 0, 0, rt[0]); cvSetReal2D(q, 1, 0, rt[1]); cvSetReal2D(q, 2, 0, rt[2]); cvSetReal2D(q, 3, 0, rt[3]); cvSetReal2D(C, 0, 0, rt[4]); cvSetReal2D(C, 1, 0, rt[5]); cvSetReal2D(C, 2, 0, rt[6]); cvSetReal2D(K, 0, 0, rt[7]); cvSetReal2D(K, 1, 1, rt[8]); cvSetReal2D(K, 0, 2, rt[9]); cvSetReal2D(K, 1, 2, rt[10]); Quaternion2Rotation(q, R); CvMat *temp33 = cvCreateMat(3,3,CV_32FC1); CvMat *P = cvCreateMat(3,4,CV_32FC1); cvMatMul(K, R, temp33); cvSetIdentity(P); ScalarMul(C, -1, C); SetSubMat(P, 0,3,C); cvMatMul(temp33, P, P); CvMat *X = cvCreateMat(4,1,CV_32FC1); cvSetReal2D(X, 0, 0, xyz[0]); cvSetReal2D(X, 1, 0, xyz[1]); cvSetReal2D(X, 2, 0, xyz[2]); cvSetReal2D(X, 3, 0, 1); CvMat *x = cvCreateMat(3,1,CV_32FC1); cvMatMul(P, X, x); xij[0] = cvGetReal2D(x, 0, 0)/cvGetReal2D(x, 2, 0); xij[1] = cvGetReal2D(x, 1, 0)/cvGetReal2D(x, 2, 0); cvReleaseMat(&K); cvReleaseMat(&X); cvReleaseMat(&x); cvReleaseMat(&P); cvReleaseMat(&temp33); cvReleaseMat(&q); cvReleaseMat(&C); cvReleaseMat(&R); } void ProjectionThetaonto2D_TEMPORAL(int j, int i, double *rt, double *xyz, double *xij, void *adata) { int max_nFrames = ((AdditionalData *) adata)->max_nFrames; vector<int> vUsedFrame = ((AdditionalData *) adata)->vUsedFrame; int iCamera = (int)((double)vUsedFrame[j]/max_nFrames); int cFrame = vUsedFrame[j] % max_nFrames; int nBase = ((AdditionalData*) adata)->nBase; vector<Theta> vTheta = ((AdditionalData *) adata)->vTheta; CvMat *P = cvCreateMat(3,4, CV_32FC1); for (int iP = 0; iP < 3; iP++) for (int jP = 0; jP < 4; jP++) cvSetReal2D(P, iP, jP, ((AdditionalData *) adata)->vdP[12*j+iP*4+jP]); double dt = rt[0]; double t = cFrame + dt; CvMat *B = cvCreateMat(1, nBase, CV_32FC1); cvSetReal2D(B, 0, 0, sqrt(1.0/(double)max_nFrames)); for (int iB = 1; iB < nBase; iB++) cvSetReal2D(B, 0, iB, sqrt(2.0/(double)max_nFrames)*cos((2*t-1)*(iB)*PI/2.0/(double)max_nFrames)); //PrintMat(B); CvMat *thetaX = cvCreateMat(nBase,1, CV_32FC1); CvMat *thetaY = cvCreateMat(nBase,1, CV_32FC1); CvMat *thetaZ = cvCreateMat(nBase,1, CV_32FC1); for (int iTheta = 0; iTheta < nBase; iTheta++) cvSetReal2D(thetaX, iTheta, 0, xyz[iTheta]); for (int iTheta = 0; iTheta < nBase; iTheta++) cvSetReal2D(thetaY, iTheta, 0, xyz[nBase+iTheta]); for (int iTheta = 0; iTheta < nBase; iTheta++) cvSetReal2D(thetaZ, iTheta, 0, xyz[2*nBase+iTheta]); //PrintMat(thetaX); //PrintMat(thetaY); //PrintMat(thetaZ); //for (int iTheta = 0; iTheta < nBase; iTheta++) // cout << xyz[iTheta] << " "; //cout << endl; CvMat *X3 = cvCreateMat(1,1,CV_32FC1); CvMat *Y3 = cvCreateMat(1,1,CV_32FC1); CvMat *Z3 = cvCreateMat(1,1,CV_32FC1); cvMatMul(B, thetaX, X3); cvMatMul(B, thetaY, Y3); cvMatMul(B, thetaZ, Z3); CvMat *X = cvCreateMat(4,1,CV_32FC1); cvSetReal2D(X, 0, 0, cvGetReal2D(X3,0,0)); cvSetReal2D(X, 1, 0, cvGetReal2D(Y3,0,0)); cvSetReal2D(X, 2, 0, cvGetReal2D(Z3,0,0)); cvSetReal2D(X, 3, 0, 1); CvMat *x = cvCreateMat(3,1,CV_32FC1); cvMatMul(P, X, x); xij[0] = cvGetReal2D(x, 0, 0)/cvGetReal2D(x, 2, 0); xij[1] = cvGetReal2D(x, 1, 0)/cvGetReal2D(x, 2, 0); int error = 0; for (int iBase = 0; iBase < nBase; iBase++) { error += (xyz[iBase]-vTheta[i].thetaX[iBase])*(xyz[iBase]-vTheta[i].thetaX[iBase]); } for (int iBase = 0; iBase < nBase; iBase++) { error += (xyz[nBase+iBase]-vTheta[i].thetaY[iBase])*(xyz[nBase+iBase]-vTheta[i].thetaY[iBase]); } for (int iBase = 0; iBase < nBase; iBase++) { error += (xyz[2*nBase+iBase]-vTheta[i].thetaZ[iBase])*(xyz[2*nBase+iBase]-vTheta[i].thetaZ[iBase]); } xij[2] = 10*error; xij[3] = 10*rt[0]; cvReleaseMat(&X); cvReleaseMat(&x); cvReleaseMat(&P); cvReleaseMat(&B); cvReleaseMat(&thetaX); cvReleaseMat(&thetaY); cvReleaseMat(&thetaZ); cvReleaseMat(&X3); cvReleaseMat(&Y3); cvReleaseMat(&Z3); } void Projection3Donto2D_KDMOTSTR(int j, int i, double *rt, double *xyz, double *xij, void *adata) { CvMat *K = cvCreateMat(3,3,CV_32FC1); cvSetIdentity(K); int max_nFrames = ((AdditionalData *) adata)->max_nFrames; vector<int> vUsedFrame = ((AdditionalData *) adata)->vUsedFrame; int iCamera = (int)((double)vUsedFrame[j]/max_nFrames); //double *intrinsic = (((AdditionalData *) adata)->vIntrinsic)[iCamera]; //cvSetReal2D(K, 0, 0, intrinsic[0]); //cvSetReal2D(K, 1, 1, intrinsic[1]); //cvSetReal2D(K, 0, 2, intrinsic[2]); //cvSetReal2D(K, 1, 2, intrinsic[3]); CvMat *q = cvCreateMat(4,1,CV_32FC1); CvMat *C = cvCreateMat(3,1,CV_32FC1); CvMat *R = cvCreateMat(3,3,CV_32FC1); cvSetReal2D(q, 0, 0, rt[0]); cvSetReal2D(q, 1, 0, rt[1]); cvSetReal2D(q, 2, 0, rt[2]); cvSetReal2D(q, 3, 0, rt[3]); cvSetReal2D(C, 0, 0, rt[4]); cvSetReal2D(C, 1, 0, rt[5]); cvSetReal2D(C, 2, 0, rt[6]); cvSetReal2D(K, 0, 0, rt[7]); cvSetReal2D(K, 1, 1, rt[8]); cvSetReal2D(K, 0, 2, rt[9]); cvSetReal2D(K, 1, 2, rt[10]); Quaternion2Rotation(q, R); double k11 = rt[7]; double k22 = rt[8]; double px = rt[9]; double py = rt[10]; double k1 = rt[11]; double k2 = rt[12]; CvMat *temp33 = cvCreateMat(3,3,CV_32FC1); CvMat *P = cvCreateMat(3,4,CV_32FC1); cvMatMul(K, R, temp33); cvSetIdentity(P); ScalarMul(C, -1, C); SetSubMat(P, 0,3,C); cvMatMul(temp33, P, P); CvMat *X = cvCreateMat(4,1,CV_32FC1); cvSetReal2D(X, 0, 0, xyz[0]); cvSetReal2D(X, 1, 0, xyz[1]); cvSetReal2D(X, 2, 0, xyz[2]); cvSetReal2D(X, 3, 0, 1); CvMat *x = cvCreateMat(3,1,CV_32FC1); cvMatMul(P, X, x); xij[0] = cvGetReal2D(x, 0, 0)/cvGetReal2D(x, 2, 0); xij[1] = cvGetReal2D(x, 1, 0)/cvGetReal2D(x, 2, 0); // taking into account distortion CvMat *invK = cvCreateMat(3,3,CV_32FC1); cvInvert(K, invK); double ik11 = cvGetReal2D(invK, 0, 0); double ik12 = cvGetReal2D(invK, 0, 1); double ik13 = cvGetReal2D(invK, 0, 2); double ik21 = cvGetReal2D(invK, 1, 0); double ik22 = cvGetReal2D(invK, 1, 1); double ik23 = cvGetReal2D(invK, 1, 2); double ik31 = cvGetReal2D(invK, 2, 0); double ik32 = cvGetReal2D(invK, 2, 1); double ik33 = cvGetReal2D(invK, 2, 2); double nz = (ik31*xij[0]+ik32*xij[1]+ik33); double nx = (ik11*xij[0]+ik12*xij[1]+ik13)/nz; double ny = (ik21*xij[0]+ik22*xij[1]+ik23)/nz; double r = sqrt((nx)*(nx)+(ny)*(ny)); double L = 1 + k1*r + k2*r*r; nx = L*(nx); ny = L*(ny); xij[0] = (k11*nx+px); xij[1] = (k22*ny+py); cvReleaseMat(&K); cvReleaseMat(&invK); cvReleaseMat(&X); cvReleaseMat(&x); cvReleaseMat(&P); cvReleaseMat(&temp33); cvReleaseMat(&q); cvReleaseMat(&C); cvReleaseMat(&R); } void ProjectionThetaonto2D_MOTSTR(int j, int i, double *rt, double *xyz, double *xij, void *adata) { //CvMat *K = cvCreateMat(3,3,CV_32FC1); //cvSetIdentity(K); //cvSetReal2D(K, 0, 0, ((AdditionalData *) adata)->intrinsic[0]); //cvSetReal2D(K, 1, 1, ((AdditionalData *) adata)->intrinsic[1]); //cvSetReal2D(K, 0, 2, ((AdditionalData *) adata)->intrinsic[2]); //cvSetReal2D(K, 1, 2, ((AdditionalData *) adata)->intrinsic[3]); //bool isStatic = ((AdditionalData *) adata)->isStatic[i]; //CvMat *q = cvCreateMat(4,1,CV_32FC1); //CvMat *C = cvCreateMat(3,1,CV_32FC1); //CvMat *R = cvCreateMat(3,3,CV_32FC1); //cvSetReal2D(q, 0, 0, rt[0]); //cvSetReal2D(q, 1, 0, rt[1]); //cvSetReal2D(q, 2, 0, rt[2]); //cvSetReal2D(q, 3, 0, rt[3]); //cvSetReal2D(C, 0, 0, rt[4]); //cvSetReal2D(C, 1, 0, rt[5]); //cvSetReal2D(C, 2, 0, rt[6]); //Quaternion2Rotation(q, R); //CvMat *temp33 = cvCreateMat(3,3,CV_32FC1); //CvMat *P = cvCreateMat(3,4,CV_32FC1); //cvMatMul(K, R, temp33); //cvSetIdentity(P); //ScalarMul(C, -1, C); //SetSubMat(P, 0,3,C); //cvMatMul(temp33, P, P); //if (!isStatic) //{ // int iFrame = j % ((AdditionalData *) adata)->nFrames; // int nBase = ((AdditionalData *) adata)->nBase; // int nFrames = ((AdditionalData *) adata)->nFrames; // CvMat *x = cvCreateMat(2,1,CV_32FC1); // CvMat *theta = cvCreateMat(3*nBase, 1, CV_32FC1); // for (int iTheta = 0; iTheta < 3*nBase; iTheta++) // cvSetReal2D(theta, iTheta, 0, xyz[iTheta]); // DCTProjection(P, theta, nFrames, iFrame, nBase, x); // xij[0] = cvGetReal2D(x, 0, 0); // xij[1] = cvGetReal2D(x, 1, 0); // cvReleaseMat(&x); // cvReleaseMat(&theta); //} //else //{ // CvMat *X = cvCreateMat(4,1,CV_32FC1); // cvSetReal2D(X, 0, 0, xyz[0]); // cvSetReal2D(X, 1, 0, xyz[1]); // cvSetReal2D(X, 2, 0, xyz[2]); // cvSetReal2D(X, 3, 0, 1); // CvMat *x = cvCreateMat(3,1,CV_32FC1); // cvMatMul(P, X, x); // // xij[0] = cvGetReal2D(x, 0, 0)/cvGetReal2D(x, 2, 0); // xij[1] = cvGetReal2D(x, 1, 0)/cvGetReal2D(x, 2, 0); // cvReleaseMat(&X); // cvReleaseMat(&x); //} //cvReleaseMat(&K); //cvReleaseMat(&P); //cvReleaseMat(&temp33); //cvReleaseMat(&q); //cvReleaseMat(&C); //cvReleaseMat(&R); } void ProjectionThetaonto2D_MOTSTR_LEVMAR(int j, int i, double *rt, double *xyz, double &xi, double &yi, void *adata) { //CvMat *K = cvCreateMat(3,3,CV_32FC1); //cvSetIdentity(K); //cvSetReal2D(K, 0, 0, ((AdditionalData *) adata)->intrinsic[0]); //cvSetReal2D(K, 1, 1, ((AdditionalData *) adata)->intrinsic[1]); //cvSetReal2D(K, 0, 2, ((AdditionalData *) adata)->intrinsic[2]); //cvSetReal2D(K, 1, 2, ((AdditionalData *) adata)->intrinsic[3]); //bool isStatic = ((AdditionalData *) adata)->isStatic[i]; //CvMat *q = cvCreateMat(4,1,CV_32FC1); //CvMat *C = cvCreateMat(3,1,CV_32FC1); //CvMat *R = cvCreateMat(3,3,CV_32FC1); //cvSetReal2D(q, 0, 0, rt[0]); //cvSetReal2D(q, 1, 0, rt[1]); //cvSetReal2D(q, 2, 0, rt[2]); //cvSetReal2D(q, 3, 0, rt[3]); //cvSetReal2D(C, 0, 0, rt[4]); //cvSetReal2D(C, 1, 0, rt[5]); //cvSetReal2D(C, 2, 0, rt[6]); //Quaternion2Rotation(q, R); //CvMat *temp33 = cvCreateMat(3,3,CV_32FC1); //CvMat *P = cvCreateMat(3,4,CV_32FC1); //cvMatMul(K, R, temp33); //cvSetIdentity(P); //ScalarMul(C, -1, C); //SetSubMat(P, 0,3,C); //cvMatMul(temp33, P, P); //if (!isStatic) //{ // int iFrame = j % ((AdditionalData *) adata)->nFrames; // int nBase = ((AdditionalData *) adata)->nBase; // int nFrames = ((AdditionalData *) adata)->nFrames; // CvMat *x = cvCreateMat(2,1,CV_32FC1); // CvMat *theta = cvCreateMat(3*nBase, 1, CV_32FC1); // for (int iTheta = 0; iTheta < 3*nBase; iTheta++) // cvSetReal2D(theta, iTheta, 0, xyz[iTheta]); // DCTProjection(P, theta, nFrames, iFrame, nBase, x); // xi = cvGetReal2D(x, 0, 0); // yi = cvGetReal2D(x, 1, 0); // cvReleaseMat(&x); // cvReleaseMat(&theta); //} //else //{ // CvMat *X = cvCreateMat(4,1,CV_32FC1); // cvSetReal2D(X, 0, 0, xyz[0]); // cvSetReal2D(X, 1, 0, xyz[1]); // cvSetReal2D(X, 2, 0, xyz[2]); // cvSetReal2D(X, 3, 0, 1); // CvMat *x = cvCreateMat(3,1,CV_32FC1); // cvMatMul(P, X, x); // xi = cvGetReal2D(x, 0, 0)/cvGetReal2D(x, 2, 0); // yi = cvGetReal2D(x, 1, 0)/cvGetReal2D(x, 2, 0); // cvReleaseMat(&X); // cvReleaseMat(&x); //} //cvReleaseMat(&K); //cvReleaseMat(&P); //cvReleaseMat(&temp33); //cvReleaseMat(&q); //cvReleaseMat(&C); //cvReleaseMat(&R); } void Projection3Donto2D_MOT(int j, int i, double *rt, double *xij, void *adata) { //CvMat *K = cvCreateMat(3,3,CV_32FC1); //cvSetIdentity(K); //cvSetReal2D(K, 0, 0, ((AdditionalData *) adata)->intrinsic[0]); //cvSetReal2D(K, 1, 1, ((AdditionalData *) adata)->intrinsic[1]); //cvSetReal2D(K, 0, 2, ((AdditionalData *) adata)->intrinsic[2]); //cvSetReal2D(K, 1, 2, ((AdditionalData *) adata)->intrinsic[3]); //CvMat *q = cvCreateMat(4,1,CV_32FC1); //CvMat *C = cvCreateMat(3,1,CV_32FC1); //CvMat *R = cvCreateMat(3,3,CV_32FC1); //cvSetReal2D(q, 0, 0, rt[0]); //cvSetReal2D(q, 1, 0, rt[1]); //cvSetReal2D(q, 2, 0, rt[2]); //cvSetReal2D(q, 3, 0, rt[3]); //cvSetReal2D(C, 0, 0, rt[4]); //cvSetReal2D(C, 1, 0, rt[5]); //cvSetReal2D(C, 2, 0, rt[6]); //Quaternion2Rotation(q, R); //CvMat *temp33 = cvCreateMat(3,3,CV_32FC1); //CvMat *P = cvCreateMat(3,4,CV_32FC1); //cvMatMul(K, R, temp33); //cvSetIdentity(P); //ScalarMul(C, -1, C); //SetSubMat(P, 0,3,C); //cvMatMul(temp33, P, P); //CvMat *X = cvCreateMat(4,1,CV_32FC1); //cvSetReal2D(X, 0, 0, ((AdditionalData *) adata)->XYZ[3*i]); //cvSetReal2D(X, 1, 0, ((AdditionalData *) adata)->XYZ[3*i+1]); //cvSetReal2D(X, 2, 0, ((AdditionalData *) adata)->XYZ[3*i+2]); //cvSetReal2D(X, 3, 0, 1); ////PrintMat(X, "X"); ////PrintMat(C, "C"); ////cout << i << endl; ////if (j == 1) //// int k = 1; //CvMat *x = cvCreateMat(3,1,CV_32FC1); //cvMatMul(P, X, x); //xij[0] = cvGetReal2D(x, 0, 0)/cvGetReal2D(x, 2, 0); //xij[1] = cvGetReal2D(x, 1, 0)/cvGetReal2D(x, 2, 0); //cvReleaseMat(&K); //cvReleaseMat(&X); //cvReleaseMat(&x); //cvReleaseMat(&P); //cvReleaseMat(&temp33); //cvReleaseMat(&q); //cvReleaseMat(&C); } void Projection3Donto2D_KDMOT(int j, int i, double *rt, double *xij, void *adata) { CvMat *K = cvCreateMat(3,3,CV_32FC1); cvSetIdentity(K); int max_nFrames = ((AdditionalData *) adata)->max_nFrames; vector<int> vUsedFrame = ((AdditionalData *) adata)->vUsedFrame; int iCamera = (int)((double)vUsedFrame[j]/max_nFrames); CvMat *q = cvCreateMat(4,1,CV_32FC1); CvMat *C = cvCreateMat(3,1,CV_32FC1); CvMat *R = cvCreateMat(3,3,CV_32FC1); cvSetReal2D(q, 0, 0, rt[0]); cvSetReal2D(q, 1, 0, rt[1]); cvSetReal2D(q, 2, 0, rt[2]); cvSetReal2D(q, 3, 0, rt[3]); cvSetReal2D(C, 0, 0, rt[4]); cvSetReal2D(C, 1, 0, rt[5]); cvSetReal2D(C, 2, 0, rt[6]); cvSetReal2D(K, 0, 0, rt[7]); cvSetReal2D(K, 1, 1, rt[8]); cvSetReal2D(K, 0, 2, rt[9]); cvSetReal2D(K, 1, 2, rt[10]); Quaternion2Rotation(q, R); double k11 = rt[7]; double k22 = rt[8]; double px = rt[9]; double py = rt[10]; double k1 = rt[11]; double k2 = rt[12]; CvMat *temp33 = cvCreateMat(3,3,CV_32FC1); CvMat *P = cvCreateMat(3,4,CV_32FC1); cvMatMul(K, R, temp33); cvSetIdentity(P); ScalarMul(C, -1, C); SetSubMat(P, 0,3,C); cvMatMul(temp33, P, P); CvMat *X = cvCreateMat(4,1,CV_32FC1); cvSetReal2D(X, 0, 0, ((AdditionalData *) adata)->XYZ[3*i]); cvSetReal2D(X, 1, 0, ((AdditionalData *) adata)->XYZ[3*i+1]); cvSetReal2D(X, 2, 0, ((AdditionalData *) adata)->XYZ[3*i+2]); cvSetReal2D(X, 3, 0, 1); CvMat *x = cvCreateMat(3,1,CV_32FC1); cvMatMul(P, X, x); xij[0] = cvGetReal2D(x, 0, 0)/cvGetReal2D(x, 2, 0); xij[1] = cvGetReal2D(x, 1, 0)/cvGetReal2D(x, 2, 0); // taking into account distortion CvMat *invK = cvCreateMat(3,3,CV_32FC1); cvInvert(K, invK); double ik11 = cvGetReal2D(invK, 0, 0); double ik12 = cvGetReal2D(invK, 0, 1); double ik13 = cvGetReal2D(invK, 0, 2); double ik21 = cvGetReal2D(invK, 1, 0); double ik22 = cvGetReal2D(invK, 1, 1); double ik23 = cvGetReal2D(invK, 1, 2); double ik31 = cvGetReal2D(invK, 2, 0); double ik32 = cvGetReal2D(invK, 2, 1); double ik33 = cvGetReal2D(invK, 2, 2); double nz = (ik31*xij[0]+ik32*xij[1]+ik33); double nx = (ik11*xij[0]+ik12*xij[1]+ik13)/nz; double ny = (ik21*xij[0]+ik22*xij[1]+ik23)/nz; double r = sqrt((nx)*(nx)+(ny)*(ny)); double L = 1 + k1*r + k2*r*r; nx = L*(nx); ny = L*(ny); xij[0] = (k11*nx+px); xij[1] = (k22*ny+py); cvReleaseMat(&K); cvReleaseMat(&invK); cvReleaseMat(&X); cvReleaseMat(&x); cvReleaseMat(&P); cvReleaseMat(&temp33); cvReleaseMat(&q); cvReleaseMat(&C); cvReleaseMat(&R); } void GetParameterForSBA(vector<Feature> vFeature, vector<int> vUsedFrame, vector<CvMat *> cP, CvMat *X, CvMat *K, vector<int> visibleStructureID, vector<double> &cameraParameter, vector<double> &feature2DParameter, vector<char> &vMask) { int nFrames = cP.size(); int nFeatures = X->rows; for (int iFrame = 0; iFrame < vUsedFrame.size(); iFrame++) { int cFrame = vUsedFrame[iFrame]; CvMat *q = cvCreateMat(4,1,CV_32FC1); CvMat *R = cvCreateMat(3,3,CV_32FC1); CvMat *t = cvCreateMat(3,1,CV_32FC1); CvMat *invK = cvCreateMat(3,3,CV_32FC1); CvMat *invR = cvCreateMat(3,3,CV_32FC1); cvInvert(K, invK); GetSubMatColwise(cP[iFrame], 0, 2, R); GetSubMatColwise(cP[iFrame], 3, 3, t); cvMatMul(invK, R, R); cvInvert(R, invR); cvMatMul(invK, t, t); cvMatMul(invR, t, t); ScalarMul(t, -1, t); Rotation2Quaternion(R, q); cameraParameter.push_back(cvGetReal2D(q, 0, 0)); cameraParameter.push_back(cvGetReal2D(q, 1, 0)); cameraParameter.push_back(cvGetReal2D(q, 2, 0)); cameraParameter.push_back(cvGetReal2D(q, 3, 0)); cameraParameter.push_back(cvGetReal2D(t, 0, 0)); cameraParameter.push_back(cvGetReal2D(t, 1, 0)); cameraParameter.push_back(cvGetReal2D(t, 2, 0)); cvReleaseMat(&R); cvReleaseMat(&t); cvReleaseMat(&q); cvReleaseMat(&invK); cvReleaseMat(&invR); } for (int cFeature = 0; cFeature < visibleStructureID.size(); cFeature++) { int iFeature = visibleStructureID[cFeature]; cameraParameter.push_back(cvGetReal2D(X, iFeature, 0)); cameraParameter.push_back(cvGetReal2D(X, iFeature, 1)); cameraParameter.push_back(cvGetReal2D(X, iFeature, 2)); } CvMat *visibilityMask = cvCreateMat(visibleStructureID.size(), nFrames, CV_32FC1); cvSetZero(visibilityMask); int NZ = 0; for (int cFeature = 0; cFeature < visibleStructureID.size(); cFeature++) { int iFeature = visibleStructureID[cFeature]; for (int iVisibleFrame = 0; iVisibleFrame < vUsedFrame.size(); iVisibleFrame++) { vector<int>::iterator it = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),vUsedFrame[iVisibleFrame]); if (it != vFeature[iFeature].vFrame.end()) { int idx = int(it-vFeature[iFeature].vFrame.begin()); feature2DParameter.push_back(vFeature[iFeature].vx[idx]); feature2DParameter.push_back(vFeature[iFeature].vy[idx]); cvSetReal2D(visibilityMask, cFeature, iVisibleFrame, 1); NZ++; } } } for (int iFeature = 0; iFeature < visibilityMask->rows; iFeature++) { for (int iFrame = 0; iFrame < visibilityMask->cols; iFrame++) { vMask.push_back(cvGetReal2D(visibilityMask, iFeature, iFrame)); } } cvReleaseMat(&visibilityMask); } void GetParameterForSBA(vector<Feature> &vFeature, vector<int> vUsedFrame, vector<CvMat *> cP, CvMat *X, vector<Camera> vCamera, int max_nFrames, vector<int> visibleStructureID, vector<double> &cameraParameter, vector<double> &feature2DParameter, vector<char> &vMask) { int nFrames = cP.size(); int nFeatures = X->rows; for (int iFrame = 0; iFrame < vUsedFrame.size(); iFrame++) { int cFrame = vUsedFrame[iFrame]; int iCamera = (int) ((double)vUsedFrame[iFrame]/max_nFrames); CvMat *q = cvCreateMat(4,1,CV_32FC1); CvMat *R = cvCreateMat(3,3,CV_32FC1); CvMat *t = cvCreateMat(3,1,CV_32FC1); CvMat *invK = cvCreateMat(3,3,CV_32FC1); CvMat *invR = cvCreateMat(3,3,CV_32FC1); cvInvert(vCamera[iCamera].vK[cFrame], invK); GetSubMatColwise(cP[iFrame], 0, 2, R); GetSubMatColwise(cP[iFrame], 3, 3, t); cvMatMul(invK, R, R); cvInvert(R, invR); cvMatMul(invK, t, t); cvMatMul(invR, t, t); ScalarMul(t, -1, t); Rotation2Quaternion(R, q); cameraParameter.push_back(cvGetReal2D(q, 0, 0)); cameraParameter.push_back(cvGetReal2D(q, 1, 0)); cameraParameter.push_back(cvGetReal2D(q, 2, 0)); cameraParameter.push_back(cvGetReal2D(q, 3, 0)); cameraParameter.push_back(cvGetReal2D(t, 0, 0)); cameraParameter.push_back(cvGetReal2D(t, 1, 0)); cameraParameter.push_back(cvGetReal2D(t, 2, 0)); cvReleaseMat(&R); cvReleaseMat(&t); cvReleaseMat(&q); cvReleaseMat(&invK); cvReleaseMat(&invR); } for (int cFeature = 0; cFeature < visibleStructureID.size(); cFeature++) { int iFeature = visibleStructureID[cFeature]; cameraParameter.push_back(cvGetReal2D(X, iFeature, 0)); cameraParameter.push_back(cvGetReal2D(X, iFeature, 1)); cameraParameter.push_back(cvGetReal2D(X, iFeature, 2)); } CvMat *visibilityMask = cvCreateMat(visibleStructureID.size(), nFrames, CV_32FC1); cvSetZero(visibilityMask); int NZ = 0; for (int cFeature = 0; cFeature < visibleStructureID.size(); cFeature++) { int iFeature = visibleStructureID[cFeature]; for (int iVisibleFrame = 0; iVisibleFrame < vUsedFrame.size(); iVisibleFrame++) { vector<int>::iterator it = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),vUsedFrame[iVisibleFrame]); if (it != vFeature[iFeature].vFrame.end()) { int idx = int(it-vFeature[iFeature].vFrame.begin()); feature2DParameter.push_back(vFeature[iFeature].vx[idx]); feature2DParameter.push_back(vFeature[iFeature].vy[idx]); cvSetReal2D(visibilityMask, cFeature, iVisibleFrame, 1); //cvSetReal2D(visibilityMask, iFeature, iVisibleFrame, 1); NZ++; } } } for (int iFeature = 0; iFeature < visibilityMask->rows; iFeature++) { for (int iFrame = 0; iFrame < visibilityMask->cols; iFrame++) { vMask.push_back(cvGetReal2D(visibilityMask, iFeature, iFrame)); } } cvReleaseMat(&visibilityMask); } void GetParameterForSBA_Distortion(vector<Feature> &vFeature, vector<int> vUsedFrame, vector<CvMat *> cP, CvMat *X, vector<Camera> vCamera, int max_nFrames, vector<int> visibleStructureID, vector<double> &cameraParameter, vector<double> &feature2DParameter, vector<char> &vMask) { int nFrames = cP.size(); int nFeatures = X->rows; for (int iFrame = 0; iFrame < vUsedFrame.size(); iFrame++) { int cFrame = vUsedFrame[iFrame]; int iCamera = (int) ((double)vUsedFrame[iFrame]/max_nFrames); CvMat *q = cvCreateMat(4,1,CV_32FC1); CvMat *R = cvCreateMat(3,3,CV_32FC1); CvMat *t = cvCreateMat(3,1,CV_32FC1); CvMat *invK = cvCreateMat(3,3,CV_32FC1); CvMat *invR = cvCreateMat(3,3,CV_32FC1); cvInvert(vCamera[iCamera].K, invK); GetSubMatColwise(cP[iFrame], 0, 2, R); GetSubMatColwise(cP[iFrame], 3, 3, t); cvMatMul(invK, R, R); cvInvert(R, invR); cvMatMul(invK, t, t); cvMatMul(invR, t, t); ScalarMul(t, -1, t); Rotation2Quaternion(R, q); cameraParameter.push_back(cvGetReal2D(q, 0, 0)); cameraParameter.push_back(cvGetReal2D(q, 1, 0)); cameraParameter.push_back(cvGetReal2D(q, 2, 0)); cameraParameter.push_back(cvGetReal2D(q, 3, 0)); cameraParameter.push_back(cvGetReal2D(t, 0, 0)); cameraParameter.push_back(cvGetReal2D(t, 1, 0)); cameraParameter.push_back(cvGetReal2D(t, 2, 0)); cvReleaseMat(&R); cvReleaseMat(&t); cvReleaseMat(&q); cvReleaseMat(&invK); cvReleaseMat(&invR); } for (int cFeature = 0; cFeature < visibleStructureID.size(); cFeature++) { int iFeature = visibleStructureID[cFeature]; cameraParameter.push_back(cvGetReal2D(X, iFeature, 0)); cameraParameter.push_back(cvGetReal2D(X, iFeature, 1)); cameraParameter.push_back(cvGetReal2D(X, iFeature, 2)); } CvMat *visibilityMask = cvCreateMat(visibleStructureID.size(), nFrames, CV_32FC1); cvSetZero(visibilityMask); int NZ = 0; for (int cFeature = 0; cFeature < visibleStructureID.size(); cFeature++) { int iFeature = visibleStructureID[cFeature]; for (int iVisibleFrame = 0; iVisibleFrame < vUsedFrame.size(); iVisibleFrame++) { vector<int>::iterator it = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),vUsedFrame[iVisibleFrame]); if (it != vFeature[iFeature].vFrame.end()) { int idx = int(it-vFeature[iFeature].vFrame.begin()); feature2DParameter.push_back(vFeature[iFeature].vx_dis[idx]); feature2DParameter.push_back(vFeature[iFeature].vy_dis[idx]); cvSetReal2D(visibilityMask, cFeature, iVisibleFrame, 1); //cvSetReal2D(visibilityMask, iFeature, iVisibleFrame, 1); NZ++; } } } for (int iFeature = 0; iFeature < visibilityMask->rows; iFeature++) { for (int iFrame = 0; iFrame < visibilityMask->cols; iFrame++) { vMask.push_back(cvGetReal2D(visibilityMask, iFeature, iFrame)); } } cvReleaseMat(&visibilityMask); } void GetParameterForSBA_KRT(vector<Feature> vFeature, vector<int> vUsedFrame, vector<CvMat *> cP, CvMat *X, vector<Camera> vCamera, int max_nFrames, vector<int> visibleStructureID, vector<double> &cameraParameter, vector<double> &feature2DParameter, vector<char> &vMask) { int nFrames = cP.size(); int nFeatures = visibleStructureID.size(); cout << "nFeatures: " << X->rows << " nFeatures_: " << nFeatures <<endl; for (int iFrame = 0; iFrame < vUsedFrame.size(); iFrame++) { int cFrame = vUsedFrame[iFrame]; int takenFrame = vUsedFrame[iFrame] % max_nFrames; int iCamera = (int) ((double)vUsedFrame[iFrame]/max_nFrames); CvMat *q = cvCreateMat(4,1,CV_32FC1); CvMat *R = cvCreateMat(3,3,CV_32FC1); CvMat *t = cvCreateMat(3,1,CV_32FC1); CvMat *invK = cvCreateMat(3,3,CV_32FC1); CvMat *invR = cvCreateMat(3,3,CV_32FC1); vector<int>::const_iterator it = find(vCamera[iCamera].vTakenFrame.begin(), vCamera[iCamera].vTakenFrame.end(), takenFrame); if (it == vCamera[iCamera].vTakenFrame.end()) return; int iTakenFrame = (int) (it - vCamera[iCamera].vTakenFrame.begin()); cvInvert(vCamera[iCamera].vK[iTakenFrame], invK); double k11 = cvGetReal2D(vCamera[iCamera].vK[iTakenFrame], 0, 0); double k22 = cvGetReal2D(vCamera[iCamera].vK[iTakenFrame], 1, 1); double k13 = cvGetReal2D(vCamera[iCamera].vK[iTakenFrame], 0, 2); double k23 = cvGetReal2D(vCamera[iCamera].vK[iTakenFrame], 1, 2); GetSubMatColwise(cP[iFrame], 0, 2, R); GetSubMatColwise(cP[iFrame], 3, 3, t); cvMatMul(invK, R, R); cvInvert(R, invR); cvMatMul(invK, t, t); cvMatMul(invR, t, t); ScalarMul(t, -1, t); Rotation2Quaternion(R, q); //PrintMat(R); cameraParameter.push_back(cvGetReal2D(q, 0, 0)); cameraParameter.push_back(cvGetReal2D(q, 1, 0)); cameraParameter.push_back(cvGetReal2D(q, 2, 0)); cameraParameter.push_back(cvGetReal2D(q, 3, 0)); cameraParameter.push_back(cvGetReal2D(t, 0, 0)); cameraParameter.push_back(cvGetReal2D(t, 1, 0)); cameraParameter.push_back(cvGetReal2D(t, 2, 0)); cameraParameter.push_back(k11); cameraParameter.push_back(k22); cameraParameter.push_back(k13); cameraParameter.push_back(k23); cvReleaseMat(&R); cvReleaseMat(&t); cvReleaseMat(&q); cvReleaseMat(&invK); cvReleaseMat(&invR); } for (int cFeature = 0; cFeature < visibleStructureID.size(); cFeature++) { int iFeature = visibleStructureID[cFeature]; cameraParameter.push_back(cvGetReal2D(X, iFeature, 0)); cameraParameter.push_back(cvGetReal2D(X, iFeature, 1)); cameraParameter.push_back(cvGetReal2D(X, iFeature, 2)); } CvMat *visibilityMask = cvCreateMat(visibleStructureID.size(), nFrames, CV_32FC1); cvSetZero(visibilityMask); int NZ = 0; for (int cFeature = 0; cFeature < visibleStructureID.size(); cFeature++) { int iFeature = visibleStructureID[cFeature]; for (int iVisibleFrame = 0; iVisibleFrame < vUsedFrame.size(); iVisibleFrame++) { vector<int>::iterator it = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),vUsedFrame[iVisibleFrame]); if (it != vFeature[iFeature].vFrame.end()) { int idx = int(it-vFeature[iFeature].vFrame.begin()); feature2DParameter.push_back(vFeature[iFeature].vx[idx]); feature2DParameter.push_back(vFeature[iFeature].vy[idx]); cvSetReal2D(visibilityMask, cFeature, iVisibleFrame, 1); NZ++; } } } for (int iFeature = 0; iFeature < visibilityMask->rows; iFeature++) { for (int iFrame = 0; iFrame < visibilityMask->cols; iFrame++) { vMask.push_back(cvGetReal2D(visibilityMask, iFeature, iFrame)); } } cvReleaseMat(&visibilityMask); } void GetParameterForSBA_KDRT(vector<Feature> vFeature, vector<int> vUsedFrame, vector<CvMat *> cP, CvMat *X, vector<Camera> vCamera, int max_nFrames, vector<int> visibleStructureID, vector<double> &cameraParameter, vector<double> &feature2DParameter, vector<char> &vMask) { int nFrames = cP.size(); int nFeatures = visibleStructureID.size(); for (int iFrame = 0; iFrame < vUsedFrame.size(); iFrame++) { PrintMat(cP[iFrame],"P"); int cFrame = vUsedFrame[iFrame]; int takenFrame = vUsedFrame[iFrame] % max_nFrames; int iCamera = (int) ((double)vUsedFrame[iFrame]/max_nFrames); CvMat *q = cvCreateMat(4,1,CV_32FC1); CvMat *R = cvCreateMat(3,3,CV_32FC1); CvMat *t = cvCreateMat(3,1,CV_32FC1); CvMat *invK = cvCreateMat(3,3,CV_32FC1); CvMat *invR = cvCreateMat(3,3,CV_32FC1); vector<int>::const_iterator it = find(vCamera[iCamera].vTakenFrame.begin(), vCamera[iCamera].vTakenFrame.end(), takenFrame); if (it == vCamera[iCamera].vTakenFrame.end()) return; int iTakenFrame = (int) (it - vCamera[iCamera].vTakenFrame.begin()); cvInvert(vCamera[iCamera].vK[iTakenFrame], invK); double k11 = cvGetReal2D(vCamera[iCamera].vK[iTakenFrame], 0, 0); double k22 = cvGetReal2D(vCamera[iCamera].vK[iTakenFrame], 1, 1); double k13 = cvGetReal2D(vCamera[iCamera].vK[iTakenFrame], 0, 2); double k23 = cvGetReal2D(vCamera[iCamera].vK[iTakenFrame], 1, 2); GetSubMatColwise(cP[iFrame], 0, 2, R); GetSubMatColwise(cP[iFrame], 3, 3, t); cvMatMul(invK, R, R); cvInvert(R, invR); cvMatMul(invK, t, t); cvMatMul(invR, t, t); ScalarMul(t, -1, t); Rotation2Quaternion(R, q); cameraParameter.push_back(cvGetReal2D(q, 0, 0)); cameraParameter.push_back(cvGetReal2D(q, 1, 0)); cameraParameter.push_back(cvGetReal2D(q, 2, 0)); cameraParameter.push_back(cvGetReal2D(q, 3, 0)); cameraParameter.push_back(cvGetReal2D(t, 0, 0)); cameraParameter.push_back(cvGetReal2D(t, 1, 0)); cameraParameter.push_back(cvGetReal2D(t, 2, 0)); cameraParameter.push_back(k11); cameraParameter.push_back(k22); cameraParameter.push_back(k13); cameraParameter.push_back(k23); cameraParameter.push_back(vCamera[iCamera].vk1[iTakenFrame]); cameraParameter.push_back(vCamera[iCamera].vk2[iTakenFrame]); cvReleaseMat(&R); cvReleaseMat(&t); cvReleaseMat(&q); cvReleaseMat(&invK); cvReleaseMat(&invR); } for (int cFeature = 0; cFeature < visibleStructureID.size(); cFeature++) { int iFeature = visibleStructureID[cFeature]; cameraParameter.push_back(cvGetReal2D(X, iFeature, 0)); cameraParameter.push_back(cvGetReal2D(X, iFeature, 1)); cameraParameter.push_back(cvGetReal2D(X, iFeature, 2)); } CvMat *visibilityMask = cvCreateMat(visibleStructureID.size(), nFrames, CV_32FC1); cvSetZero(visibilityMask); int NZ = 0; for (int cFeature = 0; cFeature < visibleStructureID.size(); cFeature++) { int iFeature = visibleStructureID[cFeature]; for (int iVisibleFrame = 0; iVisibleFrame < vUsedFrame.size(); iVisibleFrame++) { vector<int>::iterator it = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),vUsedFrame[iVisibleFrame]); if (it != vFeature[iFeature].vFrame.end()) { int idx = int(it-vFeature[iFeature].vFrame.begin()); feature2DParameter.push_back(vFeature[iFeature].vx[idx]); feature2DParameter.push_back(vFeature[iFeature].vy[idx]); cvSetReal2D(visibilityMask, cFeature, iVisibleFrame, 1); NZ++; } } } for (int iFeature = 0; iFeature < visibilityMask->rows; iFeature++) { for (int iFrame = 0; iFrame < visibilityMask->cols; iFrame++) { vMask.push_back(cvGetReal2D(visibilityMask, iFeature, iFrame)); } } cvReleaseMat(&visibilityMask); } void GetParameterForSBA_TEMPORAL(vector<Feature> vFeature, vector<Theta> vTheta, vector<Camera> vCamera, int max_nFrames, vector<double> &cameraParameter, vector<double> &feature2DParameter, vector<char> &vMask) { int nFrames = 0; vector<int> vUsedFrame; for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) { for (int iFrame = 0; iFrame < vCamera[iCamera].vTakenFrame.size(); iFrame++) { // Temporal error initialization cameraParameter.push_back(0); vUsedFrame.push_back(iCamera*max_nFrames+vCamera[iCamera].vTakenFrame[iFrame]); nFrames++; } } for (int iTheta = 0; iTheta < vTheta.size(); iTheta++) { for (int iTheta_x = 0; iTheta_x < vTheta[iTheta].thetaX.size(); iTheta_x++) cameraParameter.push_back(vTheta[iTheta].thetaX[iTheta_x]); for (int iTheta_x = 0; iTheta_x < vTheta[iTheta].thetaX.size(); iTheta_x++) cameraParameter.push_back(vTheta[iTheta].thetaY[iTheta_x]); for (int iTheta_x = 0; iTheta_x < vTheta[iTheta].thetaX.size(); iTheta_x++) cameraParameter.push_back(vTheta[iTheta].thetaZ[iTheta_x]); } CvMat *visibilityMask = cvCreateMat(vTheta.size(), nFrames, CV_32FC1); cvSetZero(visibilityMask); int NZ = 0; for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) { for (int iVisibleFrame = 0; iVisibleFrame < vUsedFrame.size(); iVisibleFrame++) { vector<int>::iterator it = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),vUsedFrame[iVisibleFrame]); if (it != vFeature[iFeature].vFrame.end()) { int idx = int(it-vFeature[iFeature].vFrame.begin()); feature2DParameter.push_back(vFeature[iFeature].vx[idx]); feature2DParameter.push_back(vFeature[iFeature].vy[idx]); feature2DParameter.push_back(0.0); feature2DParameter.push_back(0.0); cvSetReal2D(visibilityMask, iFeature, iVisibleFrame, 1); NZ++; } } } for (int iFeature = 0; iFeature < visibilityMask->rows; iFeature++) { for (int iFrame = 0; iFrame < visibilityMask->cols; iFrame++) { vMask.push_back(cvGetReal2D(visibilityMask, iFeature, iFrame)); } } cvReleaseMat(&visibilityMask); } void GetParameterForSBA_TEMPORAL_LEVMAR(vector<Feature> vFeature, vector<Theta> vTheta, vector<Camera> vCamera, int max_nFrames, vector<double> &cameraParameter, vector<double> &feature2DParameter) { int nFrames = 0; vector<int> vUsedFrame; for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) { for (int iFrame = 0; iFrame < vCamera[iCamera].vTakenFrame.size(); iFrame++) { // Temporal error initialization cameraParameter.push_back(0); vUsedFrame.push_back(iCamera*max_nFrames+vCamera[iCamera].vTakenFrame[iFrame]); nFrames++; } } for (int iTheta = 0; iTheta < vTheta.size(); iTheta++) { for (int iTheta_x = 0; iTheta_x < vTheta[iTheta].thetaX.size(); iTheta_x++) cameraParameter.push_back(vTheta[iTheta].thetaX[iTheta_x]); for (int iTheta_x = 0; iTheta_x < vTheta[iTheta].thetaX.size(); iTheta_x++) cameraParameter.push_back(vTheta[iTheta].thetaY[iTheta_x]); for (int iTheta_x = 0; iTheta_x < vTheta[iTheta].thetaX.size(); iTheta_x++) cameraParameter.push_back(vTheta[iTheta].thetaZ[iTheta_x]); } for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) { for (int iVisibleFrame = 0; iVisibleFrame < vUsedFrame.size(); iVisibleFrame++) { vector<int>::iterator it = find(vFeature[iFeature].vFrame.begin(),vFeature[iFeature].vFrame.end(),vUsedFrame[iVisibleFrame]); if (it != vFeature[iFeature].vFrame.end()) { int idx = int(it-vFeature[iFeature].vFrame.begin()); feature2DParameter.push_back(vFeature[iFeature].vx[idx]); feature2DParameter.push_back(vFeature[iFeature].vy[idx]); } else { feature2DParameter.push_back(0); feature2DParameter.push_back(0); } } } } void GetParameterForGBA(vector<Feature> vFeature, vector<Camera> vCamera, vector<Theta> vTheta, CvMat *K, int nFrames, vector<double> &cameraParameter, vector<double> &feature2DParameter, vector<char> &vMask) { int nFeatures = vFeature.size(); for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) { for (int iFrame = 0; iFrame < nFrames; iFrame++) { vector<int>::const_iterator it = find(vCamera[iCamera].vTakenFrame.begin(), vCamera[iCamera].vTakenFrame.end(), iFrame); if (it == vCamera[iCamera].vTakenFrame.end()) { cameraParameter.push_back(0); cameraParameter.push_back(0); cameraParameter.push_back(0); cameraParameter.push_back(0); cameraParameter.push_back(0); cameraParameter.push_back(0); cameraParameter.push_back(0); } else { CvMat *q = cvCreateMat(4,1,CV_32FC1); CvMat *R = cvCreateMat(3,3,CV_32FC1); CvMat *t = cvCreateMat(3,1,CV_32FC1); CvMat *invK = cvCreateMat(3,3,CV_32FC1); CvMat *invR = cvCreateMat(3,3,CV_32FC1); cvInvert(K, invK); GetSubMatColwise(vCamera[iCamera].vP[iFrame], 0, 2, R); GetSubMatColwise(vCamera[iCamera].vP[iFrame], 3, 3, t); cvMatMul(invK, R, R); cvInvert(R, invR); cvMatMul(invK, t, t); cvMatMul(invR, t, t); ScalarMul(t, -1, t); Rotation2Quaternion(R, q); cameraParameter.push_back(cvGetReal2D(q, 0, 0)); cameraParameter.push_back(cvGetReal2D(q, 1, 0)); cameraParameter.push_back(cvGetReal2D(q, 2, 0)); cameraParameter.push_back(cvGetReal2D(q, 3, 0)); cameraParameter.push_back(cvGetReal2D(t, 0, 0)); cameraParameter.push_back(cvGetReal2D(t, 1, 0)); cameraParameter.push_back(cvGetReal2D(t, 2, 0)); cvReleaseMat(&R); cvReleaseMat(&t); cvReleaseMat(&q); cvReleaseMat(&invK); cvReleaseMat(&invR); } } } for (int iTheta = 0; iTheta < vTheta.size(); iTheta++) { if (vTheta[iTheta].isStatic) { double IDCT = sqrt(1.0/(double)nFrames); double X = vTheta[iTheta].thetaX[0]*IDCT; double Y = vTheta[iTheta].thetaY[0]*IDCT; double Z = vTheta[iTheta].thetaZ[0]*IDCT; cameraParameter.push_back(X); cameraParameter.push_back(Y); cameraParameter.push_back(Z); } else { for (int iBase = 0; iBase < vTheta[iTheta].thetaX.size(); iBase++) { cameraParameter.push_back(vTheta[iTheta].thetaX[iBase]); } for (int iBase = 0; iBase < vTheta[iTheta].thetaX.size(); iBase++) { cameraParameter.push_back(vTheta[iTheta].thetaY[iBase]); } for (int iBase = 0; iBase < vTheta[iTheta].thetaX.size(); iBase++) { cameraParameter.push_back(vTheta[iTheta].thetaZ[iBase]); } } } CvMat *visibilityMask = cvCreateMat(vTheta.size(), vCamera.size()*nFrames, CV_32FC1); cvSetZero(visibilityMask); int NZ = 0; for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) { for (int iFrame = 0; iFrame < vFeature[iFeature].vFrame.size(); iFrame++) { feature2DParameter.push_back(vFeature[iFeature].vx[iFrame]); feature2DParameter.push_back(vFeature[iFeature].vy[iFrame]); cvSetReal2D(visibilityMask, iFeature, iFrame, 1); } } for (int iFeature = 0; iFeature < visibilityMask->rows; iFeature++) { for (int iFrame = 0; iFrame < visibilityMask->cols; iFrame++) { vMask.push_back(cvGetReal2D(visibilityMask, iFeature, iFrame)); } } cvReleaseMat(&visibilityMask); } void GetParameterForGBA(vector<Feature> vFeature, vector<Camera> vCamera, vector<Theta> vTheta, CvMat *K, int nFrames, vector<double> &cameraParameter, vector<double> &feature2DParameter, CvMat &visibilityMask) { int nFeatures = vFeature.size(); for (int iCamera = 0; iCamera < vCamera.size(); iCamera++) { for (int iFrame = 0; iFrame < nFrames; iFrame++) { vector<int>::const_iterator it = find(vCamera[iCamera].vTakenFrame.begin(), vCamera[iCamera].vTakenFrame.end(), iFrame); if (it == vCamera[iCamera].vTakenFrame.end()) { cameraParameter.push_back(0); cameraParameter.push_back(0); cameraParameter.push_back(0); cameraParameter.push_back(0); cameraParameter.push_back(0); cameraParameter.push_back(0); cameraParameter.push_back(0); } else { CvMat *q = cvCreateMat(4,1,CV_32FC1); CvMat *R = cvCreateMat(3,3,CV_32FC1); CvMat *t = cvCreateMat(3,1,CV_32FC1); CvMat *invK = cvCreateMat(3,3,CV_32FC1); CvMat *invR = cvCreateMat(3,3,CV_32FC1); cvInvert(K, invK); GetSubMatColwise(vCamera[iCamera].vP[iFrame], 0, 2, R); GetSubMatColwise(vCamera[iCamera].vP[iFrame], 3, 3, t); cvMatMul(invK, R, R); cvInvert(R, invR); cvMatMul(invK, t, t); cvMatMul(invR, t, t); ScalarMul(t, -1, t); Rotation2Quaternion(R, q); cameraParameter.push_back(cvGetReal2D(q, 0, 0)); cameraParameter.push_back(cvGetReal2D(q, 1, 0)); cameraParameter.push_back(cvGetReal2D(q, 2, 0)); cameraParameter.push_back(cvGetReal2D(q, 3, 0)); cameraParameter.push_back(cvGetReal2D(t, 0, 0)); cameraParameter.push_back(cvGetReal2D(t, 1, 0)); cameraParameter.push_back(cvGetReal2D(t, 2, 0)); cvReleaseMat(&R); cvReleaseMat(&t); cvReleaseMat(&q); cvReleaseMat(&invK); cvReleaseMat(&invR); } } } for (int iTheta = 0; iTheta < vTheta.size(); iTheta++) { if (vTheta[iTheta].isStatic) { double IDCT = sqrt(1.0/(double)nFrames); double X = vTheta[iTheta].thetaX[0]*IDCT; double Y = vTheta[iTheta].thetaY[0]*IDCT; double Z = vTheta[iTheta].thetaZ[0]*IDCT; cameraParameter.push_back(X); cameraParameter.push_back(Y); cameraParameter.push_back(Z); } else { for (int iBase = 0; iBase < vTheta[iTheta].thetaX.size(); iBase++) { cameraParameter.push_back(vTheta[iTheta].thetaX[iBase]); } for (int iBase = 0; iBase < vTheta[iTheta].thetaX.size(); iBase++) { cameraParameter.push_back(vTheta[iTheta].thetaY[iBase]); } for (int iBase = 0; iBase < vTheta[iTheta].thetaX.size(); iBase++) { cameraParameter.push_back(vTheta[iTheta].thetaZ[iBase]); } } } visibilityMask = *cvCreateMat(vTheta.size(), vCamera.size()*nFrames, CV_32FC1); cvSetZero(&visibilityMask); int NZ = 0; for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) { for (int iFrame = 0; iFrame < vFeature[iFeature].vFrame.size(); iFrame++) { feature2DParameter.push_back(vFeature[iFeature].vx[iFrame]); feature2DParameter.push_back(vFeature[iFeature].vy[iFrame]); cvSetReal2D(&visibilityMask, iFeature, iFrame, 1); } } } //void GetCameraParameter(CvMat *P, CvMat *K, CvMat &R, CvMat &C) //{ // R = *cvCreateMat(3,3,CV_32FC1); // C = *cvCreateMat(3,1,CV_32FC1); // CvMat *temp34 = cvCreateMat(3,4,CV_32FC1); // CvMat *invK = cvCreateMat(3,3,CV_32FC1); // cvInvert(K, invK); // cvMatMul(invK, P, temp34); // GetSubMatColwise(temp34, 0,2,&R); // GetSubMatColwise(temp34, 3,3,&C); // CvMat *invR = cvCreateMat(3,3,CV_32FC1); // cvInvert(&R, invR); // cvMatMul(invR, &C, &C); // ScalarMul(&C, -1, &C); // // cvReleaseMat(&temp34); // cvReleaseMat(&invK); // cvReleaseMat(&invR); //} // //void GetCameraParameter(CvMat *P, CvMat *K, CvMat *R, CvMat *C) //{ // //R = *cvCreateMat(3,3,CV_32FC1); // //C = *cvCreateMat(3,1,CV_32FC1); // CvMat *temp34 = cvCreateMat(3,4,CV_32FC1); // CvMat *invK = cvCreateMat(3,3,CV_32FC1); // cvInvert(K, invK); // cvMatMul(invK, P, temp34); // GetSubMatColwise(temp34, 0,2,R); // GetSubMatColwise(temp34, 3,3,C); // CvMat *invR = cvCreateMat(3,3,CV_32FC1); // cvInvert(R, invR); // cvMatMul(invR, C, C); // ScalarMul(C, -1, C); // // cvReleaseMat(&temp34); // cvReleaseMat(&invK); // cvReleaseMat(&invR); //} void CreateCameraMatrix(CvMat *R, CvMat *C, CvMat *K, CvMat &P) { P = *cvCreateMat(3,4,CV_32FC1); cvSetIdentity(&P); ScalarMul(C, -1, C); SetSubMat(&P, 0,3, C); cvMatMul(R, &P, &P); cvMatMul(K, &P, &P); } void CreateCameraMatrix(CvMat *R, CvMat *C, CvMat *K, CvMat *P) { cvSetIdentity(P); ScalarMul(C, -1, C); SetSubMat(P, 0,3, C); cvMatMul(R, P, P); cvMatMul(K, P, P); } int ExcludePointBehindCamera(CvMat *X, CvMat *P1, CvMat *P2, vector<int> featureID, vector<int> &excludedFeatureID, CvMat &cX) { CvMat *H1 = cvCreateMat(4, 4, CV_32FC1); CvMat *invH1 = cvCreateMat(4, 4, CV_32FC1); CvMat *HX1 = cvCreateMat(X->rows, X->cols, CV_32FC1); cvSetIdentity(H1); SetSubMat(H1, 0, 0, P1); cvInvert(H1, invH1); Pxx_inhomo(H1, X, HX1); CvMat *H2 = cvCreateMat(4, 4, CV_32FC1); CvMat *invH2 = cvCreateMat(4, 4, CV_32FC1); CvMat *HX2 = cvCreateMat(X->rows, X->cols, CV_32FC1); cvSetIdentity(H2); SetSubMat(H2, 0, 0, P2); cvInvert(H2, invH2); Pxx_inhomo(H2, X, HX2); excludedFeatureID.clear(); for (int i = 0; i < X->rows; i++) { if ((cvGetReal2D(HX1, i, 2) > 0) && (cvGetReal2D(HX2, i, 2) > 0)) excludedFeatureID.push_back(featureID[i]); } if (excludedFeatureID.size() == 0) return 0; cX = *cvCreateMat(excludedFeatureID.size(),3, CV_32FC1); int k = 0; for (int i = 0; i < X->rows; i++) { if ((cvGetReal2D(HX1, i, 2) > 0) && (cvGetReal2D(HX2, i, 2) > 0)) { cvSetReal2D(&cX, k, 0, cvGetReal2D(X, i, 0)); cvSetReal2D(&cX, k, 1, cvGetReal2D(X, i, 1)); cvSetReal2D(&cX, k, 2, cvGetReal2D(X, i, 2)); k++; } } return 1; } int ExcludePointBehindCamera_mem(CvMat *X, CvMat *P1, CvMat *P2, vector<int> featureID, vector<int> &excludedFeatureID, vector<vector<double> > &cX) { CvMat *H1 = cvCreateMat(4, 4, CV_32FC1); CvMat *invH1 = cvCreateMat(4, 4, CV_32FC1); CvMat *HX1 = cvCreateMat(X->rows, X->cols, CV_32FC1); cvSetIdentity(H1); SetSubMat(H1, 0, 0, P1); cvInvert(H1, invH1); Pxx_inhomo(H1, X, HX1); CvMat *H2 = cvCreateMat(4, 4, CV_32FC1); CvMat *invH2 = cvCreateMat(4, 4, CV_32FC1); CvMat *HX2 = cvCreateMat(X->rows, X->cols, CV_32FC1); cvSetIdentity(H2); SetSubMat(H2, 0, 0, P2); cvInvert(H2, invH2); Pxx_inhomo(H2, X, HX2); excludedFeatureID.clear(); for (int i = 0; i < X->rows; i++) { if ((cvGetReal2D(HX1, i, 2) > 0) && (cvGetReal2D(HX2, i, 2) > 0)) excludedFeatureID.push_back(featureID[i]); } if (excludedFeatureID.size() == 0) { cvReleaseMat(&H1); cvReleaseMat(&HX1); cvReleaseMat(&H2); cvReleaseMat(&HX2); cvReleaseMat(&invH1); cvReleaseMat(&invH2); return 0; } //cX = *cvCreateMat(excludedFeatureID.size(),3, CV_32FC1); int k = 0; for (int i = 0; i < X->rows; i++) { if ((cvGetReal2D(HX1, i, 2) > 0) && (cvGetReal2D(HX2, i, 2) > 0)) { vector<double> cX_vec; cX_vec.push_back(cvGetReal2D(X, i, 0)); cX_vec.push_back(cvGetReal2D(X, i, 1)); cX_vec.push_back(cvGetReal2D(X, i, 2)); cX.push_back(cX_vec); k++; } } cvReleaseMat(&H1); cvReleaseMat(&HX1); cvReleaseMat(&H2); cvReleaseMat(&HX2); cvReleaseMat(&invH1); cvReleaseMat(&invH2); return cX.size(); } int ExcludePointBehindCamera_mem_fast(CvMat *X, CvMat *P1, CvMat *P2, vector<int> &featureID, vector<int> &excludedFeatureID, vector<vector<double> > &cX) { CvMat *H1 = cvCreateMat(4, 4, CV_32FC1); CvMat *invH1 = cvCreateMat(4, 4, CV_32FC1); CvMat *HX1 = cvCreateMat(X->rows, X->cols, CV_32FC1); cvSetIdentity(H1); SetSubMat(H1, 0, 0, P1); cvInvert(H1, invH1); Pxx_inhomo(H1, X, HX1); CvMat *H2 = cvCreateMat(4, 4, CV_32FC1); CvMat *invH2 = cvCreateMat(4, 4, CV_32FC1); CvMat *HX2 = cvCreateMat(X->rows, X->cols, CV_32FC1); cvSetIdentity(H2); SetSubMat(H2, 0, 0, P2); cvInvert(H2, invH2); Pxx_inhomo(H2, X, HX2); excludedFeatureID.clear(); for (int i = 0; i < X->rows; i++) { if ((cvGetReal2D(HX1, i, 2) > 0) && (cvGetReal2D(HX2, i, 2) > 0)) { excludedFeatureID.push_back(featureID[i]); vector<double> cX_vec; cX_vec.push_back(cvGetReal2D(X, i, 0)); cX_vec.push_back(cvGetReal2D(X, i, 1)); cX_vec.push_back(cvGetReal2D(X, i, 2)); cX.push_back(cX_vec); } } if (excludedFeatureID.size() == 0) { cvReleaseMat(&H1); cvReleaseMat(&HX1); cvReleaseMat(&H2); cvReleaseMat(&HX2); cvReleaseMat(&invH1); cvReleaseMat(&invH2); return 0; } cvReleaseMat(&H1); cvReleaseMat(&HX1); cvReleaseMat(&H2); cvReleaseMat(&HX2); cvReleaseMat(&invH1); cvReleaseMat(&invH2); return cX.size(); } int ExcludePointAtInfinity(CvMat *X, CvMat *P1, CvMat *P2, CvMat *K1, CvMat *K2, vector<int> featureID, vector<int> &excludedFeatureID, CvMat &cX) { CvMat *q1 = cvCreateMat(4,1,CV_32FC1); CvMat *R1 = cvCreateMat(3,3,CV_32FC1); CvMat *t1 = cvCreateMat(3,1,CV_32FC1); CvMat *invK1 = cvCreateMat(3,3,CV_32FC1); CvMat *invR1 = cvCreateMat(3,3,CV_32FC1); CvMat *q2 = cvCreateMat(4,1,CV_32FC1); CvMat *R2 = cvCreateMat(3,3,CV_32FC1); CvMat *t2 = cvCreateMat(3,1,CV_32FC1); CvMat *invK2 = cvCreateMat(3,3,CV_32FC1); CvMat *invR2 = cvCreateMat(3,3,CV_32FC1); GetSubMatColwise(P1, 0, 2, R1); GetSubMatColwise(P1, 3, 3, t1); cvInvert(K1, invK1); cvMatMul(invK1, R1, R1); cvInvert(R1, invR1); cvMatMul(invK1, t1, t1); cvMatMul(invR1, t1, t1); ScalarMul(t1, -1, t1); GetSubMatColwise(P2, 0, 2, R2); GetSubMatColwise(P2, 3, 3, t2); cvInvert(K2, invK2); cvMatMul(invK2, R2, R2); cvInvert(R2, invR2); cvMatMul(invK2, t2, t2); cvMatMul(invR2, t2, t2); ScalarMul(t2, -1, t2); double xC1 = cvGetReal2D(t1, 0, 0); double yC1 = cvGetReal2D(t1, 1, 0); double zC1 = cvGetReal2D(t1, 2, 0); double xC2 = cvGetReal2D(t2, 0, 0); double yC2 = cvGetReal2D(t2, 1, 0); double zC2 = cvGetReal2D(t2, 2, 0); excludedFeatureID.clear(); vector<double> vInner; for (int i = 0; i < X->rows; i++) { double x3D = cvGetReal2D(X, i, 0); double y3D = cvGetReal2D(X, i, 1); double z3D = cvGetReal2D(X, i, 2); double v1x = x3D - xC1; double v1y = y3D - yC1; double v1z = z3D - zC1; double v2x = x3D - xC2; double v2y = y3D - yC2; double v2z = z3D - zC2; double nv1 = sqrt(v1x*v1x+v1y*v1y+v1z*v1z); double nv2 = sqrt(v2x*v2x+v2y*v2y+v2z*v2z); v1x /= nv1; v1y /= nv1; v1z /= nv1; v2x /= nv2; v2y /= nv2; v2z /= nv2; double inner = v1x*v2x+v1y*v2y+v1z*v2z; vInner.push_back(inner); if ((abs(inner) < cos(PI/180*3)) && (inner > 0)) excludedFeatureID.push_back(featureID[i]); } if (excludedFeatureID.size() == 0) return 0; cX = *cvCreateMat(excludedFeatureID.size(),3, CV_32FC1); int k = 0; for (int i = 0; i < X->rows; i++) { if ((abs(vInner[i]) < cos(PI/180*3)) && (vInner[i] > 0)) { cvSetReal2D(&cX, k, 0, cvGetReal2D(X, i, 0)); cvSetReal2D(&cX, k, 1, cvGetReal2D(X, i, 1)); cvSetReal2D(&cX, k, 2, cvGetReal2D(X, i, 2)); k++; } } return 1; } int ExcludePointAtInfinity_mem(CvMat *X, CvMat *P1, CvMat *P2, CvMat *K1, CvMat *K2, vector<int> featureID, vector<int> &excludedFeatureID, vector<vector<double> > &cX) { CvMat *q1 = cvCreateMat(4,1,CV_32FC1); CvMat *R1 = cvCreateMat(3,3,CV_32FC1); CvMat *t1 = cvCreateMat(3,1,CV_32FC1); CvMat *invK1 = cvCreateMat(3,3,CV_32FC1); CvMat *invR1 = cvCreateMat(3,3,CV_32FC1); CvMat *q2 = cvCreateMat(4,1,CV_32FC1); CvMat *R2 = cvCreateMat(3,3,CV_32FC1); CvMat *t2 = cvCreateMat(3,1,CV_32FC1); CvMat *invK2 = cvCreateMat(3,3,CV_32FC1); CvMat *invR2 = cvCreateMat(3,3,CV_32FC1); GetSubMatColwise(P1, 0, 2, R1); GetSubMatColwise(P1, 3, 3, t1); cvInvert(K1, invK1); cvMatMul(invK1, R1, R1); cvInvert(R1, invR1); cvMatMul(invK1, t1, t1); cvMatMul(invR1, t1, t1); ScalarMul(t1, -1, t1); GetSubMatColwise(P2, 0, 2, R2); GetSubMatColwise(P2, 3, 3, t2); cvInvert(K2, invK2); cvMatMul(invK2, R2, R2); cvInvert(R2, invR2); cvMatMul(invK2, t2, t2); cvMatMul(invR2, t2, t2); ScalarMul(t2, -1, t2); double xC1 = cvGetReal2D(t1, 0, 0); double yC1 = cvGetReal2D(t1, 1, 0); double zC1 = cvGetReal2D(t1, 2, 0); double xC2 = cvGetReal2D(t2, 0, 0); double yC2 = cvGetReal2D(t2, 1, 0); double zC2 = cvGetReal2D(t2, 2, 0); excludedFeatureID.clear(); vector<double> vInner; for (int i = 0; i < X->rows; i++) { double x3D = cvGetReal2D(X, i, 0); double y3D = cvGetReal2D(X, i, 1); double z3D = cvGetReal2D(X, i, 2); double v1x = x3D - xC1; double v1y = y3D - yC1; double v1z = z3D - zC1; double v2x = x3D - xC2; double v2y = y3D - yC2; double v2z = z3D - zC2; double nv1 = sqrt(v1x*v1x+v1y*v1y+v1z*v1z); double nv2 = sqrt(v2x*v2x+v2y*v2y+v2z*v2z); v1x /= nv1; v1y /= nv1; v1z /= nv1; v2x /= nv2; v2y /= nv2; v2z /= nv2; double inner = v1x*v2x+v1y*v2y+v1z*v2z; vInner.push_back(inner); if ((abs(inner) < cos(PI/180*3)) && (inner > 0)) excludedFeatureID.push_back(featureID[i]); } if (excludedFeatureID.size() == 0) { cvReleaseMat(&q1); cvReleaseMat(&R1); cvReleaseMat(&t1); cvReleaseMat(&invK1); cvReleaseMat(&invR1); cvReleaseMat(&q2); cvReleaseMat(&R2); cvReleaseMat(&t2); cvReleaseMat(&invK2); cvReleaseMat(&invR2); return 0; } int k = 0; for (int i = 0; i < X->rows; i++) { if ((abs(vInner[i]) < cos(PI/180*3)) && (vInner[i] > 0)) { vector<double> cX_vec; cX_vec.push_back(cvGetReal2D(X, i, 0)); cX_vec.push_back(cvGetReal2D(X, i, 1)); cX_vec.push_back(cvGetReal2D(X, i, 2)); cX.push_back(cX_vec); k++; } } cvReleaseMat(&q1); cvReleaseMat(&R1); cvReleaseMat(&t1); cvReleaseMat(&invK1); cvReleaseMat(&invR1); cvReleaseMat(&q2); cvReleaseMat(&R2); cvReleaseMat(&t2); cvReleaseMat(&invK2); cvReleaseMat(&invR2); return cX.size(); } int ExcludePointAtInfinity_mem_fast(CvMat *X, CvMat *P1, CvMat *P2, CvMat *K1, CvMat *K2, vector<int> &featureID, vector<int> &excludedFeatureID, vector<vector<double> > &cX) { CvMat *q1 = cvCreateMat(4,1,CV_32FC1); CvMat *R1 = cvCreateMat(3,3,CV_32FC1); CvMat *t1 = cvCreateMat(3,1,CV_32FC1); CvMat *invK1 = cvCreateMat(3,3,CV_32FC1); CvMat *invR1 = cvCreateMat(3,3,CV_32FC1); CvMat *q2 = cvCreateMat(4,1,CV_32FC1); CvMat *R2 = cvCreateMat(3,3,CV_32FC1); CvMat *t2 = cvCreateMat(3,1,CV_32FC1); CvMat *invK2 = cvCreateMat(3,3,CV_32FC1); CvMat *invR2 = cvCreateMat(3,3,CV_32FC1); GetSubMatColwise(P1, 0, 2, R1); GetSubMatColwise(P1, 3, 3, t1); cvInvert(K1, invK1); cvMatMul(invK1, R1, R1); cvInvert(R1, invR1); cvMatMul(invK1, t1, t1); cvMatMul(invR1, t1, t1); ScalarMul(t1, -1, t1); GetSubMatColwise(P2, 0, 2, R2); GetSubMatColwise(P2, 3, 3, t2); cvInvert(K2, invK2); cvMatMul(invK2, R2, R2); cvInvert(R2, invR2); cvMatMul(invK2, t2, t2); cvMatMul(invR2, t2, t2); ScalarMul(t2, -1, t2); double xC1 = cvGetReal2D(t1, 0, 0); double yC1 = cvGetReal2D(t1, 1, 0); double zC1 = cvGetReal2D(t1, 2, 0); double xC2 = cvGetReal2D(t2, 0, 0); double yC2 = cvGetReal2D(t2, 1, 0); double zC2 = cvGetReal2D(t2, 2, 0); excludedFeatureID.clear(); vector<double> vInner; for (int i = 0; i < X->rows; i++) { double x3D = cvGetReal2D(X, i, 0); double y3D = cvGetReal2D(X, i, 1); double z3D = cvGetReal2D(X, i, 2); double v1x = x3D - xC1; double v1y = y3D - yC1; double v1z = z3D - zC1; double v2x = x3D - xC2; double v2y = y3D - yC2; double v2z = z3D - zC2; double nv1 = sqrt(v1x*v1x+v1y*v1y+v1z*v1z); double nv2 = sqrt(v2x*v2x+v2y*v2y+v2z*v2z); v1x /= nv1; v1y /= nv1; v1z /= nv1; v2x /= nv2; v2y /= nv2; v2z /= nv2; double inner = v1x*v2x+v1y*v2y+v1z*v2z; vInner.push_back(inner); if ((abs(inner) < cos(PI/180*3)) && (inner > 0)) { vector<double> cX_vec; cX_vec.push_back(x3D); cX_vec.push_back(y3D); cX_vec.push_back(z3D); cX.push_back(cX_vec); excludedFeatureID.push_back(featureID[i]); } } if (excludedFeatureID.size() == 0) { cvReleaseMat(&q1); cvReleaseMat(&R1); cvReleaseMat(&t1); cvReleaseMat(&invK1); cvReleaseMat(&invR1); cvReleaseMat(&q2); cvReleaseMat(&R2); cvReleaseMat(&t2); cvReleaseMat(&invK2); cvReleaseMat(&invR2); return 0; } cvReleaseMat(&q1); cvReleaseMat(&R1); cvReleaseMat(&t1); cvReleaseMat(&invK1); cvReleaseMat(&invR1); cvReleaseMat(&q2); cvReleaseMat(&R2); cvReleaseMat(&t2); cvReleaseMat(&invK2); cvReleaseMat(&invR2); return cX.size(); } void ExcludePointHighReprojectionError(vector<Feature> vFeature, vector<CvMat *> cP, vector<int> vUsedFrame, vector<int> &visibleStrucrtureID, CvMat *X_tot) { vector<bool> temp; temp.resize(visibleStrucrtureID.size(), true); for (int iP = 0; iP < cP.size(); iP++) { for (int iVS = 0; iVS < visibleStrucrtureID.size(); iVS++) { vector<int>:: const_iterator it = find(vFeature[visibleStrucrtureID[iVS]].vFrame.begin(), vFeature[visibleStrucrtureID[iVS]].vFrame.end(), vUsedFrame[iP]); if (it != vFeature[visibleStrucrtureID[iVS]].vFrame.end()) { int idx = (int) (it - vFeature[visibleStrucrtureID[iVS]].vFrame.begin()); CvMat *X = cvCreateMat(4, 1, CV_32FC1); CvMat *x = cvCreateMat(3, 1, CV_32FC1); cvSetReal2D(X, 0, 0, cvGetReal2D(X_tot, visibleStrucrtureID[iVS], 0)); cvSetReal2D(X, 1, 0, cvGetReal2D(X_tot, visibleStrucrtureID[iVS], 1)); cvSetReal2D(X, 2, 0, cvGetReal2D(X_tot, visibleStrucrtureID[iVS], 2)); cvSetReal2D(X, 3, 0, 1); cvMatMul(cP[iP], X, x); double u0 = vFeature[visibleStrucrtureID[iVS]].vx[idx]; double v0 = vFeature[visibleStrucrtureID[iVS]].vy[idx]; double u1 = cvGetReal2D(x, 0, 0)/cvGetReal2D(x, 2, 0); double v1 = cvGetReal2D(x, 1, 0)/cvGetReal2D(x, 2, 0); if (sqrt((u0-u1)*(u0-u1)+(v0-v1)*(v0-v1)) > 5) { cout << visibleStrucrtureID[iVS] << "th 3D point erased " << sqrt((u0-u1)*(u0-u1)+(v0-v1)*(v0-v1)) << endl; if(temp[iVS]) temp[iVS] = false; } cvReleaseMat(&X); cvReleaseMat(&x); } } } vector<int> tempID; for (int iVS = 0; iVS < visibleStrucrtureID.size(); iVS++) { if (temp[iVS]) { tempID.push_back(visibleStrucrtureID[iVS]); } } visibleStrucrtureID = tempID; } void ExcludePointHighReprojectionError_mem(vector<Feature> &vFeature, vector<CvMat *> &cP, vector<int> vUsedFrame, vector<int> &visibleStrucrtureID, CvMat *X_tot) { vector<bool> temp; temp.resize(visibleStrucrtureID.size(), true); CvMat *X = cvCreateMat(4, 1, CV_32FC1); CvMat *x = cvCreateMat(3, 1, CV_32FC1); for (int iP = 0; iP < cP.size(); iP++) { for (int iVS = 0; iVS < visibleStrucrtureID.size(); iVS++) { vector<int>:: const_iterator it = find(vFeature[visibleStrucrtureID[iVS]].vFrame.begin(), vFeature[visibleStrucrtureID[iVS]].vFrame.end(), vUsedFrame[iP]); if (it != vFeature[visibleStrucrtureID[iVS]].vFrame.end()) { int idx = (int) (it - vFeature[visibleStrucrtureID[iVS]].vFrame.begin()); cvSetReal2D(X, 0, 0, cvGetReal2D(X_tot, visibleStrucrtureID[iVS], 0)); cvSetReal2D(X, 1, 0, cvGetReal2D(X_tot, visibleStrucrtureID[iVS], 1)); cvSetReal2D(X, 2, 0, cvGetReal2D(X_tot, visibleStrucrtureID[iVS], 2)); cvSetReal2D(X, 3, 0, 1); cvMatMul(cP[iP], X, x); double u0 = vFeature[visibleStrucrtureID[iVS]].vx[idx]; double v0 = vFeature[visibleStrucrtureID[iVS]].vy[idx]; double u1 = cvGetReal2D(x, 0, 0)/cvGetReal2D(x, 2, 0); double v1 = cvGetReal2D(x, 1, 0)/cvGetReal2D(x, 2, 0); if (sqrt((u0-u1)*(u0-u1)+(v0-v1)*(v0-v1)) > 5) { cout << visibleStrucrtureID[iVS] << "th 3D point erased " << sqrt((u0-u1)*(u0-u1)+(v0-v1)*(v0-v1)) << endl; if(temp[iVS]) temp[iVS] = false; } } } } cvReleaseMat(&X); cvReleaseMat(&x); vector<int> tempID; for (int iVS = 0; iVS < visibleStrucrtureID.size(); iVS++) { if (temp[iVS]) { tempID.push_back(visibleStrucrtureID[iVS]); } } visibleStrucrtureID = tempID; } int ExcludePointHighReprojectionError_mem_fast(vector<Feature> &vFeature, vector<CvMat *> &cP, vector<int> vUsedFrame, CvMat *X_tot) { CvMat *X = cvCreateMat(4, 1, CV_32FC1); CvMat *x = cvCreateMat(3, 1, CV_32FC1); int count1=0, count2=0; for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) { if (vFeature[iFeature].isRegistered) { count1++; int nProj = 0; for (int iP = 0; iP < cP.size(); iP++) { vector<int>:: const_iterator it = find(vFeature[iFeature].vFrame.begin(), vFeature[iFeature].vFrame.end(), vUsedFrame[iP]); if (it != vFeature[iFeature].vFrame.end()) { nProj++; } } if (nProj == 0) continue; for (int iP = 0; iP < cP.size(); iP++) { vector<int>:: const_iterator it = find(vFeature[iFeature].vFrame.begin(), vFeature[iFeature].vFrame.end(), vUsedFrame[iP]); if (it != vFeature[iFeature].vFrame.end()) { int idx = (int) (it - vFeature[iFeature].vFrame.begin()); cvSetReal2D(X, 0, 0, cvGetReal2D(X_tot, iFeature, 0)); cvSetReal2D(X, 1, 0, cvGetReal2D(X_tot, iFeature, 1)); cvSetReal2D(X, 2, 0, cvGetReal2D(X_tot, iFeature, 2)); cvSetReal2D(X, 3, 0, 1); cvMatMul(cP[iP], X, x); //PrintMat(X); //PrintMat(cP[iP]); //PrintMat(x); double u0 = vFeature[iFeature].vx[idx]; double v0 = vFeature[iFeature].vy[idx]; double u1 = cvGetReal2D(x, 0, 0)/cvGetReal2D(x, 2, 0); double v1 = cvGetReal2D(x, 1, 0)/cvGetReal2D(x, 2, 0); double dist = sqrt((u0-u1)*(u0-u1)+(v0-v1)*(v0-v1)); //cout << dist << endl; if (dist > 3) { vFeature[iFeature].vFrame.erase(vFeature[iFeature].vFrame.begin()+idx); vFeature[iFeature].vx.erase(vFeature[iFeature].vx.begin()+idx); vFeature[iFeature].vy.erase(vFeature[iFeature].vy.begin()+idx); vFeature[iFeature].vx_dis.erase(vFeature[iFeature].vx_dis.begin()+idx); vFeature[iFeature].vy_dis.erase(vFeature[iFeature].vy_dis.begin()+idx); vFeature[iFeature].vCamera.erase(vFeature[iFeature].vCamera.begin()+idx); nProj--; if (nProj < 2) { vFeature[iFeature].isRegistered = false; count2++; break; } } } } } } cout << count2 << " points are deleted." << endl; cvReleaseMat(&X); cvReleaseMat(&x); return count1; } int ExcludePointHighReprojectionError_mem_fast_Distortion(vector<Feature> &vFeature, vector<CvMat *> &cP, vector<int> vUsedFrame, CvMat *X_tot, double omega, CvMat *K) { CvMat *X = cvCreateMat(4, 1, CV_32FC1); CvMat *x = cvCreateMat(3, 1, CV_32FC1); int count1=0, count2=0; for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) { if (vFeature[iFeature].isRegistered) { count1++; int nProj = 0; for (int iP = 0; iP < cP.size(); iP++) { vector<int>:: const_iterator it = find(vFeature[iFeature].vFrame.begin(), vFeature[iFeature].vFrame.end(), vUsedFrame[iP]); if (it != vFeature[iFeature].vFrame.end()) { nProj++; } } if (nProj == 0) continue; for (int iP = 0; iP < cP.size(); iP++) { vector<int>:: const_iterator it = find(vFeature[iFeature].vFrame.begin(), vFeature[iFeature].vFrame.end(), vUsedFrame[iP]); if (it != vFeature[iFeature].vFrame.end()) { int idx = (int) (it - vFeature[iFeature].vFrame.begin()); cvSetReal2D(X, 0, 0, cvGetReal2D(X_tot, iFeature, 0)); cvSetReal2D(X, 1, 0, cvGetReal2D(X_tot, iFeature, 1)); cvSetReal2D(X, 2, 0, cvGetReal2D(X_tot, iFeature, 2)); cvSetReal2D(X, 3, 0, 1); cvMatMul(cP[iP], X, x); double u = cvGetReal2D(x, 0, 0)/cvGetReal2D(x, 2, 0); double v = cvGetReal2D(x, 1, 0)/cvGetReal2D(x, 2, 0); double tan_omega_half_2 = tan(omega/2)*2; double K11 = cvGetReal2D(K, 0, 0); double K22 = cvGetReal2D(K, 1, 1); double K13 = cvGetReal2D(K, 0, 2); double K23 = cvGetReal2D(K, 1, 2); double u_n = u/K11 - K13/K11; double v_n = v/K22 - K23/K22; double r_u = sqrt(u_n*u_n+v_n*v_n); double r_d = 1/omega*atan(r_u*tan_omega_half_2); double u_d_n = r_d/r_u * u_n; double v_d_n = r_d/r_u * v_n; double u1 = u_d_n*K11 + K13; double v1 = v_d_n*K22 + K23; double u0 = vFeature[iFeature].vx_dis[idx]; double v0 = vFeature[iFeature].vy_dis[idx]; double dist = sqrt((u0-u1)*(u0-u1)+(v0-v1)*(v0-v1)); //cout << dist << endl; if (dist > 3) { vFeature[iFeature].vFrame.erase(vFeature[iFeature].vFrame.begin()+idx); vFeature[iFeature].vx.erase(vFeature[iFeature].vx.begin()+idx); vFeature[iFeature].vy.erase(vFeature[iFeature].vy.begin()+idx); vFeature[iFeature].vx_dis.erase(vFeature[iFeature].vx_dis.begin()+idx); vFeature[iFeature].vy_dis.erase(vFeature[iFeature].vy_dis.begin()+idx); vFeature[iFeature].vCamera.erase(vFeature[iFeature].vCamera.begin()+idx); nProj--; if (nProj < 2) { vFeature[iFeature].isRegistered = false; count2++; break; } } } } } } cout << count2 << " points are deleted." << endl; cvReleaseMat(&X); cvReleaseMat(&x); return count1; } int ExcludePointHighReprojectionError_mem_fast_Distortion_AD(vector<Feature> &vFeature, vector<CvMat *> &cP, vector<int> vUsedFrame, CvMat *X_tot, double omega, CvMat *K, vector<vector<int> > &vvPointIndex) { CvMat *X = cvCreateMat(4, 1, CV_32FC1); CvMat *x = cvCreateMat(3, 1, CV_32FC1); int count1=0, count2=0; for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) { if (vFeature[iFeature].isRegistered) { count1++; int nProj = 0; for (int iP = 0; iP < cP.size(); iP++) { vector<int>:: const_iterator it = find(vFeature[iFeature].vFrame.begin(), vFeature[iFeature].vFrame.end(), vUsedFrame[iP]); if (it != vFeature[iFeature].vFrame.end()) { nProj++; } } if (nProj == 0) continue; for (int iP = 0; iP < cP.size(); iP++) { vector<int>:: const_iterator it = find(vFeature[iFeature].vFrame.begin(), vFeature[iFeature].vFrame.end(), vUsedFrame[iP]); if (it != vFeature[iFeature].vFrame.end()) { int idx = (int) (it - vFeature[iFeature].vFrame.begin()); cvSetReal2D(X, 0, 0, cvGetReal2D(X_tot, iFeature, 0)); cvSetReal2D(X, 1, 0, cvGetReal2D(X_tot, iFeature, 1)); cvSetReal2D(X, 2, 0, cvGetReal2D(X_tot, iFeature, 2)); cvSetReal2D(X, 3, 0, 1); cvMatMul(cP[iP], X, x); double u = cvGetReal2D(x, 0, 0)/cvGetReal2D(x, 2, 0); double v = cvGetReal2D(x, 1, 0)/cvGetReal2D(x, 2, 0); double tan_omega_half_2 = tan(omega/2)*2; double K11 = cvGetReal2D(K, 0, 0); double K22 = cvGetReal2D(K, 1, 1); double K13 = cvGetReal2D(K, 0, 2); double K23 = cvGetReal2D(K, 1, 2); double u_n = u/K11 - K13/K11; double v_n = v/K22 - K23/K22; double r_u = sqrt(u_n*u_n+v_n*v_n); double r_d = 1/omega*atan(r_u*tan_omega_half_2); double u_d_n = r_d/r_u * u_n; double v_d_n = r_d/r_u * v_n; double u1 = u_d_n*K11 + K13; double v1 = v_d_n*K22 + K23; double u0 = vFeature[iFeature].vx_dis[idx]; double v0 = vFeature[iFeature].vy_dis[idx]; double dist = sqrt((u0-u1)*(u0-u1)+(v0-v1)*(v0-v1)); //cout << dist << endl; if (dist > 3) { vector<int>::const_iterator it = find(vvPointIndex[iP].begin(), vvPointIndex[iP].end(), vFeature[iFeature].id); //if (it != vvPointIndex[iP].end()) { int idx_point = (int) (it - vvPointIndex[iP].begin()); vvPointIndex[iP].erase(vvPointIndex[iP].begin()+idx_point); } vFeature[iFeature].vFrame.erase(vFeature[iFeature].vFrame.begin()+idx); vFeature[iFeature].vx.erase(vFeature[iFeature].vx.begin()+idx); vFeature[iFeature].vy.erase(vFeature[iFeature].vy.begin()+idx); vFeature[iFeature].vx_dis.erase(vFeature[iFeature].vx_dis.begin()+idx); vFeature[iFeature].vy_dis.erase(vFeature[iFeature].vy_dis.begin()+idx); vFeature[iFeature].vCamera.erase(vFeature[iFeature].vCamera.begin()+idx); nProj--; if (nProj < 2) { vFeature[iFeature].isRegistered = false; count2++; break; } } } } } } cout << count2 << " points are deleted." << endl; cvReleaseMat(&X); cvReleaseMat(&x); return count1; } int ExcludePointHighReprojectionError_mem_fast_AD(vector<Feature> &vFeature, vector<CvMat *> &cP, vector<int> vUsedFrame, CvMat *X_tot, CvMat *K, vector<vector<int> > &vvPointIndex) { CvMat *X = cvCreateMat(4, 1, CV_32FC1); CvMat *x = cvCreateMat(3, 1, CV_32FC1); int count1=0, count2=0; for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) { if (vFeature[iFeature].isRegistered) { count1++; int nProj = 0; for (int iP = 0; iP < cP.size(); iP++) { vector<int>:: const_iterator it = find(vFeature[iFeature].vFrame.begin(), vFeature[iFeature].vFrame.end(), vUsedFrame[iP]); if (it != vFeature[iFeature].vFrame.end()) { nProj++; } } if (nProj == 0) continue; for (int iP = 0; iP < cP.size(); iP++) { vector<int>:: const_iterator it = find(vFeature[iFeature].vFrame.begin(), vFeature[iFeature].vFrame.end(), vUsedFrame[iP]); if (it != vFeature[iFeature].vFrame.end()) { int idx = (int) (it - vFeature[iFeature].vFrame.begin()); cvSetReal2D(X, 0, 0, cvGetReal2D(X_tot, iFeature, 0)); cvSetReal2D(X, 1, 0, cvGetReal2D(X_tot, iFeature, 1)); cvSetReal2D(X, 2, 0, cvGetReal2D(X_tot, iFeature, 2)); cvSetReal2D(X, 3, 0, 1); cvMatMul(cP[iP], X, x); double u1 = cvGetReal2D(x, 0, 0)/cvGetReal2D(x, 2, 0); double v1 = cvGetReal2D(x, 1, 0)/cvGetReal2D(x, 2, 0); //double tan_omega_half_2 = tan(omega/2)*2; //double K11 = cvGetReal2D(K, 0, 0); //double K22 = cvGetReal2D(K, 1, 1); //double K13 = cvGetReal2D(K, 0, 2); //double K23 = cvGetReal2D(K, 1, 2); //double u_n = u/K11 - K13/K11; //double v_n = v/K22 - K23/K22; //double r_u = sqrt(u_n*u_n+v_n*v_n); //double r_d = 1/omega*atan(r_u*tan_omega_half_2); //double u_d_n = r_d/r_u * u_n; //double v_d_n = r_d/r_u * v_n; //double u1 = u_d_n*K11 + K13; //double v1 = v_d_n*K22 + K23; double u0 = vFeature[iFeature].vx_dis[idx]; double v0 = vFeature[iFeature].vy_dis[idx]; double dist = sqrt((u0-u1)*(u0-u1)+(v0-v1)*(v0-v1)); //cout << dist << endl; if (dist > 3) { vector<int>::const_iterator it = find(vvPointIndex[iP].begin(), vvPointIndex[iP].end(), vFeature[iFeature].id); if (it != vvPointIndex[iP].end()) { int idx_point = (int) (it - vvPointIndex[iP].begin()); vvPointIndex[iP].erase(vvPointIndex[iP].begin()+idx_point); } vFeature[iFeature].vFrame.erase(vFeature[iFeature].vFrame.begin()+idx); vFeature[iFeature].vx.erase(vFeature[iFeature].vx.begin()+idx); vFeature[iFeature].vy.erase(vFeature[iFeature].vy.begin()+idx); vFeature[iFeature].vx_dis.erase(vFeature[iFeature].vx_dis.begin()+idx); vFeature[iFeature].vy_dis.erase(vFeature[iFeature].vy_dis.begin()+idx); vFeature[iFeature].vCamera.erase(vFeature[iFeature].vCamera.begin()+idx); nProj--; if (nProj < 2) { vFeature[iFeature].isRegistered = false; count2++; break; } } } } } } cout << count2 << " points are deleted." << endl; cvReleaseMat(&X); cvReleaseMat(&x); return count1; } int ExcludePointHighReprojectionError_mem_fast_Distortion_ObstacleDetection(vector<Feature> &vFeature, vector<CvMat *> &cP, vector<int> vUsedFrame, CvMat *X_tot, double omega, double princ_x1, double princ_y1, CvMat *K) { CvMat *X = cvCreateMat(4, 1, CV_32FC1); CvMat *x = cvCreateMat(3, 1, CV_32FC1); int count1=0, count2=0; for (int iFeature = 0; iFeature < vFeature.size(); iFeature++) { if (vFeature[iFeature].isRegistered) { count1++; int nProj = 0; for (int iP = 0; iP < cP.size(); iP++) { vector<int>:: const_iterator it = find(vFeature[iFeature].vFrame.begin(), vFeature[iFeature].vFrame.end(), vUsedFrame[iP]); if (it != vFeature[iFeature].vFrame.end()) { nProj++; } } if (nProj == 0) continue; for (int iP = 0; iP < cP.size(); iP++) { vector<int>:: const_iterator it = find(vFeature[iFeature].vFrame.begin(), vFeature[iFeature].vFrame.end(), vUsedFrame[iP]); if (it != vFeature[iFeature].vFrame.end()) { int idx = (int) (it - vFeature[iFeature].vFrame.begin()); cvSetReal2D(X, 0, 0, cvGetReal2D(X_tot, iFeature, 0)); cvSetReal2D(X, 1, 0, cvGetReal2D(X_tot, iFeature, 1)); cvSetReal2D(X, 2, 0, cvGetReal2D(X_tot, iFeature, 2)); cvSetReal2D(X, 3, 0, 1); cvMatMul(cP[iP], X, x); double u = cvGetReal2D(x, 0, 0)/cvGetReal2D(x, 2, 0); double v = cvGetReal2D(x, 1, 0)/cvGetReal2D(x, 2, 0); double tan_omega_half_2 = tan(omega/2)*2; //double K11 = cvGetReal2D(K, 0, 0); //double K22 = cvGetReal2D(K, 1, 1); //double K13 = cvGetReal2D(K, 0, 2); //double K23 = cvGetReal2D(K, 1, 2); //double u_n = u/K11 - K13/K11; //double v_n = v/K22 - K23/K22; double u_n = u - princ_x1; double v_n = v - princ_y1; double r_u = sqrt(u_n*u_n+v_n*v_n); double r_d = 1/omega*atan(r_u*tan_omega_half_2); double u_d_n = r_d/r_u * u_n; double v_d_n = r_d/r_u * v_n; double u1 = u_d_n + princ_x1; double v1 = v_d_n + princ_y1; double u0 = vFeature[iFeature].vx_dis[idx]; double v0 = vFeature[iFeature].vy_dis[idx]; double dist = sqrt((u0-u1)*(u0-u1)+(v0-v1)*(v0-v1)); //cout << dist << endl; if (dist > 3) { vFeature[iFeature].vFrame.erase(vFeature[iFeature].vFrame.begin()+idx); vFeature[iFeature].vx.erase(vFeature[iFeature].vx.begin()+idx); vFeature[iFeature].vy.erase(vFeature[iFeature].vy.begin()+idx); vFeature[iFeature].vx_dis.erase(vFeature[iFeature].vx_dis.begin()+idx); vFeature[iFeature].vy_dis.erase(vFeature[iFeature].vy_dis.begin()+idx); vFeature[iFeature].vCamera.erase(vFeature[iFeature].vCamera.begin()+idx); nProj--; if (nProj < 2) { vFeature[iFeature].isRegistered = false; count2++; break; } } } } } } cout << count2 << " points are deleted." << endl; cvReleaseMat(&X); cvReleaseMat(&x); return count1; } bool ExcludePointHighReprojectionError_AddingFrame(vector<Feature> vFeature, vector<CvMat *> cP, vector<int> vUsedFrame , vector<int> &visibleStrucrtureID, CvMat &X_tot , vector<int> &visibleStrucrtureID_new, CvMat &X_tot_new) { visibleStrucrtureID_new.clear(); vector<double> vx, vy, vz; for (int iVS = 0; iVS < visibleStrucrtureID.size(); iVS++) { bool isIn = true; for (int iP = 0; iP < cP.size(); iP++) { vector<int>:: const_iterator it = find(vFeature[visibleStrucrtureID[iVS]].vFrame.begin(), vFeature[visibleStrucrtureID[iVS]].vFrame.end(), vUsedFrame[iP]); if (it != vFeature[visibleStrucrtureID[iVS]].vFrame.end()) { int idx = (int) (it - vFeature[visibleStrucrtureID[iVS]].vFrame.begin()); CvMat *X = cvCreateMat(4, 1, CV_32FC1); CvMat *x = cvCreateMat(3, 1, CV_32FC1); cvSetReal2D(X, 0, 0, cvGetReal2D(&X_tot, iVS, 0)); cvSetReal2D(X, 1, 0, cvGetReal2D(&X_tot, iVS, 1)); cvSetReal2D(X, 2, 0, cvGetReal2D(&X_tot, iVS, 2)); cvSetReal2D(X, 3, 0, 1); cvMatMul(cP[iP], X, x); double u0 = vFeature[visibleStrucrtureID[iVS]].vx[idx]; double v0 = vFeature[visibleStrucrtureID[iVS]].vy[idx]; double u1 = cvGetReal2D(x, 0, 0)/cvGetReal2D(x, 2, 0); double v1 = cvGetReal2D(x, 1, 0)/cvGetReal2D(x, 2, 0); if (sqrt((u0-u1)*(u0-u1)+(v0-v1)*(v0-v1)) > 5) { //cout << visibleStrucrtureID[iVS] << "th 3D point erased " << sqrt((u0-u1)*(u0-u1)+(v0-v1)*(v0-v1)) << endl; isIn = false; break; } cvReleaseMat(&X); cvReleaseMat(&x); } } if (isIn) { visibleStrucrtureID_new.push_back(visibleStrucrtureID[iVS]); vx.push_back(cvGetReal2D(&X_tot, iVS, 0)); vy.push_back(cvGetReal2D(&X_tot, iVS, 1)); vz.push_back(cvGetReal2D(&X_tot, iVS, 2)); } } if (visibleStrucrtureID_new.size() == 0) return false; X_tot_new = *cvCreateMat(visibleStrucrtureID_new.size(), 3, CV_32FC1); for (int ivx = 0; ivx < visibleStrucrtureID_new.size(); ivx++) { cvSetReal2D(&X_tot_new, ivx, 0, vx[ivx]); cvSetReal2D(&X_tot_new, ivx, 1, vy[ivx]); cvSetReal2D(&X_tot_new, ivx, 2, vz[ivx]); } return true; } bool ExcludePointHighReprojectionError_AddingFrame_mem(vector<Feature> &vFeature, vector<CvMat *> cP, vector<int> vUsedFrame , vector<int> &visibleStrucrtureID, CvMat *X_tot , vector<int> &visibleStrucrtureID_new, vector<vector<double> > &X_tot_new) { visibleStrucrtureID_new.clear(); vector<double> vx, vy, vz; for (int iVS = 0; iVS < visibleStrucrtureID.size(); iVS++) { bool isIn = true; for (int iP = 0; iP < cP.size(); iP++) { vector<int>:: const_iterator it = find(vFeature[visibleStrucrtureID[iVS]].vFrame.begin(), vFeature[visibleStrucrtureID[iVS]].vFrame.end(), vUsedFrame[iP]); if (it != vFeature[visibleStrucrtureID[iVS]].vFrame.end()) { int idx = (int) (it - vFeature[visibleStrucrtureID[iVS]].vFrame.begin()); CvMat *X = cvCreateMat(4, 1, CV_32FC1); CvMat *x = cvCreateMat(3, 1, CV_32FC1); cvSetReal2D(X, 0, 0, cvGetReal2D(X_tot, iVS, 0)); cvSetReal2D(X, 1, 0, cvGetReal2D(X_tot, iVS, 1)); cvSetReal2D(X, 2, 0, cvGetReal2D(X_tot, iVS, 2)); cvSetReal2D(X, 3, 0, 1); cvMatMul(cP[iP], X, x); double u0 = vFeature[visibleStrucrtureID[iVS]].vx[idx]; double v0 = vFeature[visibleStrucrtureID[iVS]].vy[idx]; double u1 = cvGetReal2D(x, 0, 0)/cvGetReal2D(x, 2, 0); double v1 = cvGetReal2D(x, 1, 0)/cvGetReal2D(x, 2, 0); if (sqrt((u0-u1)*(u0-u1)+(v0-v1)*(v0-v1)) > 5) { //cout << visibleStrucrtureID[iVS] << "th 3D point erased " << sqrt((u0-u1)*(u0-u1)+(v0-v1)*(v0-v1)) << endl; isIn = false; cvReleaseMat(&X); cvReleaseMat(&x); break; } cvReleaseMat(&X); cvReleaseMat(&x); } } if (isIn) { visibleStrucrtureID_new.push_back(visibleStrucrtureID[iVS]); vx.push_back(cvGetReal2D(X_tot, iVS, 0)); vy.push_back(cvGetReal2D(X_tot, iVS, 1)); vz.push_back(cvGetReal2D(X_tot, iVS, 2)); } } if (visibleStrucrtureID_new.size() == 0) return false; for (int ivx = 0; ivx < visibleStrucrtureID_new.size(); ivx++) { vector<double> X_tot_new_vec; X_tot_new_vec.push_back(vx[ivx]); X_tot_new_vec.push_back(vy[ivx]); X_tot_new_vec.push_back(vz[ivx]); X_tot_new.push_back(X_tot_new_vec); } return true; } bool ExcludePointHighReprojectionError_AddingFrame_mem_fast(vector<Feature> &vFeature, vector<CvMat *> &cP, vector<int> &vUsedFrame , vector<int> &visibleStrucrtureID, CvMat *X_tot , vector<int> &visibleStrucrtureID_new, vector<vector<double> > &X_tot_new) { visibleStrucrtureID_new.clear(); CvMat *X = cvCreateMat(4, 1, CV_32FC1); CvMat *x = cvCreateMat(3, 1, CV_32FC1); for (int iVS = 0; iVS < visibleStrucrtureID.size(); iVS++) { bool isIn = true; for (int iP = 0; iP < cP.size(); iP++) { vector<int>:: const_iterator it = find(vFeature[visibleStrucrtureID[iVS]].vFrame.begin(), vFeature[visibleStrucrtureID[iVS]].vFrame.end(), vUsedFrame[iP]); if (it != vFeature[visibleStrucrtureID[iVS]].vFrame.end()) { int idx = (int) (it - vFeature[visibleStrucrtureID[iVS]].vFrame.begin()); cvSetReal2D(X, 0, 0, cvGetReal2D(X_tot, iVS, 0)); cvSetReal2D(X, 1, 0, cvGetReal2D(X_tot, iVS, 1)); cvSetReal2D(X, 2, 0, cvGetReal2D(X_tot, iVS, 2)); cvSetReal2D(X, 3, 0, 1); cvMatMul(cP[iP], X, x); double u0 = vFeature[visibleStrucrtureID[iVS]].vx[idx]; double v0 = vFeature[visibleStrucrtureID[iVS]].vy[idx]; double u1 = cvGetReal2D(x, 0, 0)/cvGetReal2D(x, 2, 0); double v1 = cvGetReal2D(x, 1, 0)/cvGetReal2D(x, 2, 0); if (sqrt((u0-u1)*(u0-u1)+(v0-v1)*(v0-v1)) > 5) { //cout << visibleStrucrtureID[iVS] << "th 3D point erased " << sqrt((u0-u1)*(u0-u1)+(v0-v1)*(v0-v1)) << endl; isIn = false; break; } } } if (isIn) { visibleStrucrtureID_new.push_back(visibleStrucrtureID[iVS]); vector<double> X_tot_new_vec; X_tot_new_vec.push_back(cvGetReal2D(X_tot, iVS, 0)); X_tot_new_vec.push_back(cvGetReal2D(X_tot, iVS, 1)); X_tot_new_vec.push_back(cvGetReal2D(X_tot, iVS, 2)); X_tot_new.push_back(X_tot_new_vec); } } cvReleaseMat(&X); cvReleaseMat(&x); if (visibleStrucrtureID_new.size() == 0) return false; return true; } bool ExcludePointHighReprojectionError_AddingFrame_mem_fast_Distortion(vector<Feature> &vFeature, vector<CvMat *> &cP, vector<int> &vUsedFrame , vector<int> &visibleStrucrtureID, CvMat *X_tot , vector<int> &visibleStrucrtureID_new, vector<vector<double> > &X_tot_new, double omega, CvMat *K) { visibleStrucrtureID_new.clear(); CvMat *X = cvCreateMat(4, 1, CV_32FC1); CvMat *x = cvCreateMat(3, 1, CV_32FC1); for (int iVS = 0; iVS < visibleStrucrtureID.size(); iVS++) { bool isIn = true; for (int iP = 0; iP < cP.size(); iP++) { vector<int>:: const_iterator it = find(vFeature[visibleStrucrtureID[iVS]].vFrame.begin(), vFeature[visibleStrucrtureID[iVS]].vFrame.end(), vUsedFrame[iP]); if (it != vFeature[visibleStrucrtureID[iVS]].vFrame.end()) { int idx = (int) (it - vFeature[visibleStrucrtureID[iVS]].vFrame.begin()); cvSetReal2D(X, 0, 0, cvGetReal2D(X_tot, iVS, 0)); cvSetReal2D(X, 1, 0, cvGetReal2D(X_tot, iVS, 1)); cvSetReal2D(X, 2, 0, cvGetReal2D(X_tot, iVS, 2)); cvSetReal2D(X, 3, 0, 1); cvMatMul(cP[iP], X, x); double u = cvGetReal2D(x, 0, 0)/cvGetReal2D(x, 2, 0); double v = cvGetReal2D(x, 1, 0)/cvGetReal2D(x, 2, 0); double tan_omega_half_2 = tan(omega/2)*2; double K11 = cvGetReal2D(K, 0, 0); double K22 = cvGetReal2D(K, 1, 1); double K13 = cvGetReal2D(K, 0, 2); double K23 = cvGetReal2D(K, 1, 2); double u_n = u/K11 - K13/K11; double v_n = v/K22 - K23/K22; double r_u = sqrt(u_n*u_n+v_n*v_n); double r_d = 1/omega*atan(r_u*tan_omega_half_2); double u_d_n = r_d/r_u * u_n; double v_d_n = r_d/r_u * v_n; double u1 = u_d_n*K11 + K13; double v1 = v_d_n*K22 + K23; double u0 = vFeature[visibleStrucrtureID[iVS]].vx_dis[idx]; double v0 = vFeature[visibleStrucrtureID[iVS]].vy_dis[idx]; //double u1 = cvGetReal2D(x, 0, 0)/cvGetReal2D(x, 2, 0); //double v1 = cvGetReal2D(x, 1, 0)/cvGetReal2D(x, 2, 0); if (sqrt((u0-u1)*(u0-u1)+(v0-v1)*(v0-v1)) > 3) { //cout << visibleStrucrtureID[iVS] << "th 3D point erased " << sqrt((u0-u1)*(u0-u1)+(v0-v1)*(v0-v1)) << endl; isIn = false; break; } } } if (isIn) { visibleStrucrtureID_new.push_back(visibleStrucrtureID[iVS]); vector<double> X_tot_new_vec; X_tot_new_vec.push_back(cvGetReal2D(X_tot, iVS, 0)); X_tot_new_vec.push_back(cvGetReal2D(X_tot, iVS, 1)); X_tot_new_vec.push_back(cvGetReal2D(X_tot, iVS, 2)); X_tot_new.push_back(X_tot_new_vec); } } cvReleaseMat(&X); cvReleaseMat(&x); if (visibleStrucrtureID_new.size() == 0) return false; return true; } bool ExcludePointHighReprojectionError_AddingFrame_mem_fast_Distortion_ObstacleDetection(vector<Feature> &vFeature, vector<CvMat *> &cP, vector<int> &vUsedFrame , vector<int> &visibleStrucrtureID, CvMat *X_tot , vector<int> &visibleStrucrtureID_new, vector<vector<double> > &X_tot_new, double omega, double princ_x1, double princ_y1, CvMat *K) { visibleStrucrtureID_new.clear(); CvMat *X = cvCreateMat(4, 1, CV_32FC1); CvMat *x = cvCreateMat(3, 1, CV_32FC1); for (int iVS = 0; iVS < visibleStrucrtureID.size(); iVS++) { bool isIn = true; for (int iP = 0; iP < cP.size(); iP++) { vector<int>:: const_iterator it = find(vFeature[visibleStrucrtureID[iVS]].vFrame.begin(), vFeature[visibleStrucrtureID[iVS]].vFrame.end(), vUsedFrame[iP]); if (it != vFeature[visibleStrucrtureID[iVS]].vFrame.end()) { int idx = (int) (it - vFeature[visibleStrucrtureID[iVS]].vFrame.begin()); cvSetReal2D(X, 0, 0, cvGetReal2D(X_tot, iVS, 0)); cvSetReal2D(X, 1, 0, cvGetReal2D(X_tot, iVS, 1)); cvSetReal2D(X, 2, 0, cvGetReal2D(X_tot, iVS, 2)); cvSetReal2D(X, 3, 0, 1); cvMatMul(cP[iP], X, x); double u = cvGetReal2D(x, 0, 0)/cvGetReal2D(x, 2, 0); double v = cvGetReal2D(x, 1, 0)/cvGetReal2D(x, 2, 0); double tan_omega_half_2 = tan(omega/2)*2; //double K11 = cvGetReal2D(K, 0, 0); //double K22 = cvGetReal2D(K, 1, 1); //double K13 = cvGetReal2D(K, 0, 2); //double K23 = cvGetReal2D(K, 1, 2); //double u_n = u/K11 - K13/K11; //double v_n = v/K22 - K23/K22; double u_n = u - princ_x1; double v_n = v - princ_y1; double r_u = sqrt(u_n*u_n+v_n*v_n); double r_d = 1/omega*atan(r_u*tan_omega_half_2); double u_d_n = r_d/r_u * u_n; double v_d_n = r_d/r_u * v_n; double u1 = u_d_n + princ_x1; double v1 = v_d_n + princ_y1; double u0 = vFeature[visibleStrucrtureID[iVS]].vx_dis[idx]; double v0 = vFeature[visibleStrucrtureID[iVS]].vy_dis[idx]; //double u1 = cvGetReal2D(x, 0, 0)/cvGetReal2D(x, 2, 0); //double v1 = cvGetReal2D(x, 1, 0)/cvGetReal2D(x, 2, 0); if (sqrt((u0-u1)*(u0-u1)+(v0-v1)*(v0-v1)) > 3) { //cout << visibleStrucrtureID[iVS] << "th 3D point erased " << sqrt((u0-u1)*(u0-u1)+(v0-v1)*(v0-v1)) << endl; isIn = false; break; } } } if (isIn) { visibleStrucrtureID_new.push_back(visibleStrucrtureID[iVS]); vector<double> X_tot_new_vec; X_tot_new_vec.push_back(cvGetReal2D(X_tot, iVS, 0)); X_tot_new_vec.push_back(cvGetReal2D(X_tot, iVS, 1)); X_tot_new_vec.push_back(cvGetReal2D(X_tot, iVS, 2)); X_tot_new.push_back(X_tot_new_vec); } } cvReleaseMat(&X); cvReleaseMat(&x); if (visibleStrucrtureID_new.size() == 0) return false; return true; } void OrientationRefinement(CvMat *R_1, CvMat *R_F, vector<int> vFrame1, vector<int> vFrame2, vector<CvMat*> &vM, vector<CvMat*> &vm, vector<CvMat *> &vx1, vector<CvMat *> &vx2) { //PrintAlgorithm("Orientation Refinement"); //vector<double> cameraParameter, measurement; //AdditionalData adata;// focal_x focal_y princ_x princ_y ////double intrinsic[4] = {cvGetReal2D(K, 0, 0), cvGetReal2D(K, 1, 1), cvGetReal2D(K, 0, 2), cvGetReal2D(K, 1, 2)}; ////adata.vIntrinsic.push_back(intrinsic); //adata.nFrames = vFrame1.size(); //adata.vx1 = &vx1; //adata.vx2 = &vx2; //for (int iFrame = 0; iFrame < vFrame1.size(); iFrame++) //{ // CvMat *q = cvCreateMat(4,1,CV_32FC1); // Rotation2Quaternion(vM[iFrame], q); // cameraParameter.push_back(cvGetReal2D(q, 0, 0)); // cameraParameter.push_back(cvGetReal2D(q, 1, 0)); // cameraParameter.push_back(cvGetReal2D(q, 2, 0)); // cameraParameter.push_back(cvGetReal2D(q, 3, 0)); // cameraParameter.push_back(cvGetReal2D(vm[iFrame], 0, 0)); // cameraParameter.push_back(cvGetReal2D(vm[iFrame], 1, 0)); // cameraParameter.push_back(cvGetReal2D(vm[iFrame], 2, 0)); // cvReleaseMat(&q); //} //CvMat *R_r = cvCreateMat(3,3,CV_32FC1); //CvMat *R_1_inv = cvCreateMat(3,3,CV_32FC1); //cvInvert(R_1, R_1_inv); //cvMatMul(R_F, R_1_inv, R_r); //CvMat *q_r = cvCreateMat(4,1,CV_32FC1); //Rotation2Quaternion(R_r, q_r); //measurement.push_back(cvGetReal2D(q_r, 0, 0)); //measurement.push_back(cvGetReal2D(q_r, 1, 0)); //measurement.push_back(cvGetReal2D(q_r, 2, 0)); //measurement.push_back(cvGetReal2D(q_r, 3, 0)); //for (int i = 0; i < vx1.size(); i++) //{ // if (vx1[i]->rows == 1) // continue; // //for (int j = 0; j < vx1[i]->rows; j++) // for (int j = 0; j < 10; j++) // measurement.push_back(0); //} //cvReleaseMat(&R_r); //cvReleaseMat(&R_1_inv); //cvReleaseMat(&q_r); //double *dmeasurement = (double *) malloc(measurement.size() * sizeof(double)); //double *dCameraParameter = (double *) malloc(cameraParameter.size() * sizeof(double)); //for (int i = 0; i < cameraParameter.size(); i++) // dCameraParameter[i] = cameraParameter[i]; //for (int i = 0; i < measurement.size(); i++) // dmeasurement[i] = measurement[i]; //double opt[5]; //opt[0] = 1e-3; //opt[1] = 1e-12; //opt[2] = 1e-12; //opt[3] = 1e-12; //opt[4] = 0; //double info[12]; //double *work = (double*)malloc((LM_DIF_WORKSZ(cameraParameter.size(), measurement.size())+cameraParameter.size()*cameraParameter.size())*sizeof(double)); //if(!work) // fprintf(stderr, "memory allocation request failed in main()\n"); //int ret = dlevmar_dif(ObjectiveOrientationRefinement, dCameraParameter, dmeasurement, cameraParameter.size(), measurement.size(), // 1e+2, opt, info, work, NULL, &adata); //PrintSBAInfo(info); //for (int iFrame = 0; iFrame < vFrame1.size(); iFrame++) //{ // CvMat *q = cvCreateMat(4,1,CV_32FC1); // CvMat *R = cvCreateMat(3,3,CV_32FC1); // cvSetReal2D(q, 0, 0, dCameraParameter[7*iFrame+0]); // cvSetReal2D(q, 1, 0, dCameraParameter[7*iFrame+1]); // cvSetReal2D(q, 2, 0, dCameraParameter[7*iFrame+2]); // cvSetReal2D(q, 3, 0, dCameraParameter[7*iFrame+3]); // Quaternion2Rotation(q, R); // for (int i = 0; i < 3; i++) // { // for (int j = 0; j < 3; j++) // { // cvSetReal2D(vM[iFrame], i, j, cvGetReal2D(R, i, j)); // } // } // cvReleaseMat(&q); // cvReleaseMat(&R); // cvSetReal2D(vm[iFrame], 0, 0, dCameraParameter[7*iFrame+4]); // cvSetReal2D(vm[iFrame], 1, 0, dCameraParameter[7*iFrame+5]); // cvSetReal2D(vm[iFrame], 2, 0, dCameraParameter[7*iFrame+6]); // //} //free(dmeasurement); //free(dCameraParameter); //free(work); } void OrientationRefinement1(CvMat *R_1, CvMat *R_F, vector<int> vFrame1, vector<int> vFrame2, vector<CvMat*> &vM, vector<CvMat*> &vm, vector<CvMat *> &vx1, vector<CvMat *> &vx2, vector<int> vFrame1_r, vector<int> vFrame2_r, vector<CvMat*> &vM_r, vector<CvMat*> &vm_r, vector<CvMat *> &vx1_r, vector<CvMat *> &vx2_r) { //PrintAlgorithm("Orientation Refinement for non-consecutive frame"); // //// focal_x focal_y princ_x princ_y ////double intrinsic[4] = {cvGetReal2D(K, 0, 0), cvGetReal2D(K, 1, 1), cvGetReal2D(K, 0, 2), cvGetReal2D(K, 1, 2)}; ////adata.vIntrinsic.push_back(intrinsic); //for (int iFrame = 0; iFrame < vFrame1_r.size(); iFrame++) //{ // vector<double> cameraParameter, measurement; // AdditionalData adata; // //cout << endl << "Orientation Refinement for non-consecutive frame: " << vFrame1_r[iFrame] << " " << vFrame2_r[iFrame] << endl; // cout << vFrame1_r[iFrame] << " "; // cameraParameter.clear(); // measurement.clear(); // vector<double> vx1_a, vy1_a, vx2_a, vy2_a; // for (int ix = 0; ix < vx1_r[iFrame]->rows; ix++) // { // vx1_a.push_back(cvGetReal2D(vx1_r[iFrame], ix, 0)); // vy1_a.push_back(cvGetReal2D(vx1_r[iFrame], ix, 1)); // vx2_a.push_back(cvGetReal2D(vx2_r[iFrame], ix, 0)); // vy2_a.push_back(cvGetReal2D(vx2_r[iFrame], ix, 1)); // measurement.push_back(0); // } // adata.vx1_a = &vx1_a; // adata.vy1_a = &vy1_a; // adata.vx2_a = &vx2_a; // adata.vy2_a = &vy2_a; // // vector<int>::iterator it1 = find(vFrame1.begin(), vFrame1.end(), vFrame1_r[iFrame]); // vector<int>::iterator it2 = find(vFrame2.begin(), vFrame2.end(), vFrame2_r[iFrame]); // int idx1 = (int) (it1 - vFrame1.begin()); // int idx2 = (int) (it2 - vFrame2.begin()); // CvMat *R_r = cvCreateMat(3,3,CV_32FC1); // cvSetIdentity(R_r); // for (int iIdx = idx1; iIdx < idx2+1; iIdx++) // { // cvMatMul(vM[iIdx], R_r, R_r); // } // CvMat *q = cvCreateMat(4,1,CV_32FC1); // Rotation2Quaternion(R_r, q); // //Rotation2Quaternion(vM_r[iFrame], q); // adata.qw = cvGetReal2D(q, 0, 0); // adata.qx = cvGetReal2D(q, 1, 0); // adata.qy = cvGetReal2D(q, 2, 0); // adata.qz = cvGetReal2D(q, 3, 0); // cvReleaseMat(&q); // cameraParameter.push_back(cvGetReal2D(vm_r[iFrame], 0, 0)); // cameraParameter.push_back(cvGetReal2D(vm_r[iFrame], 1, 0)); // cameraParameter.push_back(cvGetReal2D(vm_r[iFrame], 2, 0)); // // cvSetReal2D(vM_r[iFrame], 0, 0, cvGetReal2D(R_r, 0, 0)); cvSetReal2D(vM_r[iFrame], 0, 1, cvGetReal2D(R_r, 0, 1)); cvSetReal2D(vM_r[iFrame], 0, 2, cvGetReal2D(R_r, 0, 2)); // cvSetReal2D(vM_r[iFrame], 1, 0, cvGetReal2D(R_r, 1, 0)); cvSetReal2D(vM_r[iFrame], 1, 1, cvGetReal2D(R_r, 1, 1)); cvSetReal2D(vM_r[iFrame], 1, 2, cvGetReal2D(R_r, 1, 2)); // cvSetReal2D(vM_r[iFrame], 2, 0, cvGetReal2D(R_r, 2, 0)); cvSetReal2D(vM_r[iFrame], 2, 1, cvGetReal2D(R_r, 2, 1)); cvSetReal2D(vM_r[iFrame], 2, 2, cvGetReal2D(R_r, 2, 2)); // //for (int i = 0; i < vx1_r.size(); i++) // //{ // // for (int j = 0; j < vx1[i]->rows; j++) // // measurement.push_back(0); // //} // double *dmeasurement = (double *) malloc(measurement.size() * sizeof(double)); // double *dCameraParameter = (double *) malloc(cameraParameter.size() * sizeof(double)); // for (int i = 0; i < cameraParameter.size(); i++) // dCameraParameter[i] = cameraParameter[i]; // for (int i = 0; i < measurement.size(); i++) // dmeasurement[i] = measurement[i]; // double opt[5]; // opt[0] = 1e-3; // opt[1] = 1e-12; // opt[2] = 1e-12; // opt[3] = 1e-12; // opt[4] = 0; // double info[12]; // double *work = (double*)malloc((LM_DIF_WORKSZ(cameraParameter.size(), measurement.size())+cameraParameter.size()*cameraParameter.size())*sizeof(double)); // if(!work) // fprintf(stderr, "memory allocation request failed in main()\n"); // int ret = dlevmar_dif(ObjectiveOrientationRefinement1, dCameraParameter, dmeasurement, cameraParameter.size(), measurement.size(), // 1e+2, opt, info, work, NULL, &adata); // //PrintSBAInfo(info); // cvReleaseMat(&R_r); // cvSetReal2D(vm_r[iFrame], 0, 0, dCameraParameter[0]); // cvSetReal2D(vm_r[iFrame], 1, 0, dCameraParameter[1]); // cvSetReal2D(vm_r[iFrame], 2, 0, dCameraParameter[2]); // free(dmeasurement); // free(dCameraParameter); // free(work); //} //cout << endl; } //void OrientationRefinement_sba(CvMat *R_1, CvMat *R_F, vector<int> vFrame1, vector<int> vFrame2, vector<CvMat*> &vM, vector<CvMat*> &vm, vector<CvMat *> &vx1, vector<CvMat *> &vx2, // vector<int> vFrame1_r, vector<int> vFrame2_r, vector<CvMat*> &vM_r, vector<CvMat*> &vm_r, vector<CvMat *> &vx1_r, vector<CvMat *> &vx2_r) //{ // PrintAlgorithm("Orientation Refinement - sba"); // vector<double> cameraParameter, measurement; // AdditionalData adata;// focal_x focal_y princ_x princ_y // //double intrinsic[4] = {cvGetReal2D(K, 0, 0), cvGetReal2D(K, 1, 1), cvGetReal2D(K, 0, 2), cvGetReal2D(K, 1, 2)}; // //adata.vIntrinsic.push_back(intrinsic); // //adata.vFrame1 = vFrame1; // //adata.vFrame2 = vFrame2; // //adata.vFrame1_r = vFrame1_r; // //adata.vFrame2_r = vFrame2_r; // // //adata.vx1 = &vx1; // //adata.vx2 = &vx2; // // //adata.vx1_r = &vx1_r; // //adata.vx2_r = &vx2_r; // // //for (int iFrame = 0; iFrame < vFrame1.size(); iFrame++) // //{ // // CvMat *q = cvCreateMat(4,1,CV_32FC1); // // Rotation2Quaternion(vM[iFrame], q); // // cameraParameter.push_back(cvGetReal2D(q, 0, 0)); // // cameraParameter.push_back(cvGetReal2D(q, 1, 0)); // // cameraParameter.push_back(cvGetReal2D(q, 2, 0)); // // cameraParameter.push_back(cvGetReal2D(q, 3, 0)); // // cvReleaseMat(&q); // // // cameraParameter.push_back(cvGetReal2D(vm[iFrame], 0, 0)); // // cameraParameter.push_back(cvGetReal2D(vm[iFrame], 1, 0)); // // cameraParameter.push_back(cvGetReal2D(vm[iFrame], 2, 0)); // //} // // //for (int iFrame = 0; iFrame < vFrame1_r.size(); iFrame++) // //{ // // cameraParameter.push_back(cvGetReal2D(vm_r[iFrame], 0, 0)); // // cameraParameter.push_back(cvGetReal2D(vm_r[iFrame], 1, 0)); // // cameraParameter.push_back(cvGetReal2D(vm_r[iFrame], 2, 0)); // //} // // CvMat *R_r = cvCreateMat(3,3,CV_32FC1); // CvMat *R_1_inv = cvCreateMat(3,3,CV_32FC1); // cvInvert(R_1, R_1_inv); // cvMatMul(R_F, R_1_inv, R_r); // CvMat *q_r = cvCreateMat(4,1,CV_32FC1); // Rotation2Quaternion(R_r, q_r); // //measurement.push_back(cvGetReal2D(q_r, 0, 0)); // //measurement.push_back(cvGetReal2D(q_r, 1, 0)); // //measurement.push_back(cvGetReal2D(q_r, 2, 0)); // //measurement.push_back(cvGetReal2D(q_r, 3, 0)); // // for (int i = 0; i < vx1.size(); i++) // { // for (int j = 0; j < vx1[i]->rows; j++) // //for (int j = 0; j < 7; j++) // measurement.push_back(0); // } // // //for (int i = 0; i < vx1_r.size(); i++) // //{ // // for (int j = 0; j < vx1[i]->rows; j++) // // //for (int j = 0; j < 3; j++) // // measurement.push_back(0); // //} // // cameraParameter.push_back(cvGetReal2D(q_r, 0, 0)); // cameraParameter.push_back(cvGetReal2D(q_r, 1, 0)); // cameraParameter.push_back(cvGetReal2D(q_r, 2, 0)); // cameraParameter.push_back(cvGetReal2D(q_r, 3, 0)); // // for (int iFrame = 0; iFrame < vFrame1.size(); iFrame++) // { // CvMat *q = cvCreateMat(4,1,CV_32FC1); // Rotation2Quaternion(vM[iFrame], q); // cameraParameter.push_back(cvGetReal2D(q, 0, 0)); // cameraParameter.push_back(cvGetReal2D(q, 1, 0)); // cameraParameter.push_back(cvGetReal2D(q, 2, 0)); // cameraParameter.push_back(cvGetReal2D(q, 3, 0)); // cvReleaseMat(&q); // // cameraParameter.push_back(cvGetReal2D(vm[iFrame], 0, 0)); // cameraParameter.push_back(cvGetReal2D(vm[iFrame], 1, 0)); // cameraParameter.push_back(cvGetReal2D(vm[iFrame], 2, 0)); // } // // // // cvReleaseMat(&R_r); // cvReleaseMat(&R_1_inv); // cvReleaseMat(&q_r); // // double *dmeasurement = (double *) malloc(measurement.size() * sizeof(double)); // double *dCameraParameter = (double *) malloc(cameraParameter.size() * sizeof(double)); // // for (int i = 0; i < cameraParameter.size(); i++) // dCameraParameter[i] = cameraParameter[i]; // for (int i = 0; i < measurement.size(); i++) // dmeasurement[i] = measurement[i]; // // double opt[5]; // opt[0] = 1e-3; // opt[1] = 1e-5; // opt[2] = 1e-5; // opt[3] = 1e-5; // opt[4] = 0; // double info[12]; // // int ret = sba_mot_levmar() // // double *work = (double*)malloc((LM_DIF_WORKSZ(cameraParameter.size(), measurement.size())+cameraParameter.size()*cameraParameter.size())*sizeof(double)); // if(!work) // fprintf(stderr, "memory allocation request failed in main()\n"); // // int ret = dlevmar_dif(ObjectiveOrientationRefinement1, dCameraParameter, dmeasurement, cameraParameter.size(), measurement.size(), // 1e+2, opt, info, work, NULL, &adata); // // PrintSBAInfo(info); // vector<double> vR11, vR12, vR13, vR21, vR22, vR23, vR31, vR32, vR33; // for (int iFrame = 0; iFrame < vFrame1.size(); iFrame++) // { // CvMat *q = cvCreateMat(4,1,CV_32FC1); // CvMat *R = cvCreateMat(3,3,CV_32FC1); // cvSetReal2D(q, 0, 0, dCameraParameter[7*iFrame+0]); // cvSetReal2D(q, 1, 0, dCameraParameter[7*iFrame+1]); // cvSetReal2D(q, 2, 0, dCameraParameter[7*iFrame+2]); // cvSetReal2D(q, 3, 0, dCameraParameter[7*iFrame+3]); // Quaternion2Rotation(q, R); // for (int i = 0; i < 3; i++) // { // for (int j = 0; j < 3; j++) // { // cvSetReal2D(vM[iFrame], i, j, cvGetReal2D(R, i, j)); // } // } // // vR11.push_back(cvGetReal2D(R, 0, 0)); vR12.push_back(cvGetReal2D(R, 0, 1)); vR13.push_back(cvGetReal2D(R, 0, 2)); // vR21.push_back(cvGetReal2D(R, 1, 0)); vR22.push_back(cvGetReal2D(R, 1, 1)); vR23.push_back(cvGetReal2D(R, 1, 2)); // vR31.push_back(cvGetReal2D(R, 2, 0)); vR32.push_back(cvGetReal2D(R, 2, 1)); vR33.push_back(cvGetReal2D(R, 2, 2)); // cvReleaseMat(&q); // cvReleaseMat(&R); // // cvSetReal2D(vm[iFrame], 0, 0, dCameraParameter[7*iFrame+4]); // cvSetReal2D(vm[iFrame], 1, 0, dCameraParameter[7*iFrame+5]); // cvSetReal2D(vm[iFrame], 2, 0, dCameraParameter[7*iFrame+6]); // } // // for (int iFrame_r = 0; iFrame_r < vFrame1_r.size(); iFrame_r++) // { // double R11 = 1; double R12 = 0; double R13 = 0; // double R21 = 0; double R22 = 1; double R23 = 0; // double R31 = 0; double R32 = 0; double R33 = 1; // // for (int iFrame = vFrame1_r[iFrame_r]; iFrame < vFrame2_r[iFrame_r]; iFrame++) // { // R11 = vR11[iFrame]*R11 + vR12[iFrame]*R21 + vR13[iFrame]*R31; // R12 = vR11[iFrame]*R12 + vR12[iFrame]*R22 + vR13[iFrame]*R32; // R13 = vR11[iFrame]*R13 + vR12[iFrame]*R23 + vR13[iFrame]*R33; // // R21 = vR21[iFrame]*R11 + vR22[iFrame]*R21 + vR23[iFrame]*R31; // R22 = vR21[iFrame]*R12 + vR22[iFrame]*R22 + vR23[iFrame]*R32; // R23 = vR21[iFrame]*R13 + vR22[iFrame]*R23 + vR23[iFrame]*R33; // // R31 = vR31[iFrame]*R11 + vR32[iFrame]*R21 + vR33[iFrame]*R31; // R32 = vR31[iFrame]*R12 + vR32[iFrame]*R22 + vR33[iFrame]*R32; // R33 = vR31[iFrame]*R13 + vR32[iFrame]*R23 + vR33[iFrame]*R33; // } // cvSetReal2D(vM_r[iFrame_r], 0, 0, R11); cvSetReal2D(vM_r[iFrame_r], 0, 1, R12); cvSetReal2D(vM_r[iFrame_r], 0, 2, R13); // cvSetReal2D(vM_r[iFrame_r], 1, 0, R21); cvSetReal2D(vM_r[iFrame_r], 1, 1, R22); cvSetReal2D(vM_r[iFrame_r], 1, 2, R23); // cvSetReal2D(vM_r[iFrame_r], 2, 0, R31); cvSetReal2D(vM_r[iFrame_r], 2, 1, R32); cvSetReal2D(vM_r[iFrame_r], 2, 2, R33); // // cvSetReal2D(vm_r[iFrame_r], 0, 0, dCameraParameter[7*vFrame1.size()+3*iFrame_r+0]); // cvSetReal2D(vm_r[iFrame_r], 1, 0, dCameraParameter[7*vFrame1.size()+3*iFrame_r+1]); // cvSetReal2D(vm_r[iFrame_r], 2, 0, dCameraParameter[7*vFrame1.size()+3*iFrame_r+2]); // } // // free(dmeasurement); // free(dCameraParameter); // free(work); //} void DetectPOI(vector<CvMat *> vP, vector<CvMat *> vV, int nSegments, double range, double merging_threshold, vector<double> vBandwidth, vector<CvMat *> &vPOI, double epsilon_cov, int nSegments_cov, vector<CvMat *> &v_a_cov, vector<CvMat *> &v_b_cov, vector<CvMat *> &v_l_cov, vector<double> &vf) { vector<CvMat *> vPOI_temp; vector<vector<double> > vvWeight; for (int iP = 0; iP < vP.size(); iP++) { for (int iSeg = 0; iSeg < nSegments; iSeg++) { double y1, y2, y3; y1 = cvGetReal2D(vP[iP], 0, 0)+(range/(double)nSegments)*(iSeg+1)*cvGetReal2D(vV[iP], 0, 0); y2 = cvGetReal2D(vP[iP], 1, 0)+(range/(double)nSegments)*(iSeg+1)*cvGetReal2D(vV[iP], 1, 0); y3 = cvGetReal2D(vP[iP], 2, 0)+(range/(double)nSegments)*(iSeg+1)*cvGetReal2D(vV[iP], 2, 0); bool isBad = false; int nIter = 0; vector<double> vWeight; vector<double> vWeight_temp; while (1) { double yp1 = y1, yp2 = y2, yp3 = y3; vWeight.clear(); MeanShift_Gaussian_Cone(y1, y2, y3, vP, vV, vBandwidth, vWeight); double normDiff = sqrt((y1-yp1)*(y1-yp1)+(y2-yp2)*(y2-yp2)+(y3-yp3)*(y3-yp3)); if (normDiff < 1e-5) { break; } nIter++; if (nIter > 2000) { isBad = true; break; } } if (isBad) { continue; } double sumw = 0; for (int iw = 0; iw < vWeight.size(); iw++) { sumw += vWeight[iw]; } for (int iw = 0; iw < vWeight.size(); iw++) { vWeight[iw] /= sumw; } vWeight_temp = vWeight; sort(vWeight.begin(), vWeight.end()); if (vWeight[vWeight.size()-2]/vWeight[vWeight.size()-1] > 0.01) { if (vPOI_temp.empty()) { CvMat *poi = cvCreateMat(3,1,CV_32FC1); cvSetReal2D(poi, 0, 0, y1); cvSetReal2D(poi, 1, 0, y2); cvSetReal2D(poi, 2, 0, y3); vPOI_temp.push_back(poi); vvWeight.push_back(vWeight_temp); } else { bool isIn = false; for (int iPoi = 0; iPoi < vPOI_temp.size(); iPoi++) { double c1 = cvGetReal2D(vPOI_temp[iPoi], 0, 0) - y1; double c2 = cvGetReal2D(vPOI_temp[iPoi], 1, 0) - y2; double c3 = cvGetReal2D(vPOI_temp[iPoi], 2, 0) - y3; if (sqrt(c1*c1+c2*c2+c3*c3) < merging_threshold) { isIn = true; break; } } if (!isIn) { CvMat *poi = cvCreateMat(3,1,CV_32FC1); cvSetReal2D(poi, 0, 0, y1); cvSetReal2D(poi, 1, 0, y2); cvSetReal2D(poi, 2, 0, y3); vPOI_temp.push_back(poi); vvWeight.push_back(vWeight_temp); } } } } } for (int iPOI = 0; iPOI < vPOI_temp.size(); iPOI++) { vector<double> v_a, v_b, v_l; bool isGood = POICovariance(vP, vV, vBandwidth, vPOI_temp[iPOI], epsilon_cov, nSegments_cov, v_a, v_b, v_l); if (!isGood) continue; CvMat *a = cvCreateMat(v_a.size(), 1, CV_32FC1); CvMat *b = cvCreateMat(v_b.size(), 1, CV_32FC1); CvMat *l = cvCreateMat(v_b.size(), 1, CV_32FC1); for (int ia = 0; ia < v_a.size(); ia++) { cvSetReal2D(a, ia, 0, v_a[ia]); cvSetReal2D(b, ia, 0, v_b[ia]); cvSetReal2D(l, ia, 0, v_l[ia]); } v_a_cov.push_back(a); v_b_cov.push_back(b); v_l_cov.push_back(l); double f0 = EvaulateDensityFunction(vP, vV, vBandwidth, vPOI_temp[iPOI]); vf.push_back(f0); vPOI.push_back(cvCloneMat(vPOI_temp[iPOI])); //CvMat *U = cvCreateMat(3,3,CV_32FC1); //CvMat *Radius = cvCreateMat(3,1, CV_32FC1); //PrintMat(vPOI[iPOI]); //POICovariance(vP, vV, vvWeight[iPOI], U, Radius); //vU.push_back(U); //vRadius.push_back(Radius); } for (int i = 0; i < vPOI.size(); i++) { cvReleaseMat(&vPOI_temp[i]); } vPOI_temp.clear(); } void DetectPOI(vector<CvMat *> vP, vector<CvMat *> vV, int nSegments, double range, double merging_threshold, vector<double> vBandwidth, vector<CvMat *> &vPOI, double epsilon_cov, int nSegments_cov, vector<CvMat *> &v_a_cov, vector<CvMat *> &v_b_cov, vector<CvMat *> &v_l_cov, vector<double> &vf, vector<vector<CvMat *> > &vvMeanTrajectory) { vector<CvMat *> vPOI_temp; vector<vector<double> > vvWeight; for (int iP = 0; iP < vP.size(); iP++) { for (int iSeg = 0; iSeg < nSegments; iSeg++) { double y1, y2, y3; y1 = cvGetReal2D(vP[iP], 0, 0)+(range/(double)nSegments)*(iSeg+1)*cvGetReal2D(vV[iP], 0, 0); y2 = cvGetReal2D(vP[iP], 1, 0)+(range/(double)nSegments)*(iSeg+1)*cvGetReal2D(vV[iP], 1, 0); y3 = cvGetReal2D(vP[iP], 2, 0)+(range/(double)nSegments)*(iSeg+1)*cvGetReal2D(vV[iP], 2, 0); bool isBad = false; int nIter = 0; vector<double> vWeight; vector<double> vWeight_temp; vector<double> mean_x; vector<double> mean_y; vector<double> mean_z; while (1) { mean_x.push_back(y1); mean_y.push_back(y2); mean_z.push_back(y3); double yp1 = y1, yp2 = y2, yp3 = y3; vWeight.clear(); MeanShift_Gaussian_Cone(y1, y2, y3, vP, vV, vBandwidth, vWeight); double normDiff = sqrt((y1-yp1)*(y1-yp1)+(y2-yp2)*(y2-yp2)+(y3-yp3)*(y3-yp3)); if (normDiff < 1e-5) { break; } nIter++; if (nIter > 2000) { isBad = true; break; } } if (isBad) { continue; } double sumw = 0; for (int iw = 0; iw < vWeight.size(); iw++) { sumw += vWeight[iw]; } for (int iw = 0; iw < vWeight.size(); iw++) { vWeight[iw] /= sumw; } vWeight_temp = vWeight; sort(vWeight.begin(), vWeight.end()); if (vWeight[vWeight.size()-2]/vWeight[vWeight.size()-1] > 0.1) { vector<CvMat *> vMean; for (int ii = 0; ii < mean_x.size(); ii++) { CvMat *mm = cvCreateMat(3,1,CV_32FC1); cvSetReal2D(mm, 0, 0, mean_x[ii]); cvSetReal2D(mm, 1, 0, mean_y[ii]); cvSetReal2D(mm, 2, 0, mean_z[ii]); vMean.push_back(mm); } vvMeanTrajectory.push_back(vMean); if (vPOI_temp.empty()) { CvMat *poi = cvCreateMat(3,1,CV_32FC1); cvSetReal2D(poi, 0, 0, y1); cvSetReal2D(poi, 1, 0, y2); cvSetReal2D(poi, 2, 0, y3); vPOI_temp.push_back(poi); vvWeight.push_back(vWeight_temp); } else { bool isIn = false; for (int iPoi = 0; iPoi < vPOI_temp.size(); iPoi++) { double c1 = cvGetReal2D(vPOI_temp[iPoi], 0, 0) - y1; double c2 = cvGetReal2D(vPOI_temp[iPoi], 1, 0) - y2; double c3 = cvGetReal2D(vPOI_temp[iPoi], 2, 0) - y3; if (sqrt(c1*c1+c2*c2+c3*c3) < merging_threshold) { isIn = true; break; } } if (!isIn) { CvMat *poi = cvCreateMat(3,1,CV_32FC1); cvSetReal2D(poi, 0, 0, y1); cvSetReal2D(poi, 1, 0, y2); cvSetReal2D(poi, 2, 0, y3); vPOI_temp.push_back(poi); vvWeight.push_back(vWeight_temp); } } } } } for (int iPOI = 0; iPOI < vPOI_temp.size(); iPOI++) { vector<double> v_a, v_b, v_l; bool isGood = POICovariance(vP, vV, vBandwidth, vPOI_temp[iPOI], epsilon_cov, nSegments_cov, v_a, v_b, v_l); if (!isGood) { vector<vector<CvMat *> > vvMeanTraj_temp; for (int iTraj = 0; iTraj < vvMeanTrajectory.size(); iTraj++) { double traj_x = cvGetReal2D(vvMeanTrajectory[iTraj][vvMeanTrajectory[iTraj].size()-1], 0, 0); double traj_y = cvGetReal2D(vvMeanTrajectory[iTraj][vvMeanTrajectory[iTraj].size()-1], 1, 0); double traj_z = cvGetReal2D(vvMeanTrajectory[iTraj][vvMeanTrajectory[iTraj].size()-1], 2, 0); double error = sqrt((traj_x-cvGetReal2D(vPOI_temp[iPOI], 0, 0))*(traj_x-cvGetReal2D(vPOI_temp[iPOI], 0, 0))+ (traj_y-cvGetReal2D(vPOI_temp[iPOI], 1, 0))*(traj_y-cvGetReal2D(vPOI_temp[iPOI], 1, 0))+ (traj_z-cvGetReal2D(vPOI_temp[iPOI], 2, 0))*(traj_z-cvGetReal2D(vPOI_temp[iPOI], 2, 0))); if (error < 1e-3) continue; vvMeanTraj_temp.push_back(vvMeanTrajectory[iTraj]); } vvMeanTrajectory = vvMeanTraj_temp; continue; } CvMat *a = cvCreateMat(v_a.size(), 1, CV_32FC1); CvMat *b = cvCreateMat(v_b.size(), 1, CV_32FC1); CvMat *l = cvCreateMat(v_b.size(), 1, CV_32FC1); for (int ia = 0; ia < v_a.size(); ia++) { cvSetReal2D(a, ia, 0, v_a[ia]); cvSetReal2D(b, ia, 0, v_b[ia]); cvSetReal2D(l, ia, 0, v_l[ia]); } v_a_cov.push_back(a); v_b_cov.push_back(b); v_l_cov.push_back(l); double f0 = EvaulateDensityFunction(vP, vV, vBandwidth, vPOI_temp[iPOI]); vf.push_back(f0); vPOI.push_back(cvCloneMat(vPOI_temp[iPOI])); //CvMat *U = cvCreateMat(3,3,CV_32FC1); //CvMat *Radius = cvCreateMat(3,1, CV_32FC1); //PrintMat(vPOI[iPOI]); //POICovariance(vP, vV, vvWeight[iPOI], U, Radius); //vU.push_back(U); //vRadius.push_back(Radius); } for (int i = 0; i < vPOI.size(); i++) { cvReleaseMat(&vPOI_temp[i]); } vPOI_temp.clear(); } bool POICovariance(vector<CvMat *> vP, vector<CvMat *> vV, vector<double> vBandwidth, CvMat *poi, double epsilon, int nSegments, vector<double> &v_a, vector<double> &v_b, vector<double> &v_l) { double f0 = EvaulateDensityFunction(vP, vV, vBandwidth, poi); double phi_step = 2*PI/nSegments; double theta_step = PI/(nSegments/2); bool isGood = true; for (int iphi = 0; iphi < nSegments; iphi++) { for (int itheta = 0; itheta < nSegments/2+1; itheta++) { CvMat *v = cvCreateMat(3,1,CV_32FC1); cvSetReal2D(v, 0, 0, cos(iphi*phi_step)*sin(itheta*theta_step)); cvSetReal2D(v, 1, 0, sin(iphi*phi_step)*sin(itheta*theta_step)); cvSetReal2D(v, 2, 0, cos(itheta*theta_step)); CvMat *v_temp = cvCreateMat(3,1,CV_32FC1); CvMat *x = cvCreateMat(3,1,CV_32FC1); ScalarMul(v, epsilon, v_temp); cvAdd(poi, v_temp, x); double f = EvaulateDensityFunction(vP, vV, vBandwidth, x); if ((f0-f)/(-epsilon) > -5e-2) { isGood = false; v_a.push_back(-5e-2); } else v_a.push_back((f0-f)/(-epsilon)); v_b.push_back(f0); double alpha = 0; while (1) { alpha = alpha + 0.1; ScalarMul(v, epsilon+alpha, v_temp); cvAdd(poi, v_temp, x); f = EvaulateDensityFunction(vP, vV, vBandwidth, x); double y = (f0-f)/(-epsilon) * (epsilon+alpha) + f0; if (abs(f-y) > 1e+0) { v_l.push_back(alpha+epsilon); break; } } cvReleaseMat(&v); cvReleaseMat(&x); } } return isGood; } double EvaulateDensityFunction(vector<CvMat *> vP, vector<CvMat *> vV, vector<double> vBandwidth, CvMat *x) { double f = 0; for (int ip = 0; ip < vP.size(); ip++) { double norm_v = sqrt(cvGetReal2D(vV[ip], 0, 0)*cvGetReal2D(vV[ip], 0, 0)+cvGetReal2D(vV[ip], 1, 0)*cvGetReal2D(vV[ip], 1, 0)+cvGetReal2D(vV[ip], 2, 0)*cvGetReal2D(vV[ip], 2, 0)); ScalarMul(vV[ip], 1/norm_v, vV[ip]); CvMat *xmp = cvCreateMat(3,1,CV_32FC1); cvSub(x, vP[ip], xmp); CvMat *dot_product = cvCreateMat(1,1,CV_32FC1); CvMat *v_t = cvCreateMat(1,3,CV_32FC1); cvTranspose(vV[ip], v_t); cvMatMul(v_t, xmp, dot_product); CvMat *dx = cvCreateMat(3,1,CV_32FC1); CvMat *dot_ray = cvCreateMat(3,1,CV_32FC1); ScalarMul(vV[ip], cvGetReal2D(dot_product, 0, 0), dot_ray); cvSub(xmp, dot_ray, dx); if (cvGetReal2D(dot_product, 0, 0) > 0) { double dist1 = sqrt(cvGetReal2D(dx, 0, 0)*cvGetReal2D(dx, 0, 0)+cvGetReal2D(dx, 1, 0)*cvGetReal2D(dx, 1, 0)+cvGetReal2D(dx, 2, 0)*cvGetReal2D(dx, 2, 0)); double dist2 = cvGetReal2D(dot_product, 0, 0); f+= 1/vBandwidth[ip] * exp(-(dist1/dist2)*(dist1/dist2)/2/vBandwidth[ip]/vBandwidth[ip]); } cvReleaseMat(&xmp); cvReleaseMat(&dot_product); cvReleaseMat(&v_t); cvReleaseMat(&dx); cvReleaseMat(&dot_ray); } f /= vP.size(); return f; } void POICovariance(vector<CvMat *> vP, vector<CvMat *> vV, vector<double> vWeight, CvMat *U, CvMat *Radius) { CvMat *A = cvCreateMat(3*vP.size(), 3, CV_32FC1); CvMat *b = cvCreateMat(3*vP.size(), 1, CV_32FC1); for (int iCamera = 0; iCamera < vP.size(); iCamera++) { CvMat *Ai = cvCreateMat(3,3, CV_32FC1); CvMat *bi = cvCreateMat(3,1, CV_32FC1); Vec2Skew(vV[iCamera], Ai); ScalarMul(Ai, vWeight[iCamera], Ai); cvMatMul(Ai, vP[iCamera], bi); SetSubMat(A, 3*iCamera, 0, Ai); SetSubMat(b, 3*iCamera, 0, bi); cvReleaseMat(&Ai); cvReleaseMat(&bi); } double meanb = 0; for (int ib = 0; ib < b->rows; ib++) { meanb += cvGetReal2D(b, ib, 0); } meanb /= b->rows; double varianceb = 0; for (int ib = 0; ib < b->rows; ib++) { varianceb += (cvGetReal2D(b, ib, 0)-meanb)*(cvGetReal2D(b, ib, 0)-meanb); } varianceb /= b->rows; CvMat *At = cvCreateMat(A->cols, A->rows, CV_32FC1); cvTranspose(A, At); CvMat *Q = cvCreateMat(3,3,CV_32FC1); cvMatMul(At, A, Q); cvInvert(Q, Q); ScalarMul(Q, varianceb, Q); CvMat *D = cvCreateMat(3,3,CV_32FC1); CvMat *V = cvCreateMat(3,3,CV_32FC1); cvSVD(Q, D, U, V); cvSetReal2D(Radius, 0, 0, sqrt(cvGetReal2D(D, 0, 0))); cvSetReal2D(Radius, 1, 0, sqrt(cvGetReal2D(D, 1, 1))); cvSetReal2D(Radius, 2, 0, sqrt(cvGetReal2D(D, 2, 2))); cvReleaseMat(&D); cvReleaseMat(&V); cvReleaseMat(&Q); cvReleaseMat(&A); cvReleaseMat(&At); cvReleaseMat(&b); } void MeanShift_Gaussian_Cone(double &y1, double &y2, double &y3, vector<CvMat *> vP, vector<CvMat *> vV, vector<double> vBandwidth, vector<double> &vWeight) { double sum1 = 0, sum2 = 0, sum3 = 0; double normalization = 0; for (int iP = 0; iP < vP.size(); iP++) { double dist, gradient1, gradient2, gradient3; DistanceBetweenConeAndPoint(cvGetReal2D(vP[iP], 0, 0), cvGetReal2D(vP[iP], 1, 0), cvGetReal2D(vP[iP], 2, 0), cvGetReal2D(vV[iP], 0, 0), cvGetReal2D(vV[iP], 1, 0), cvGetReal2D(vV[iP], 2, 0), y1, y2, y3, dist); double xmp1 = y1-cvGetReal2D(vP[iP], 0, 0); double xmp2 = y2-cvGetReal2D(vP[iP], 1, 0); double xmp3 = y3-cvGetReal2D(vP[iP], 2, 0); double v1 = cvGetReal2D(vV[iP], 0, 0); double v2 = cvGetReal2D(vV[iP], 1, 0); double v3 = cvGetReal2D(vV[iP], 2, 0); double v_norm = sqrt(v1*v1+v2*v2+v3*v3); v1 /= v_norm; v2 /= v_norm; v3 /= v_norm; double vxmp1 = v1*xmp1; double vxmp2 = v2*xmp2; double vxmp3 = v3*xmp3; double vxmp = vxmp1+vxmp2+vxmp3; double x_tilde1 = cvGetReal2D(vP[iP], 0, 0) + (vxmp + dist*dist*vxmp)*v1; double x_tilde2 = cvGetReal2D(vP[iP], 1, 0) + (vxmp + dist*dist*vxmp)*v2; double x_tilde3 = cvGetReal2D(vP[iP], 2, 0) + (vxmp + dist*dist*vxmp)*v3; double weight = exp(-dist*dist/vBandwidth[iP]/vBandwidth[iP]/2)/(vBandwidth[iP]*vBandwidth[iP]*vBandwidth[iP]*vxmp*vxmp); sum1 += weight * x_tilde1; sum2 += weight * x_tilde2; sum3 += weight * x_tilde3; normalization += weight; vWeight.push_back(weight); } y1 = sum1/normalization; y2 = sum2/normalization; y3 = sum3/normalization; } void MeanShift_Gaussian_Ray(double &y1, double &y2, double &y3, vector<CvMat *> vP, vector<CvMat *> vV, double bandwidth, vector<double> &vWeight) { double sum1 = 0, sum2 = 0, sum3 = 0; double normalization = 0; for (int iP = 0; iP < vP.size(); iP++) { double dist, gradient1, gradient2, gradient3; DistanceBetweenRayAndPoint(cvGetReal2D(vP[iP], 0, 0), cvGetReal2D(vP[iP], 1, 0), cvGetReal2D(vP[iP], 2, 0), cvGetReal2D(vV[iP], 0, 0), cvGetReal2D(vV[iP], 1, 0), cvGetReal2D(vV[iP], 2, 0), y1, y2, y3, dist, gradient1, gradient2, gradient3); double dir1, dir2, dir3; dir1 = y1-cvGetReal2D(vP[iP], 0, 0); dir2 = y2-cvGetReal2D(vP[iP], 1, 0); dir3 = y3-cvGetReal2D(vP[iP], 2, 0); double dot_product = dir1*cvGetReal2D(vV[iP], 0, 0)+dir2*cvGetReal2D(vV[iP], 1, 0)+dir3*cvGetReal2D(vV[iP], 2, 0); if (dot_product < 0) { dist = 1e+6; } sum1 += gradient1*exp(-dist*dist/bandwidth/bandwidth); sum2 += gradient2*exp(-dist*dist/bandwidth/bandwidth); sum3 += gradient3*exp(-dist*dist/bandwidth/bandwidth); normalization += exp(-dist*dist/bandwidth/bandwidth); vWeight.push_back(exp(-dist*dist/bandwidth/bandwidth)); } y1 = sum1/normalization; y2 = sum2/normalization; y3 = sum3/normalization; } void DistanceBetweenRayAndPoint(double p1, double p2, double p3, double v1, double v2, double v3, double x1, double x2, double x3, double &d, double &g1, double &g2, double &g3) { double v_norm = sqrt(v1*v1+v2*v2+v3*v3); v1 /= v_norm; v2 /= v_norm; v3 /= v_norm; double xmp1 = x1-p1; double xmp2 = x2-p2; double xmp3 = x3-p3; double xmp_dot_v1 = xmp1*v1; double xmp_dot_v2 = xmp1*v2; double xmp_dot_v3 = xmp1*v3; double d1 = xmp1-xmp_dot_v1*v1; double d2 = xmp2-xmp_dot_v2*v2; double d3 = xmp3-xmp_dot_v3*v3; d = sqrt(d1*d1+d2*d2+d3*d3); g1 = p1 + xmp_dot_v1*v1; g2 = p2 + xmp_dot_v2*v2; g3 = p3 + xmp_dot_v3*v3; } void DistanceBetweenConeAndPoint(double p1, double p2, double p3, double v1, double v2, double v3, double x1, double x2, double x3, double &d) { double v_norm = sqrt(v1*v1+v2*v2+v3*v3); v1 /= v_norm; v2 /= v_norm; v3 /= v_norm; double xmp1 = x1-p1; double xmp2 = x2-p2; double xmp3 = x3-p3; double xmp_dot_v1 = xmp1*v1; double xmp_dot_v2 = xmp2*v2; double xmp_dot_v3 = xmp3*v3; double direction = xmp_dot_v1+xmp_dot_v2+xmp_dot_v3; if (direction > 0) { double upper1 = xmp1 - direction*v1; double upper2 = xmp2 - direction*v2; double upper3 = xmp3 - direction*v3; d = sqrt(upper1*upper1+upper2*upper2+upper3*upper3)/direction; } else { d = 1e+6; } }
[ [ [ 1, 10299 ] ] ]
6398ed53bb2d9eb406876f19c257c4836c542423
52fb59fce8f90e7f69749fa6f5521a7c392f1617
/src/modules/navigator/navigator_main.cpp
8cb56c03fd2324d55c7d0a1f0cf04d1676b0eeba
[ "BSD-3-Clause" ]
permissive
HCFlight/Firmware
89cc31fc9c01f56578645ec528ff27293c3c9b1a
cab5f83af370687b7508891f1d1ea1eab804e385
refs/heads/hc1master
2020-04-02T08:35:54.349367
2018-11-02T10:20:25
2018-11-02T10:20:25
154,251,398
3
2
BSD-3-Clause
2018-11-02T10:20:26
2018-10-23T02:47:39
C++
UTF-8
C++
false
false
38,733
cpp
/**************************************************************************** * * Copyright (c) 2013-2017 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file navigator_main.cpp * * Handles mission items, geo fencing and failsafe navigation behavior. * Published the position setpoint triplet for the position controller. * * @author Lorenz Meier <[email protected]> * @author Jean Cyr <[email protected]> * @author Julian Oes <[email protected]> * @author Anton Babushkin <[email protected]> * @author Thomas Gubler <[email protected]> */ #include "navigator.h" #include <cfloat> #include <sys/ioctl.h> #include <sys/stat.h> #include <sys/types.h> #include <dataman/dataman.h> #include <drivers/drv_hrt.h> #include <lib/ecl/geo/geo.h> #include <mathlib/mathlib.h> #include <px4_config.h> #include <px4_defines.h> #include <px4_posix.h> #include <px4_tasks.h> #include <systemlib/mavlink_log.h> #include <uORB/topics/fw_pos_ctrl_status.h> #include <uORB/topics/home_position.h> #include <uORB/topics/mission.h> #include <uORB/topics/vehicle_command.h> #include <uORB/topics/vehicle_command_ack.h> #include <uORB/topics/vehicle_status.h> #include <uORB/topics/transponder_report.h> #include <uORB/uORB.h> /** * navigator app start / stop handling function * * @ingroup apps */ extern "C" __EXPORT int navigator_main(int argc, char *argv[]); #define GEOFENCE_CHECK_INTERVAL 200000 namespace navigator { Navigator *g_navigator; } Navigator::Navigator() : ModuleParams(nullptr), _loop_perf(perf_alloc(PC_ELAPSED, "navigator")), _geofence(this), _mission(this), _loiter(this), _takeoff(this), _land(this), _precland(this), _rtl(this), _rcLoss(this), _dataLinkLoss(this), _engineFailure(this), _gpsFailure(this), _follow_target(this) { /* Create a list of our possible navigation types */ _navigation_mode_array[0] = &_mission; _navigation_mode_array[1] = &_loiter; _navigation_mode_array[2] = &_rtl; _navigation_mode_array[3] = &_dataLinkLoss; _navigation_mode_array[4] = &_engineFailure; _navigation_mode_array[5] = &_gpsFailure; _navigation_mode_array[6] = &_rcLoss; _navigation_mode_array[7] = &_takeoff; _navigation_mode_array[8] = &_land; _navigation_mode_array[9] = &_precland; _navigation_mode_array[10] = &_follow_target; } void Navigator::global_position_update() { orb_copy(ORB_ID(vehicle_global_position), _global_pos_sub, &_global_pos); } void Navigator::local_position_update() { orb_copy(ORB_ID(vehicle_local_position), _local_pos_sub, &_local_pos); } void Navigator::gps_position_update() { orb_copy(ORB_ID(vehicle_gps_position), _gps_pos_sub, &_gps_pos); } void Navigator::home_position_update(bool force) { bool updated = false; orb_check(_home_pos_sub, &updated); if (updated || force) { orb_copy(ORB_ID(home_position), _home_pos_sub, &_home_pos); } } void Navigator::fw_pos_ctrl_status_update(bool force) { bool updated = false; orb_check(_fw_pos_ctrl_status_sub, &updated); if (updated || force) { orb_copy(ORB_ID(fw_pos_ctrl_status), _fw_pos_ctrl_status_sub, &_fw_pos_ctrl_status); } } void Navigator::vehicle_status_update() { if (orb_copy(ORB_ID(vehicle_status), _vstatus_sub, &_vstatus) != OK) { /* in case the commander is not be running */ _vstatus.arming_state = vehicle_status_s::ARMING_STATE_STANDBY; } } void Navigator::vehicle_land_detected_update() { orb_copy(ORB_ID(vehicle_land_detected), _land_detected_sub, &_land_detected); } void Navigator::params_update() { parameter_update_s param_update; orb_copy(ORB_ID(parameter_update), _param_update_sub, &param_update); updateParams(); } void Navigator::run() { bool have_geofence_position_data = false; /* Try to load the geofence: * if /fs/microsd/etc/geofence.txt load from this file */ struct stat buffer; if (stat(GEOFENCE_FILENAME, &buffer) == 0) { PX4_INFO("Loading geofence from %s", GEOFENCE_FILENAME); _geofence.loadFromFile(GEOFENCE_FILENAME); } /* do subscriptions */ _global_pos_sub = orb_subscribe(ORB_ID(vehicle_global_position)); _local_pos_sub = orb_subscribe(ORB_ID(vehicle_local_position)); _gps_pos_sub = orb_subscribe(ORB_ID(vehicle_gps_position)); _fw_pos_ctrl_status_sub = orb_subscribe(ORB_ID(fw_pos_ctrl_status)); _vstatus_sub = orb_subscribe(ORB_ID(vehicle_status)); _land_detected_sub = orb_subscribe(ORB_ID(vehicle_land_detected)); _home_pos_sub = orb_subscribe(ORB_ID(home_position)); _offboard_mission_sub = orb_subscribe(ORB_ID(mission)); _param_update_sub = orb_subscribe(ORB_ID(parameter_update)); _vehicle_command_sub = orb_subscribe(ORB_ID(vehicle_command)); _traffic_sub = orb_subscribe(ORB_ID(transponder_report)); /* copy all topics first time */ vehicle_status_update(); vehicle_land_detected_update(); global_position_update(); local_position_update(); gps_position_update(); home_position_update(true); fw_pos_ctrl_status_update(true); params_update(); /* wakeup source(s) */ px4_pollfd_struct_t fds[1] = {}; /* Setup of loop */ fds[0].fd = _local_pos_sub; fds[0].events = POLLIN; /* rate-limit position subscription to 20 Hz / 50 ms */ orb_set_interval(_local_pos_sub, 50); hrt_abstime last_geofence_check = 0; while (!should_exit()) { /* wait for up to 1000ms for data */ int pret = px4_poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 1000); if (pret == 0) { /* Let the loop run anyway, don't do `continue` here. */ } else if (pret < 0) { /* this is undesirable but not much we can do - might want to flag unhappy status */ PX4_ERR("poll error %d, %d", pret, errno); usleep(10000); continue; } else { if (fds[0].revents & POLLIN) { /* success, local pos is available */ local_position_update(); } } perf_begin(_loop_perf); bool updated; /* gps updated */ orb_check(_gps_pos_sub, &updated); if (updated) { gps_position_update(); if (_geofence.getSource() == Geofence::GF_SOURCE_GPS) { have_geofence_position_data = true; } } /* global position updated */ orb_check(_global_pos_sub, &updated); if (updated) { global_position_update(); if (_geofence.getSource() == Geofence::GF_SOURCE_GLOBALPOS) { have_geofence_position_data = true; } } /* parameters updated */ orb_check(_param_update_sub, &updated); if (updated) { params_update(); } /* vehicle status updated */ orb_check(_vstatus_sub, &updated); if (updated) { vehicle_status_update(); } /* vehicle land detected updated */ orb_check(_land_detected_sub, &updated); if (updated) { vehicle_land_detected_update(); } /* navigation capabilities updated */ orb_check(_fw_pos_ctrl_status_sub, &updated); if (updated) { fw_pos_ctrl_status_update(); } /* home position updated */ orb_check(_home_pos_sub, &updated); if (updated) { home_position_update(); } /* vehicle_command updated */ orb_check(_vehicle_command_sub, &updated); if (updated) { vehicle_command_s cmd; orb_copy(ORB_ID(vehicle_command), _vehicle_command_sub, &cmd); if (cmd.command == vehicle_command_s::VEHICLE_CMD_DO_GO_AROUND) { // DO_GO_AROUND is currently handled by the position controller (unacknowledged) // TODO: move DO_GO_AROUND handling to navigator publish_vehicle_command_ack(cmd, vehicle_command_s::VEHICLE_CMD_RESULT_ACCEPTED); } else if (cmd.command == vehicle_command_s::VEHICLE_CMD_DO_REPOSITION) { position_setpoint_triplet_s *rep = get_reposition_triplet(); position_setpoint_triplet_s *curr = get_position_setpoint_triplet(); // store current position as previous position and goal as next rep->previous.yaw = get_global_position()->yaw; rep->previous.lat = get_global_position()->lat; rep->previous.lon = get_global_position()->lon; rep->previous.alt = get_global_position()->alt; rep->current.loiter_radius = get_loiter_radius(); rep->current.loiter_direction = 1; rep->current.type = position_setpoint_s::SETPOINT_TYPE_LOITER; rep->current.cruising_speed = get_cruising_speed(); rep->current.cruising_throttle = get_cruising_throttle(); // Go on and check which changes had been requested if (PX4_ISFINITE(cmd.param4)) { rep->current.yaw = cmd.param4; } else { rep->current.yaw = NAN; } if (PX4_ISFINITE(cmd.param5) && PX4_ISFINITE(cmd.param6)) { // Position change with optional altitude change rep->current.lat = (cmd.param5 < 1000) ? cmd.param5 : cmd.param5 / (double)1e7; rep->current.lon = (cmd.param6 < 1000) ? cmd.param6 : cmd.param6 / (double)1e7; if (PX4_ISFINITE(cmd.param7)) { rep->current.alt = cmd.param7; } else { rep->current.alt = get_global_position()->alt; } } else if (PX4_ISFINITE(cmd.param7) && curr->current.valid && PX4_ISFINITE(curr->current.lat) && PX4_ISFINITE(curr->current.lon)) { // Altitude without position change rep->current.lat = curr->current.lat; rep->current.lon = curr->current.lon; rep->current.alt = cmd.param7; } else { // All three set to NaN - hold in current position rep->current.lat = get_global_position()->lat; rep->current.lon = get_global_position()->lon; rep->current.alt = get_global_position()->alt; } rep->previous.valid = true; rep->current.valid = true; rep->next.valid = false; // CMD_DO_REPOSITION is acknowledged by commander } else if (cmd.command == vehicle_command_s::VEHICLE_CMD_NAV_TAKEOFF) { position_setpoint_triplet_s *rep = get_takeoff_triplet(); // store current position as previous position and goal as next rep->previous.yaw = get_global_position()->yaw; rep->previous.lat = get_global_position()->lat; rep->previous.lon = get_global_position()->lon; rep->previous.alt = get_global_position()->alt; rep->current.loiter_radius = get_loiter_radius(); rep->current.loiter_direction = 1; rep->current.type = position_setpoint_s::SETPOINT_TYPE_TAKEOFF; if (home_position_valid()) { rep->current.yaw = cmd.param4; rep->previous.valid = true; } else { rep->current.yaw = get_local_position()->yaw; rep->previous.valid = false; } if (PX4_ISFINITE(cmd.param5) && PX4_ISFINITE(cmd.param6)) { rep->current.lat = (cmd.param5 < 1000) ? cmd.param5 : cmd.param5 / (double)1e7; rep->current.lon = (cmd.param6 < 1000) ? cmd.param6 : cmd.param6 / (double)1e7; } else { // If one of them is non-finite, reset both rep->current.lat = NAN; rep->current.lon = NAN; } rep->current.alt = cmd.param7; rep->current.valid = true; rep->next.valid = false; // CMD_NAV_TAKEOFF is acknowledged by commander } else if (cmd.command == vehicle_command_s::VEHICLE_CMD_DO_LAND_START) { /* find NAV_CMD_DO_LAND_START in the mission and * use MAV_CMD_MISSION_START to start the mission there */ if (_mission.land_start()) { vehicle_command_s vcmd = {}; vcmd.command = vehicle_command_s::VEHICLE_CMD_MISSION_START; vcmd.param1 = _mission.get_land_start_index(); publish_vehicle_cmd(&vcmd); } else { PX4_WARN("planned mission landing not available"); } publish_vehicle_command_ack(cmd, vehicle_command_s::VEHICLE_CMD_RESULT_ACCEPTED); } else if (cmd.command == vehicle_command_s::VEHICLE_CMD_MISSION_START) { if (_mission_result.valid && PX4_ISFINITE(cmd.param1) && (cmd.param1 >= 0)) { if (!_mission.set_current_offboard_mission_index(cmd.param1)) { PX4_WARN("CMD_MISSION_START failed"); } } // CMD_MISSION_START is acknowledged by commander } else if (cmd.command == vehicle_command_s::VEHICLE_CMD_DO_CHANGE_SPEED) { if (cmd.param2 > FLT_EPSILON) { // XXX not differentiating ground and airspeed yet set_cruising_speed(cmd.param2); } else { set_cruising_speed(); /* if no speed target was given try to set throttle */ if (cmd.param3 > FLT_EPSILON) { set_cruising_throttle(cmd.param3 / 100); } else { set_cruising_throttle(); } } // TODO: handle responses for supported DO_CHANGE_SPEED options? publish_vehicle_command_ack(cmd, vehicle_command_s::VEHICLE_CMD_RESULT_ACCEPTED); } else if (cmd.command == vehicle_command_s::VEHICLE_CMD_DO_SET_ROI || cmd.command == vehicle_command_s::VEHICLE_CMD_NAV_ROI || cmd.command == vehicle_command_s::VEHICLE_CMD_DO_SET_ROI_LOCATION || cmd.command == vehicle_command_s::VEHICLE_CMD_DO_SET_ROI_WPNEXT_OFFSET || cmd.command == vehicle_command_s::VEHICLE_CMD_DO_SET_ROI_NONE) { _vroi = {}; switch (cmd.command) { case vehicle_command_s::VEHICLE_CMD_DO_SET_ROI: case vehicle_command_s::VEHICLE_CMD_NAV_ROI: _vroi.mode = cmd.param1; break; case vehicle_command_s::VEHICLE_CMD_DO_SET_ROI_LOCATION: _vroi.mode = vehicle_command_s::VEHICLE_ROI_LOCATION; _vroi.lat = cmd.param5; _vroi.lon = cmd.param6; _vroi.alt = cmd.param7; break; case vehicle_command_s::VEHICLE_CMD_DO_SET_ROI_WPNEXT_OFFSET: _vroi.mode = vehicle_command_s::VEHICLE_ROI_WPNEXT; _vroi.pitch_offset = (float)cmd.param5 * M_DEG_TO_RAD_F; _vroi.roll_offset = (float)cmd.param6 * M_DEG_TO_RAD_F; _vroi.yaw_offset = (float)cmd.param7 * M_DEG_TO_RAD_F; break; case vehicle_command_s::VEHICLE_CMD_DO_SET_ROI_NONE: _vroi.mode = vehicle_command_s::VEHICLE_ROI_NONE; break; default: _vroi.mode = vehicle_command_s::VEHICLE_ROI_NONE; break; } _vroi.timestamp = hrt_absolute_time(); if (_vehicle_roi_pub != nullptr) { orb_publish(ORB_ID(vehicle_roi), _vehicle_roi_pub, &_vroi); } else { _vehicle_roi_pub = orb_advertise(ORB_ID(vehicle_roi), &_vroi); } publish_vehicle_command_ack(cmd, vehicle_command_s::VEHICLE_CMD_RESULT_ACCEPTED); } } /* Check for traffic */ check_traffic(); /* Check geofence violation */ if (have_geofence_position_data && (_geofence.getGeofenceAction() != geofence_result_s::GF_ACTION_NONE) && (hrt_elapsed_time(&last_geofence_check) > GEOFENCE_CHECK_INTERVAL)) { bool inside = _geofence.check(_global_pos, _gps_pos, _home_pos, home_position_valid()); last_geofence_check = hrt_absolute_time(); have_geofence_position_data = false; _geofence_result.timestamp = hrt_absolute_time(); _geofence_result.geofence_action = _geofence.getGeofenceAction(); _geofence_result.home_required = _geofence.isHomeRequired(); if (!inside) { /* inform other apps via the mission result */ _geofence_result.geofence_violated = true; /* Issue a warning about the geofence violation once */ if (!_geofence_violation_warning_sent) { mavlink_log_critical(&_mavlink_log_pub, "Geofence violation"); _geofence_violation_warning_sent = true; } } else { /* inform other apps via the mission result */ _geofence_result.geofence_violated = false; /* Reset the _geofence_violation_warning_sent field */ _geofence_violation_warning_sent = false; } publish_geofence_result(); } /* Do stuff according to navigation state set by commander */ NavigatorMode *navigation_mode_new{nullptr}; switch (_vstatus.nav_state) { case vehicle_status_s::NAVIGATION_STATE_AUTO_MISSION: _pos_sp_triplet_published_invalid_once = false; _mission.set_execution_mode(mission_result_s::MISSION_EXECUTION_MODE_NORMAL); navigation_mode_new = &_mission; break; case vehicle_status_s::NAVIGATION_STATE_AUTO_LOITER: _pos_sp_triplet_published_invalid_once = false; navigation_mode_new = &_loiter; break; case vehicle_status_s::NAVIGATION_STATE_AUTO_RCRECOVER: _pos_sp_triplet_published_invalid_once = false; navigation_mode_new = &_rcLoss; break; case vehicle_status_s::NAVIGATION_STATE_AUTO_RTL: { _pos_sp_triplet_published_invalid_once = false; const bool rtl_activated = _previous_nav_state != vehicle_status_s::NAVIGATION_STATE_AUTO_RTL; switch (rtl_type()) { case RTL::RTL_LAND: if (rtl_activated) { mavlink_and_console_log_info(get_mavlink_log_pub(), "RTL LAND activated"); } // if RTL is set to use a mission landing and mission has a planned landing, then use MISSION to fly there directly if (on_mission_landing() && !get_land_detected()->landed) { _mission.set_execution_mode(mission_result_s::MISSION_EXECUTION_MODE_FAST_FORWARD); navigation_mode_new = &_mission; } else { navigation_mode_new = &_rtl; } break; case RTL::RTL_MISSION: if (_mission.get_land_start_available() && !get_land_detected()->landed) { // the mission contains a landing spot _mission.set_execution_mode(mission_result_s::MISSION_EXECUTION_MODE_FAST_FORWARD); if (_navigation_mode != &_mission) { if (_navigation_mode == nullptr) { // switching from an manual mode, go to landing if not already landing if (!on_mission_landing()) { start_mission_landing(); } } else { // switching from an auto mode, continue the mission from the closest item _mission.set_closest_item_as_current(); } } if (rtl_activated) { mavlink_and_console_log_info(get_mavlink_log_pub(), "RTL Mission activated, continue mission"); } navigation_mode_new = &_mission; } else { // fly the mission in reverse if switching from a non-manual mode _mission.set_execution_mode(mission_result_s::MISSION_EXECUTION_MODE_REVERSE); if ((_navigation_mode != nullptr && (_navigation_mode != &_rtl || _mission.get_mission_changed())) && (! _mission.get_mission_finished()) && (!get_land_detected()->landed)) { // determine the closest mission item if switching from a non-mission mode, and we are either not already // mission mode or the mission waypoints changed. // The seconds condition is required so that when no mission was uploaded and one is available the closest // mission item is determined and also that if the user changes the active mission index while rtl is active // always that waypoint is tracked first. if ((_navigation_mode != &_mission) && (rtl_activated || _mission.get_mission_waypoints_changed())) { _mission.set_closest_item_as_current(); } if (rtl_activated) { mavlink_and_console_log_info(get_mavlink_log_pub(), "RTL Mission activated, fly mission in reverse"); } navigation_mode_new = &_mission; } else { if (rtl_activated) { mavlink_and_console_log_info(get_mavlink_log_pub(), "RTL Mission activated, fly to home"); } navigation_mode_new = &_rtl; } } break; default: if (rtl_activated) { mavlink_and_console_log_info(get_mavlink_log_pub(), "RTL HOME activated"); } navigation_mode_new = &_rtl; break; } break; } case vehicle_status_s::NAVIGATION_STATE_AUTO_TAKEOFF: _pos_sp_triplet_published_invalid_once = false; navigation_mode_new = &_takeoff; break; case vehicle_status_s::NAVIGATION_STATE_AUTO_LAND: _pos_sp_triplet_published_invalid_once = false; navigation_mode_new = &_land; break; case vehicle_status_s::NAVIGATION_STATE_AUTO_PRECLAND: _pos_sp_triplet_published_invalid_once = false; navigation_mode_new = &_precland; _precland.set_mode(PrecLandMode::Required); break; case vehicle_status_s::NAVIGATION_STATE_DESCEND: _pos_sp_triplet_published_invalid_once = false; navigation_mode_new = &_land; break; case vehicle_status_s::NAVIGATION_STATE_AUTO_RTGS: _pos_sp_triplet_published_invalid_once = false; navigation_mode_new = &_dataLinkLoss; break; case vehicle_status_s::NAVIGATION_STATE_AUTO_LANDENGFAIL: _pos_sp_triplet_published_invalid_once = false; navigation_mode_new = &_engineFailure; break; case vehicle_status_s::NAVIGATION_STATE_AUTO_LANDGPSFAIL: _pos_sp_triplet_published_invalid_once = false; navigation_mode_new = &_gpsFailure; break; case vehicle_status_s::NAVIGATION_STATE_AUTO_FOLLOW_TARGET: _pos_sp_triplet_published_invalid_once = false; navigation_mode_new = &_follow_target; break; case vehicle_status_s::NAVIGATION_STATE_MANUAL: case vehicle_status_s::NAVIGATION_STATE_ACRO: case vehicle_status_s::NAVIGATION_STATE_ALTCTL: case vehicle_status_s::NAVIGATION_STATE_POSCTL: case vehicle_status_s::NAVIGATION_STATE_TERMINATION: case vehicle_status_s::NAVIGATION_STATE_OFFBOARD: case vehicle_status_s::NAVIGATION_STATE_STAB: default: _pos_sp_triplet_published_invalid_once = false; navigation_mode_new = nullptr; _can_loiter_at_sp = false; break; } // update the vehicle status _previous_nav_state = _vstatus.nav_state; /* we have a new navigation mode: reset triplet */ if (_navigation_mode != navigation_mode_new) { // We don't reset the triplet if we just did an auto-takeoff and are now // going to loiter. Otherwise, we lose the takeoff altitude and end up lower // than where we wanted to go. // // FIXME: a better solution would be to add reset where they are needed and remove // this general reset here. if (!(_navigation_mode == &_takeoff && navigation_mode_new == &_loiter)) { reset_triplets(); } } _navigation_mode = navigation_mode_new; /* iterate through navigation modes and set active/inactive for each */ for (unsigned int i = 0; i < NAVIGATOR_MODE_ARRAY_SIZE; i++) { _navigation_mode_array[i]->run(_navigation_mode == _navigation_mode_array[i]); } /* if we landed and have not received takeoff setpoint then stay in idle */ if (_land_detected.landed && !((_vstatus.nav_state == vehicle_status_s::NAVIGATION_STATE_AUTO_TAKEOFF) || (_vstatus.nav_state == vehicle_status_s::NAVIGATION_STATE_AUTO_MISSION))) { _pos_sp_triplet.current.type = position_setpoint_s::SETPOINT_TYPE_IDLE; _pos_sp_triplet.current.valid = true; _pos_sp_triplet.previous.valid = false; _pos_sp_triplet.next.valid = false; } /* if nothing is running, set position setpoint triplet invalid once */ if (_navigation_mode == nullptr && !_pos_sp_triplet_published_invalid_once) { _pos_sp_triplet_published_invalid_once = true; reset_triplets(); } if (_pos_sp_triplet_updated) { _pos_sp_triplet.timestamp = hrt_absolute_time(); publish_position_setpoint_triplet(); _pos_sp_triplet_updated = false; } if (_mission_result_updated) { publish_mission_result(); _mission_result_updated = false; } perf_end(_loop_perf); } orb_unsubscribe(_global_pos_sub); orb_unsubscribe(_local_pos_sub); orb_unsubscribe(_gps_pos_sub); orb_unsubscribe(_fw_pos_ctrl_status_sub); orb_unsubscribe(_vstatus_sub); orb_unsubscribe(_land_detected_sub); orb_unsubscribe(_home_pos_sub); orb_unsubscribe(_offboard_mission_sub); orb_unsubscribe(_param_update_sub); orb_unsubscribe(_vehicle_command_sub); } int Navigator::task_spawn(int argc, char *argv[]) { _task_id = px4_task_spawn_cmd("navigator", SCHED_DEFAULT, SCHED_PRIORITY_NAVIGATION, 1800, (px4_main_t)&run_trampoline, (char *const *)argv); if (_task_id < 0) { _task_id = -1; return -errno; } return 0; } Navigator *Navigator::instantiate(int argc, char *argv[]) { Navigator *instance = new Navigator(); if (instance == nullptr) { PX4_ERR("alloc failed"); } return instance; } int Navigator::print_status() { PX4_INFO("Running"); _geofence.printStatus(); return 0; } void Navigator::publish_position_setpoint_triplet() { /* do not publish an empty triplet */ if (!_pos_sp_triplet.current.valid) { return; } /* lazily publish the position setpoint triplet only once available */ if (_pos_sp_triplet_pub != nullptr) { orb_publish(ORB_ID(position_setpoint_triplet), _pos_sp_triplet_pub, &_pos_sp_triplet); } else { _pos_sp_triplet_pub = orb_advertise(ORB_ID(position_setpoint_triplet), &_pos_sp_triplet); } } float Navigator::get_default_acceptance_radius() { return _param_acceptance_radius.get(); } float Navigator::get_acceptance_radius() { return get_acceptance_radius(_param_acceptance_radius.get()); } float Navigator::get_altitude_acceptance_radius() { if (!get_vstatus()->is_rotary_wing) { return _param_fw_alt_acceptance_radius.get(); } else { return _param_mc_alt_acceptance_radius.get(); } } float Navigator::get_cruising_speed() { /* there are three options: The mission-requested cruise speed, or the current hover / plane speed */ if (_vstatus.is_rotary_wing) { if (is_planned_mission() && _mission_cruising_speed_mc > 0.0f) { return _mission_cruising_speed_mc; } else { return -1.0f; } } else { if (is_planned_mission() && _mission_cruising_speed_fw > 0.0f) { return _mission_cruising_speed_fw; } else { return -1.0f; } } } void Navigator::set_cruising_speed(float speed) { if (_vstatus.is_rotary_wing) { _mission_cruising_speed_mc = speed; } else { _mission_cruising_speed_fw = speed; } } void Navigator::reset_cruising_speed() { _mission_cruising_speed_mc = -1.0f; _mission_cruising_speed_fw = -1.0f; } void Navigator::reset_triplets() { _pos_sp_triplet.current.valid = false; _pos_sp_triplet.previous.valid = false; _pos_sp_triplet.next.valid = false; _pos_sp_triplet_updated = true; } float Navigator::get_cruising_throttle() { /* Return the mission-requested cruise speed, or default FW_THR_CRUISE value */ if (_mission_throttle > FLT_EPSILON) { return _mission_throttle; } else { return -1.0f; } } float Navigator::get_acceptance_radius(float mission_item_radius) { float radius = mission_item_radius; // XXX only use navigation capabilities for now // when in fixed wing mode // this might need locking against a commanded transition // so that a stale _vstatus doesn't trigger an accepted mission item. if (!_vstatus.is_rotary_wing && !_vstatus.in_transition_mode) { if ((hrt_elapsed_time(&_fw_pos_ctrl_status.timestamp) < 5000000) && (_fw_pos_ctrl_status.turn_distance > radius)) { radius = _fw_pos_ctrl_status.turn_distance; } } return radius; } void Navigator::load_fence_from_file(const char *filename) { _geofence.loadFromFile(filename); } /** * Creates a fake traffic measurement with supplied parameters. * */ void Navigator::fake_traffic(const char *callsign, float distance, float direction, float traffic_heading, float altitude_diff, float hor_velocity, float ver_velocity) { double lat, lon; waypoint_from_heading_and_distance(get_global_position()->lat, get_global_position()->lon, direction, distance, &lat, &lon); float alt = get_global_position()->alt + altitude_diff; // float vel_n = get_global_position()->vel_n; // float vel_e = get_global_position()->vel_e; // float vel_d = get_global_position()->vel_d; transponder_report_s tr = {}; tr.timestamp = hrt_absolute_time(); tr.ICAO_address = 1234; tr.lat = lat; // Latitude, expressed as degrees tr.lon = lon; // Longitude, expressed as degrees tr.altitude_type = 0; tr.altitude = alt; tr.heading = traffic_heading; //-atan2(vel_e, vel_n); // Course over ground in radians tr.hor_velocity = hor_velocity; //sqrtf(vel_e * vel_e + vel_n * vel_n); // The horizontal velocity in m/s tr.ver_velocity = ver_velocity; //-vel_d; // The vertical velocity in m/s, positive is up strncpy(&tr.callsign[0], callsign, sizeof(tr.callsign) - 1); tr.callsign[sizeof(tr.callsign) - 1] = 0; tr.emitter_type = 0; // Type from ADSB_EMITTER_TYPE enum tr.tslc = 2; // Time since last communication in seconds tr.flags = transponder_report_s::PX4_ADSB_FLAGS_VALID_COORDS | transponder_report_s::PX4_ADSB_FLAGS_VALID_HEADING | transponder_report_s::PX4_ADSB_FLAGS_VALID_VELOCITY | transponder_report_s::PX4_ADSB_FLAGS_VALID_ALTITUDE | transponder_report_s::PX4_ADSB_FLAGS_VALID_CALLSIGN; // Flags to indicate various statuses including valid data fields tr.squawk = 6667; orb_advert_t h = orb_advertise_queue(ORB_ID(transponder_report), &tr, transponder_report_s::ORB_QUEUE_LENGTH); (void)orb_unadvertise(h); } void Navigator::check_traffic() { double lat = get_global_position()->lat; double lon = get_global_position()->lon; float alt = get_global_position()->alt; // TODO for non-multirotors predicting the future // position as accurately as possible will become relevant // float vel_n = get_global_position()->vel_n; // float vel_e = get_global_position()->vel_e; // float vel_d = get_global_position()->vel_d; bool changed; orb_check(_traffic_sub, &changed); float horizontal_separation = 500; float vertical_separation = 500; while (changed) { transponder_report_s tr; orb_copy(ORB_ID(transponder_report), _traffic_sub, &tr); uint16_t required_flags = transponder_report_s::PX4_ADSB_FLAGS_VALID_COORDS | transponder_report_s::PX4_ADSB_FLAGS_VALID_HEADING | transponder_report_s::PX4_ADSB_FLAGS_VALID_VELOCITY | transponder_report_s::PX4_ADSB_FLAGS_VALID_ALTITUDE; if ((tr.flags & required_flags) != required_flags) { orb_check(_traffic_sub, &changed); continue; } float d_hor, d_vert; get_distance_to_point_global_wgs84(lat, lon, alt, tr.lat, tr.lon, tr.altitude, &d_hor, &d_vert); // predict final altitude (positive is up) in prediction time frame float end_alt = tr.altitude + (d_vert / tr.hor_velocity) * tr.ver_velocity; // Predict until the vehicle would have passed this system at its current speed float prediction_distance = d_hor + 1000.0f; // If the altitude is not getting close to us, do not calculate // the horizontal separation. // Since commercial flights do most of the time keep flight levels // check for the current and for the predicted flight level. // we also make the implicit assumption that this system is on the lowest // flight level close to ground in the // (end_alt - horizontal_separation < alt) condition. If this system should // ever be used in normal airspace this implementation would anyway be // inappropriate as it should be replaced with a TCAS compliant solution. if ((fabsf(alt - tr.altitude) < vertical_separation) || ((end_alt - horizontal_separation) < alt)) { double end_lat, end_lon; waypoint_from_heading_and_distance(tr.lat, tr.lon, tr.heading, prediction_distance, &end_lat, &end_lon); struct crosstrack_error_s cr; if (!get_distance_to_line(&cr, lat, lon, tr.lat, tr.lon, end_lat, end_lon)) { if (!cr.past_end && (fabsf(cr.distance) < horizontal_separation)) { // direction of traffic in human-readable 0..360 degree in earth frame int traffic_direction = math::degrees(tr.heading) + 180; switch (_param_traffic_avoidance_mode.get()) { case 0: { /* ignore */ PX4_WARN("TRAFFIC %s, hdg: %d", tr.flags & transponder_report_s::PX4_ADSB_FLAGS_VALID_CALLSIGN ? tr.callsign : "unknown", traffic_direction); break; } case 1: { mavlink_log_critical(&_mavlink_log_pub, "WARNING TRAFFIC %s at heading %d, land immediately", tr.flags & transponder_report_s::PX4_ADSB_FLAGS_VALID_CALLSIGN ? tr.callsign : "unknown", traffic_direction); break; } case 2: { mavlink_log_critical(&_mavlink_log_pub, "AVOIDING TRAFFIC %s heading %d, returning home", tr.flags & transponder_report_s::PX4_ADSB_FLAGS_VALID_CALLSIGN ? tr.callsign : "unknown", traffic_direction); // set the return altitude to minimum _rtl.set_return_alt_min(true); // ask the commander to execute an RTL vehicle_command_s vcmd = {}; vcmd.command = vehicle_command_s::VEHICLE_CMD_NAV_RETURN_TO_LAUNCH; publish_vehicle_cmd(&vcmd); break; } } } } } orb_check(_traffic_sub, &changed); } } bool Navigator::abort_landing() { bool should_abort = false; if (!_vstatus.is_rotary_wing && !_vstatus.in_transition_mode) { if (hrt_elapsed_time(&_fw_pos_ctrl_status.timestamp) < 1000000) { if (get_position_setpoint_triplet()->current.valid && get_position_setpoint_triplet()->current.type == position_setpoint_s::SETPOINT_TYPE_LAND) { should_abort = _fw_pos_ctrl_status.abort_landing; } } } return should_abort; } bool Navigator::force_vtol() { return _vstatus.is_vtol && (!_vstatus.is_rotary_wing || _vstatus.in_transition_to_fw) && _param_force_vtol.get(); } int Navigator::print_usage(const char *reason) { if (reason) { PX4_WARN("%s\n", reason); } PRINT_MODULE_DESCRIPTION( R"DESCR_STR( ### Description Module that is responsible for autonomous flight modes. This includes missions (read from dataman), takeoff and RTL. It is also responsible for geofence violation checking. ### Implementation The different internal modes are implemented as separate classes that inherit from a common base class `NavigatorMode`. The member `_navigation_mode` contains the current active mode. Navigator publishes position setpoint triplets (`position_setpoint_triplet_s`), which are then used by the position controller. )DESCR_STR"); PRINT_MODULE_USAGE_NAME("navigator", "controller"); PRINT_MODULE_USAGE_COMMAND("start"); PRINT_MODULE_USAGE_COMMAND_DESCR("fencefile", "load a geofence file from SD card, stored at etc/geofence.txt"); PRINT_MODULE_USAGE_COMMAND_DESCR("fake_traffic", "publishes 3 fake transponder_report_s uORB messages"); PRINT_MODULE_USAGE_DEFAULT_COMMANDS(); return 0; } int Navigator::custom_command(int argc, char *argv[]) { if (!is_running()) { print_usage("not running"); return 1; } if (!strcmp(argv[0], "fencefile")) { get_instance()->load_fence_from_file(GEOFENCE_FILENAME); return 0; } else if (!strcmp(argv[0], "fake_traffic")) { get_instance()->fake_traffic("LX007", 500, 1.0f, -1.0f, 100.0f, 90.0f, 0.001f); get_instance()->fake_traffic("LX55", 1000, 0, 0, 100.0f, 90.0f, 0.001f); get_instance()->fake_traffic("LX20", 15000, 1.0f, -1.0f, 280.0f, 90.0f, 0.001f); return 0; } return print_usage("unknown command"); } int navigator_main(int argc, char *argv[]) { return Navigator::main(argc, argv); } void Navigator::publish_mission_result() { _mission_result.timestamp = hrt_absolute_time(); /* lazily publish the mission result only once available */ if (_mission_result_pub != nullptr) { /* publish mission result */ orb_publish(ORB_ID(mission_result), _mission_result_pub, &_mission_result); } else { /* advertise and publish */ _mission_result_pub = orb_advertise(ORB_ID(mission_result), &_mission_result); } /* reset some of the flags */ _mission_result.item_do_jump_changed = false; _mission_result.item_changed_index = 0; _mission_result.item_do_jump_remaining = 0; } void Navigator::publish_geofence_result() { /* lazily publish the geofence result only once available */ if (_geofence_result_pub != nullptr) { /* publish mission result */ orb_publish(ORB_ID(geofence_result), _geofence_result_pub, &_geofence_result); } else { /* advertise and publish */ _geofence_result_pub = orb_advertise(ORB_ID(geofence_result), &_geofence_result); } } void Navigator::set_mission_failure(const char *reason) { if (!_mission_result.failure) { _mission_result.failure = true; set_mission_result_updated(); mavlink_log_critical(&_mavlink_log_pub, "%s", reason); } } void Navigator::publish_vehicle_cmd(vehicle_command_s *vcmd) { vcmd->timestamp = hrt_absolute_time(); vcmd->source_system = _vstatus.system_id; vcmd->source_component = _vstatus.component_id; vcmd->target_system = _vstatus.system_id; vcmd->confirmation = false; vcmd->from_external = false; // The camera commands are not processed on the autopilot but will be // sent to the mavlink links to other components. switch (vcmd->command) { case NAV_CMD_IMAGE_START_CAPTURE: case NAV_CMD_IMAGE_STOP_CAPTURE: case NAV_CMD_VIDEO_START_CAPTURE: case NAV_CMD_VIDEO_STOP_CAPTURE: vcmd->target_component = 100; // MAV_COMP_ID_CAMERA break; default: vcmd->target_component = _vstatus.component_id; break; } if (_vehicle_cmd_pub != nullptr) { orb_publish(ORB_ID(vehicle_command), _vehicle_cmd_pub, vcmd); } else { _vehicle_cmd_pub = orb_advertise_queue(ORB_ID(vehicle_command), vcmd, vehicle_command_s::ORB_QUEUE_LENGTH); } } void Navigator::publish_vehicle_command_ack(const vehicle_command_s &cmd, uint8_t result) { vehicle_command_ack_s command_ack = {}; command_ack.timestamp = hrt_absolute_time(); command_ack.command = cmd.command; command_ack.target_system = cmd.source_system; command_ack.target_component = cmd.source_component; command_ack.from_external = false; command_ack.result = result; command_ack.result_param1 = 0; command_ack.result_param2 = 0; if (_vehicle_cmd_ack_pub != nullptr) { orb_publish(ORB_ID(vehicle_command_ack), _vehicle_cmd_ack_pub, &command_ack); } else { _vehicle_cmd_ack_pub = orb_advertise_queue(ORB_ID(vehicle_command_ack), &command_ack, vehicle_command_ack_s::ORB_QUEUE_LENGTH); } }
[ [ [ 1, 2 ], [ 4, 33 ], [ 35, 35 ], [ 44, 45 ], [ 62, 62 ], [ 65, 65 ], [ 71, 77 ], [ 79, 84 ], [ 87, 87 ], [ 100, 100 ], [ 109, 110 ], [ 113, 114 ], [ 119, 120 ], [ 134, 134 ], [ 139, 139 ], [ 178, 178 ], [ 180, 182 ], [ 193, 193 ], [ 196, 197 ], [ 202, 202 ], [ 211, 211 ], [ 215, 215 ], [ 217, 218 ], [ 220, 220 ], [ 228, 228 ], [ 230, 231 ], [ 233, 234 ], [ 239, 239 ], [ 241, 241 ], [ 246, 250 ], [ 253, 253 ], [ 255, 255 ], [ 275, 275 ], [ 277, 277 ], [ 282, 282 ], [ 284, 284 ], [ 296, 296 ], [ 298, 299 ], [ 303, 303 ], [ 305, 305 ], [ 310, 310 ], [ 312, 312 ], [ 314, 315 ], [ 323, 323 ], [ 326, 335 ], [ 338, 341 ], [ 343, 347 ], [ 369, 369 ], [ 371, 378 ], [ 382, 382 ], [ 384, 393 ], [ 414, 418 ], [ 513, 515 ], [ 520, 520 ], [ 528, 528 ], [ 530, 530 ], [ 552, 552 ], [ 742, 742 ], [ 775, 776 ], [ 803, 803 ], [ 805, 806 ], [ 808, 808 ], [ 813, 814 ], [ 816, 817 ], [ 830, 834 ], [ 836, 836 ], [ 844, 858 ], [ 860, 860 ], [ 862, 870 ], [ 879, 879 ], [ 886, 888 ], [ 928, 947 ], [ 1099, 1107 ], [ 1109, 1116 ], [ 1131, 1131 ], [ 1138, 1138 ], [ 1142, 1142 ], [ 1145, 1145 ], [ 1147, 1147 ], [ 1153, 1153 ], [ 1156, 1156 ], [ 1163, 1163 ], [ 1173, 1174 ], [ 1181, 1181 ], [ 1189, 1189 ], [ 1208, 1208 ] ], [ [ 3, 3 ], [ 39, 39 ], [ 49, 51 ], [ 68, 68 ], [ 111, 112 ], [ 121, 126 ], [ 175, 175 ], [ 184, 184 ], [ 188, 188 ], [ 194, 194 ], [ 200, 200 ], [ 203, 203 ], [ 209, 209 ], [ 224, 224 ], [ 229, 229 ], [ 237, 237 ], [ 265, 266 ], [ 272, 273 ], [ 313, 313 ], [ 324, 325 ], [ 348, 349 ], [ 353, 368 ], [ 370, 370 ], [ 383, 383 ], [ 394, 402 ], [ 421, 425 ], [ 428, 428 ], [ 434, 435 ], [ 437, 437 ], [ 443, 462 ], [ 468, 471 ], [ 473, 481 ], [ 485, 488 ], [ 492, 496 ], [ 516, 518 ], [ 523, 523 ], [ 525, 525 ], [ 677, 682 ], [ 727, 736 ], [ 761, 761 ], [ 778, 787 ], [ 789, 789 ], [ 822, 822 ], [ 871, 871 ], [ 873, 878 ], [ 881, 885 ], [ 889, 889 ], [ 892, 915 ], [ 920, 920 ], [ 924, 924 ], [ 952, 977 ], [ 980, 1098 ], [ 1167, 1167 ], [ 1186, 1186 ], [ 1270, 1270 ] ], [ [ 34, 34 ], [ 36, 37 ], [ 41, 41 ], [ 70, 70 ], [ 88, 88 ], [ 115, 118 ], [ 142, 144 ], [ 146, 146 ], [ 153, 158 ], [ 164, 174 ], [ 176, 177 ], [ 191, 192 ], [ 198, 199 ], [ 201, 201 ], [ 205, 205 ], [ 207, 208 ], [ 213, 213 ], [ 221, 221 ], [ 235, 236 ], [ 274, 274 ], [ 278, 280 ], [ 285, 289 ], [ 291, 294 ], [ 300, 300 ], [ 306, 308 ], [ 539, 539 ], [ 554, 554 ], [ 720, 721 ], [ 744, 745 ], [ 762, 763 ], [ 827, 827 ], [ 829, 829 ], [ 838, 839 ], [ 841, 843 ], [ 1117, 1117 ] ], [ [ 38, 38 ], [ 40, 40 ], [ 42, 42 ], [ 85, 85 ], [ 159, 159 ], [ 161, 163 ], [ 186, 187 ], [ 204, 204 ], [ 281, 281 ], [ 295, 295 ], [ 302, 302 ], [ 538, 538 ], [ 553, 553 ], [ 557, 557 ], [ 743, 743 ], [ 764, 764 ], [ 766, 769 ], [ 826, 826 ], [ 828, 828 ], [ 835, 835 ], [ 837, 837 ], [ 840, 840 ] ], [ [ 43, 43 ], [ 78, 78 ], [ 105, 108 ], [ 127, 132 ], [ 160, 160 ], [ 183, 183 ], [ 185, 185 ], [ 189, 190 ], [ 195, 195 ], [ 206, 206 ], [ 210, 210 ], [ 214, 214 ], [ 251, 252 ], [ 256, 256 ], [ 258, 262 ], [ 519, 519 ], [ 526, 527 ], [ 533, 534 ], [ 536, 537 ], [ 540, 541 ], [ 543, 544 ], [ 547, 549 ], [ 948, 951 ], [ 1182, 1185 ], [ 1188, 1188 ], [ 1190, 1196 ], [ 1202, 1203 ] ], [ [ 46, 48 ], [ 52, 54 ], [ 56, 56 ], [ 60, 61 ], [ 63, 64 ], [ 66, 67 ], [ 69, 69 ], [ 147, 149 ], [ 151, 152 ], [ 219, 219 ], [ 222, 223 ], [ 243, 244 ], [ 263, 264 ], [ 267, 271 ], [ 309, 309 ], [ 316, 322 ], [ 350, 352 ], [ 380, 381 ], [ 403, 406 ], [ 408, 413 ], [ 419, 420 ], [ 426, 427 ], [ 429, 433 ], [ 436, 436 ], [ 438, 442 ], [ 463, 466 ], [ 472, 472 ], [ 497, 512 ], [ 529, 529 ], [ 546, 546 ], [ 550, 551 ], [ 578, 578 ], [ 580, 580 ], [ 586, 586 ], [ 859, 859 ], [ 872, 872 ], [ 880, 880 ], [ 1218, 1260 ], [ 1262, 1262 ], [ 1264, 1269 ], [ 1271, 1281 ] ], [ [ 55, 55 ], [ 136, 138 ], [ 140, 141 ], [ 145, 145 ], [ 150, 150 ], [ 212, 212 ], [ 240, 240 ], [ 254, 254 ], [ 257, 257 ], [ 276, 276 ], [ 283, 283 ], [ 290, 290 ], [ 297, 297 ], [ 304, 304 ], [ 311, 311 ], [ 336, 337 ], [ 342, 342 ], [ 379, 379 ], [ 407, 407 ], [ 467, 467 ], [ 521, 522 ], [ 524, 524 ], [ 531, 532 ], [ 542, 542 ], [ 555, 556 ], [ 558, 577 ], [ 579, 579 ], [ 581, 585 ], [ 587, 676 ], [ 683, 719 ], [ 722, 726 ], [ 737, 740 ], [ 777, 777 ], [ 861, 861 ], [ 890, 891 ], [ 922, 922 ], [ 1108, 1108 ], [ 1118, 1125 ] ], [ [ 57, 57 ] ], [ [ 58, 59 ], [ 916, 919 ], [ 921, 921 ], [ 923, 923 ], [ 925, 927 ], [ 1161, 1162 ] ], [ [ 86, 86 ], [ 89, 99 ], [ 179, 179 ], [ 216, 216 ], [ 225, 227 ], [ 238, 238 ], [ 242, 242 ], [ 245, 245 ], [ 482, 484 ], [ 489, 491 ], [ 765, 765 ], [ 788, 788 ], [ 790, 802 ], [ 804, 804 ], [ 807, 807 ], [ 809, 812 ], [ 815, 815 ], [ 818, 819 ], [ 821, 821 ], [ 823, 824 ], [ 978, 979 ], [ 1126, 1126 ], [ 1128, 1129 ], [ 1132, 1137 ], [ 1139, 1141 ], [ 1143, 1144 ], [ 1146, 1146 ], [ 1148, 1152 ], [ 1154, 1155 ], [ 1157, 1160 ], [ 1164, 1166 ], [ 1168, 1172 ], [ 1175, 1180 ] ], [ [ 101, 104 ], [ 741, 741 ] ], [ [ 133, 133 ], [ 135, 135 ], [ 232, 232 ], [ 301, 301 ], [ 820, 820 ], [ 825, 825 ], [ 1127, 1127 ], [ 1130, 1130 ] ], [ [ 535, 535 ], [ 545, 545 ], [ 770, 774 ], [ 1197, 1201 ], [ 1204, 1207 ], [ 1209, 1217 ] ], [ [ 746, 757 ] ], [ [ 758, 760 ] ], [ [ 1187, 1187 ] ], [ [ 1261, 1261 ], [ 1263, 1263 ], [ 1282, 1283 ] ] ]
1b1519b8aa7010ebed238d0febf8fa065da32184
66e9d4ade105ca25ccaeece17b63831aaf133e7d
/components/browser_sync/profile_sync_service_autofill_unittest.cc
20bbd9d22e3b4dcae61fc6c1a3e0f6e027b0479d
[ "BSD-3-Clause" ]
permissive
rookiechao/chromium
17eed8364b9f369d35ca62ff380a7c5d55c5f810
2cd605c5bfcb7672fd6f4cae7400ec62308f3c2f
refs/heads/master
2023-03-07T20:13:33.287402
2019-04-04T09:48:01
2019-04-04T09:48:01
178,987,904
1
0
NOASSERTION
2019-04-02T03:00:16
2019-04-02T03:00:16
null
UTF-8
C++
false
false
43,200
cc
// Copyright 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <stddef.h> #include <stdint.h> #include <memory> #include <set> #include <string> #include <utility> #include <vector> #include "base/bind.h" #include "base/bind_helpers.h" #include "base/callback.h" #include "base/location.h" #include "base/macros.h" #include "base/memory/ref_counted.h" #include "base/run_loop.h" #include "base/sequenced_task_runner.h" #include "base/strings/string16.h" #include "base/strings/utf_string_conversions.h" #include "base/synchronization/waitable_event.h" #include "base/test/bind_test_util.h" #include "base/threading/thread.h" #include "base/threading/thread_task_runner_handle.h" #include "base/time/time.h" #include "components/autofill/core/browser/autofill_test_utils.h" #include "components/autofill/core/browser/country_names.h" #include "components/autofill/core/browser/field_types.h" #include "components/autofill/core/browser/personal_data_manager.h" #include "components/autofill/core/browser/webdata/autofill_change.h" #include "components/autofill/core/browser/webdata/autofill_profile_data_type_controller.h" #include "components/autofill/core/browser/webdata/autofill_profile_syncable_service.h" #include "components/autofill/core/browser/webdata/autofill_table.h" #include "components/autofill/core/browser/webdata/autofill_webdata_service.h" #include "components/autofill/core/common/autofill_prefs.h" #include "components/browser_sync/abstract_profile_sync_service_test.h" #include "components/sync/base/model_type.h" #include "components/sync/driver/data_type_controller.h" #include "components/sync/driver/data_type_manager_impl.h" #include "components/sync/driver/profile_sync_service.h" #include "components/sync/driver/sync_api_component_factory_mock.h" #include "components/sync/driver/sync_client_mock.h" #include "components/sync/driver/test_profile_sync_service.h" #include "components/sync/engine/data_type_debug_info_listener.h" #include "components/sync/engine/sequenced_model_worker.h" #include "components/sync/protocol/autofill_specifics.pb.h" #include "components/sync/syncable/mutable_entry.h" #include "components/sync/syncable/read_node.h" #include "components/sync/syncable/read_transaction.h" #include "components/sync/syncable/syncable_write_transaction.h" #include "components/sync/syncable/write_node.h" #include "components/sync/syncable/write_transaction.h" #include "components/sync_preferences/pref_service_syncable.h" #include "components/version_info/version_info.h" #include "components/webdata/common/web_database.h" #include "components/webdata_services/web_data_service_test_util.h" #include "services/identity/public/cpp/identity_test_utils.h" #include "testing/gmock/include/gmock/gmock.h" #include "testing/gtest/include/gtest/gtest.h" using autofill::AutofillChange; using autofill::AutofillChangeList; using autofill::AutofillKey; using autofill::AutofillProfile; using autofill::AutofillProfileChange; using autofill::AutofillProfileSyncableService; using autofill::AutofillTable; using autofill::AutofillWebDataService; using autofill::NAME_FULL; using autofill::PersonalDataManager; using autofill::ServerFieldType; using base::ASCIIToUTF16; using base::Time; using base::TimeDelta; using base::WaitableEvent; using syncer::AUTOFILL_PROFILE; using syncer::BaseNode; using syncer::syncable::CREATE; using syncer::syncable::GET_TYPE_ROOT; using syncer::syncable::MutableEntry; using syncer::syncable::UNITTEST; using syncer::syncable::WriterTag; using syncer::syncable::WriteTransaction; using testing::_; using testing::ByMove; using testing::DoAll; using testing::ElementsAre; using testing::Not; using testing::Return; using testing::SetArgPointee; namespace browser_sync { namespace { void RegisterAutofillPrefs(user_prefs::PrefRegistrySyncable* registry) { registry->RegisterBooleanPref(autofill::prefs::kAutofillCreditCardEnabled, true); registry->RegisterBooleanPref(autofill::prefs::kAutofillProfileEnabled, true); registry->RegisterBooleanPref(autofill::prefs::kAutofillWalletImportEnabled, true); registry->RegisterIntegerPref(autofill::prefs::kAutofillLastVersionDeduped, atoi(version_info::GetVersionNumber().c_str())); registry->RegisterIntegerPref(autofill::prefs::kAutofillLastVersionValidated, atoi(version_info::GetVersionNumber().c_str())); registry->RegisterBooleanPref( autofill::prefs::kAutofillJapanCityFieldMigrated, true); registry->RegisterBooleanPref(autofill::prefs::kAutofillOrphanRowsRemoved, true); registry->RegisterIntegerPref( autofill::prefs::kAutofillLastVersionDisusedAddressesDeleted, 0); registry->RegisterIntegerPref( autofill::prefs::kAutofillLastVersionDisusedCreditCardsDeleted, 0); registry->RegisterStringPref( autofill::prefs::kAutofillProfileValidity, "", user_prefs::PrefRegistrySyncable::SYNCABLE_PRIORITY_PREF); } void RunAndSignal(base::OnceClosure cb, WaitableEvent* event) { std::move(cb).Run(); event->Signal(); } } // namespace class AutofillTableMock : public AutofillTable { public: AutofillTableMock() {} MOCK_METHOD2(RemoveFormElement, bool(const base::string16& name, const base::string16& value)); // NOLINT MOCK_METHOD4(GetAutofillTimestamps, bool(const base::string16& name, // NOLINT const base::string16& value, Time* date_created, Time* date_last_used)); MOCK_METHOD1(GetAutofillProfiles, bool(std::vector<std::unique_ptr<AutofillProfile>>*)); // NOLINT MOCK_METHOD1(UpdateAutofillProfile, bool(const AutofillProfile&)); // NOLINT MOCK_METHOD1(AddAutofillProfile, bool(const AutofillProfile&)); // NOLINT MOCK_METHOD1(RemoveAutofillProfile, bool(const std::string&)); // NOLINT // TODO(crbug.com/904390): Remove when the investigation is over. MOCK_CONST_METHOD1( GetServerProfiles, bool(std::vector<std::unique_ptr<AutofillProfile>>*)); // NOLINT }; MATCHER_P(MatchProfiles, profile, "") { return (profile.Compare(arg) == 0); } ACTION_P(LoadAutofillProfiles, datafunc) { std::vector<std::unique_ptr<AutofillProfile>> profiles = std::move(datafunc()); arg0->swap(profiles); } class WebDatabaseFake : public WebDatabase { public: explicit WebDatabaseFake(AutofillTable* autofill_table) { AddTable(autofill_table); } }; class FakeAutofillBackend : public autofill::AutofillWebDataBackend { public: FakeAutofillBackend( WebDatabase* web_database, const base::RepeatingClosure& on_changed, const base::RepeatingCallback<void(syncer::ModelType)>& on_sync_started, const scoped_refptr<base::SequencedTaskRunner>& ui_task_runner) : web_database_(web_database), on_changed_(on_changed), on_sync_started_(on_sync_started), ui_task_runner_(ui_task_runner) {} ~FakeAutofillBackend() override {} WebDatabase* GetDatabase() override { return web_database_; } void AddObserver( autofill::AutofillWebDataServiceObserverOnDBSequence* observer) override { } void RemoveObserver( autofill::AutofillWebDataServiceObserverOnDBSequence* observer) override { } void CommitChanges() override {} void RemoveExpiredFormElements() override {} void NotifyOfAutofillProfileChanged( const autofill::AutofillProfileChange& change) override {} void NotifyOfCreditCardChanged( const autofill::CreditCardChange& change) override {} void NotifyOfMultipleAutofillChanges() override { DCHECK(!ui_task_runner_->RunsTasksInCurrentSequence()); ui_task_runner_->PostTask(FROM_HERE, on_changed_); } void NotifyThatSyncHasStarted(syncer::ModelType model_type) override { DCHECK(!ui_task_runner_->RunsTasksInCurrentSequence()); ui_task_runner_->PostTask(FROM_HERE, base::BindOnce(on_sync_started_, model_type)); } private: WebDatabase* web_database_; base::RepeatingClosure on_changed_; base::RepeatingCallback<void(syncer::ModelType)> on_sync_started_; const scoped_refptr<base::SequencedTaskRunner> ui_task_runner_; }; class ProfileSyncServiceAutofillTest; class TokenWebDataServiceFake : public TokenWebData { public: TokenWebDataServiceFake( const scoped_refptr<base::SingleThreadTaskRunner>& ui_task_runner, const scoped_refptr<base::SingleThreadTaskRunner>& db_task_runner) : TokenWebData(ui_task_runner, db_task_runner) {} bool IsDatabaseLoaded() override { return true; } AutofillWebDataService::Handle GetAllTokens( WebDataServiceConsumer* consumer) override { // TODO(tim): It would be nice if WebDataService was injected on // construction of ProfileOAuth2TokenService rather than fetched by // Initialize so that this isn't necessary (we could pass a null service). // We currently do return it via EXPECT_CALLs, but without depending on // order-of-initialization (which seems way more fragile) we can't tell // which component is asking at what time, and some components in these // Autofill tests require a WebDataService. return 0; } private: ~TokenWebDataServiceFake() override {} DISALLOW_COPY_AND_ASSIGN(TokenWebDataServiceFake); }; class WebDataServiceFake : public AutofillWebDataService { public: WebDataServiceFake( const scoped_refptr<base::SingleThreadTaskRunner>& ui_task_runner, const scoped_refptr<base::SingleThreadTaskRunner>& db_task_runner) : AutofillWebDataService(ui_task_runner, db_task_runner), web_database_(nullptr), autofill_profile_syncable_service_(nullptr), syncable_service_created_or_destroyed_( base::WaitableEvent::ResetPolicy::AUTOMATIC, base::WaitableEvent::InitialState::NOT_SIGNALED), db_task_runner_(db_task_runner), ui_task_runner_(ui_task_runner) {} void SetDatabase(WebDatabase* web_database) { web_database_ = web_database; } void StartSyncableService() { // The |autofill_profile_syncable_service_| must be constructed on the DB // sequence. const base::RepeatingClosure& on_changed_callback = base::BindRepeating( &WebDataServiceFake::NotifyAutofillMultipleChangedOnUISequence, AsWeakPtr()); const base::RepeatingCallback<void(syncer::ModelType)>& on_sync_started_callback = base::BindRepeating( &WebDataServiceFake::NotifySyncStartedOnUISequence, AsWeakPtr()); db_task_runner_->PostTask( FROM_HERE, base::BindOnce(&WebDataServiceFake::CreateSyncableService, base::Unretained(this), on_changed_callback, std::move(on_sync_started_callback))); syncable_service_created_or_destroyed_.Wait(); } void ShutdownSyncableService() { // The |autofill_profile_syncable_service_| must be destructed on the DB // sequence. db_task_runner_->PostTask( FROM_HERE, base::BindOnce(&WebDataServiceFake::DestroySyncableService, base::Unretained(this))); syncable_service_created_or_destroyed_.Wait(); } bool IsDatabaseLoaded() override { return true; } WebDatabase* GetDatabase() override { return web_database_; } void OnAutofillProfileChanged(const AutofillProfileChange& changes) { WaitableEvent event(base::WaitableEvent::ResetPolicy::MANUAL, base::WaitableEvent::InitialState::NOT_SIGNALED); base::OnceClosure notify_cb = base::BindOnce( &AutofillProfileSyncableService::AutofillProfileChanged, base::Unretained(autofill_profile_syncable_service_), changes); db_task_runner_->PostTask( FROM_HERE, base::BindOnce(&RunAndSignal, std::move(notify_cb), &event)); event.Wait(); } private: ~WebDataServiceFake() override {} void CreateSyncableService( const base::RepeatingClosure& on_changed_callback, const base::RepeatingCallback<void(syncer::ModelType)>& on_sync_started) { ASSERT_TRUE(db_task_runner_->RunsTasksInCurrentSequence()); // These services are deleted in DestroySyncableService(). backend_ = std::make_unique<FakeAutofillBackend>( GetDatabase(), on_changed_callback, on_sync_started, ui_task_runner_.get()); AutofillProfileSyncableService::CreateForWebDataServiceAndBackend( this, backend_.get(), "en-US"); autofill_profile_syncable_service_ = AutofillProfileSyncableService::FromWebDataService(this); syncable_service_created_or_destroyed_.Signal(); } void DestroySyncableService() { ASSERT_TRUE(db_task_runner_->RunsTasksInCurrentSequence()); autofill_profile_syncable_service_ = nullptr; backend_.reset(); syncable_service_created_or_destroyed_.Signal(); } WebDatabase* web_database_; AutofillProfileSyncableService* autofill_profile_syncable_service_; std::unique_ptr<autofill::AutofillWebDataBackend> backend_; WaitableEvent syncable_service_created_or_destroyed_; const scoped_refptr<base::SingleThreadTaskRunner> db_task_runner_; const scoped_refptr<base::SingleThreadTaskRunner> ui_task_runner_; DISALLOW_COPY_AND_ASSIGN(WebDataServiceFake); }; ACTION_P(ReturnNewDataTypeManagerWithDebugListener, debug_listener) { return std::make_unique<syncer::DataTypeManagerImpl>(arg0, debug_listener, arg2, arg3, arg4, arg5); } class MockPersonalDataManager : public PersonalDataManager { public: MockPersonalDataManager() : PersonalDataManager("en-US") {} MOCK_CONST_METHOD0(IsDataLoaded, bool()); MOCK_METHOD0(LoadProfiles, void()); MOCK_METHOD0(LoadCreditCards, void()); MOCK_METHOD0(LoadPaymentsCustomerData, void()); MOCK_METHOD0(Refresh, void()); }; class AddAutofillProfileHelper; class ProfileSyncServiceAutofillTest : public AbstractProfileSyncServiceTest, public syncer::DataTypeDebugInfoListener { public: // DataTypeDebugInfoListener implementation. void OnDataTypeConfigureComplete( const std::vector<syncer::DataTypeConfigurationStats>& configuration_stats) override { for (const syncer::DataTypeConfigurationStats& stat : configuration_stats) { if (stat.model_type == syncer::AUTOFILL_PROFILE) { association_stats_ = stat.association_stats; return; } } ASSERT_TRUE(false) << "Autofill profile type did not get configured!"; } protected: ProfileSyncServiceAutofillTest() : debug_ptr_factory_(this) { autofill::CountryNames::SetLocaleString("en-US"); RegisterAutofillPrefs( profile_sync_service_bundle()->pref_service()->registry()); data_type_thread()->Start(); web_database_ = std::make_unique<WebDatabaseFake>(&autofill_table_); web_data_wrapper_ = std::make_unique<MockWebDataServiceWrapper>( new WebDataServiceFake(base::ThreadTaskRunnerHandle::Get(), data_type_thread()->task_runner()), new TokenWebDataServiceFake(base::ThreadTaskRunnerHandle::Get(), data_type_thread()->task_runner())); web_data_service_ = static_cast<WebDataServiceFake*>( web_data_wrapper_->GetProfileAutofillWebData().get()); web_data_service_->SetDatabase(web_database_.get()); personal_data_manager_ = std::make_unique<MockPersonalDataManager>(); EXPECT_CALL(personal_data_manager(), LoadProfiles()); EXPECT_CALL(personal_data_manager(), LoadCreditCards()); EXPECT_CALL(personal_data_manager(), LoadPaymentsCustomerData()); personal_data_manager_->Init(web_data_service_, /*account_database=*/nullptr, profile_sync_service_bundle()->pref_service(), /*identity_manager=*/nullptr, /*client_profile_validator=*/nullptr, /*history_service=*/nullptr, /*is_off_the_record=*/false); web_data_service_->StartSyncableService(); } ~ProfileSyncServiceAutofillTest() override { web_data_service_->ShutdownOnUISequence(); web_data_service_->ShutdownSyncableService(); web_data_wrapper_->Shutdown(); web_data_service_ = nullptr; web_data_wrapper_.reset(); web_database_.reset(); // Shut down the service explicitly before some data members from this // test it needs will be deleted. sync_service()->Shutdown(); } int GetSyncCount() { syncer::ReadTransaction trans(FROM_HERE, sync_service()->GetUserShare()); syncer::ReadNode node(&trans); if (node.InitTypeRoot(AUTOFILL_PROFILE) != BaseNode::INIT_OK) return 0; return node.GetTotalNodeCount() - 1; } void StartAutofillProfileSyncService(base::OnceClosure callback) { profile_sync_service_bundle() ->identity_test_env() ->MakePrimaryAccountAvailable("[email protected]"); std::unique_ptr<syncer::SyncClientMock> sync_client = profile_sync_service_bundle()->CreateSyncClientMock(); syncer::SyncClientMock* sync_client_copy = sync_client.get(); CreateSyncService(std::move(sync_client), std::move(callback)); syncer::DataTypeController::TypeVector controllers; controllers.push_back(std::make_unique<AutofillProfileDataTypeController>( data_type_thread()->task_runner(), /*dump_stack=*/base::DoNothing(), sync_service(), sync_client_copy, base::BindLambdaForTesting([&]() -> autofill::PersonalDataManager* { return personal_data_manager_.get(); }), web_data_service_)); ON_CALL(*sync_client_copy, GetSyncableServiceForType(AUTOFILL_PROFILE)) .WillByDefault(testing::Invoke([=](syncer::ModelType) { return AutofillProfileSyncableService::FromWebDataService( web_data_service_.get()) ->AsWeakPtr(); })); ON_CALL(*sync_client_copy, CreateDataTypeControllers(_)) .WillByDefault(Return(ByMove(std::move(controllers)))); ON_CALL(*sync_client_copy, CreateModelWorkerForGroup(syncer::GROUP_DB)) .WillByDefault( Return(base::MakeRefCounted<syncer::SequencedModelWorker>( data_type_thread()->task_runner(), syncer::GROUP_DB))); ON_CALL(*profile_sync_service_bundle()->component_factory(), CreateDataTypeManager(_, _, _, _, _, _)) .WillByDefault(ReturnNewDataTypeManagerWithDebugListener( syncer::MakeWeakHandle(debug_ptr_factory_.GetWeakPtr()))); EXPECT_CALL(personal_data_manager(), IsDataLoaded()) .WillRepeatedly(Return(true)); sync_service()->Initialize(); base::RunLoop().Run(); // It's possible this test triggered an unrecoverable error, in which case // we can't get the sync count. if (sync_service()->IsSyncFeatureActive()) { EXPECT_EQ(GetSyncCount(), association_stats_.num_sync_items_after_association); } EXPECT_EQ(association_stats_.num_sync_items_after_association, association_stats_.num_sync_items_before_association + association_stats_.num_sync_items_added - association_stats_.num_sync_items_deleted); } bool AddAutofillSyncNode(const AutofillProfile& profile) { syncer::WriteTransaction trans(FROM_HERE, sync_service()->GetUserShare()); syncer::WriteNode node(&trans); std::string tag = profile.guid(); syncer::WriteNode::InitUniqueByCreationResult result = node.InitUniqueByCreation(AUTOFILL_PROFILE, tag); if (result != syncer::WriteNode::INIT_SUCCESS) return false; sync_pb::EntitySpecifics specifics; AutofillProfileSyncableService::WriteAutofillProfile(profile, &specifics); node.SetEntitySpecifics(specifics); return true; } bool GetAutofillProfilesFromSyncDBUnderProfileNode( std::vector<AutofillProfile>* profiles) { syncer::ReadTransaction trans(FROM_HERE, sync_service()->GetUserShare()); syncer::ReadNode autofill_root(&trans); if (autofill_root.InitTypeRoot(AUTOFILL_PROFILE) != BaseNode::INIT_OK) { return false; } int64_t child_id = autofill_root.GetFirstChildId(); while (child_id != syncer::kInvalidId) { syncer::ReadNode child_node(&trans); if (child_node.InitByIdLookup(child_id) != BaseNode::INIT_OK) return false; const sync_pb::AutofillProfileSpecifics& autofill( child_node.GetEntitySpecifics().autofill_profile()); AutofillProfile p; p.set_guid(autofill.guid()); AutofillProfileSyncableService::OverwriteProfileWithServerData(autofill, &p); profiles->push_back(p); child_id = child_node.GetSuccessorId(); } return true; } void SetIdleChangeProcessorExpectations() { EXPECT_CALL(autofill_table_, RemoveFormElement(_, _)).Times(0); EXPECT_CALL(autofill_table_, GetAutofillTimestamps(_, _, _, _)).Times(0); } AutofillTableMock& autofill_table() { return autofill_table_; } MockPersonalDataManager& personal_data_manager() { return *personal_data_manager_; } WebDataServiceFake* web_data_service() { return web_data_service_.get(); } private: friend class AddAutofillProfileHelper; AutofillTableMock autofill_table_; std::unique_ptr<WebDatabaseFake> web_database_; std::unique_ptr<MockWebDataServiceWrapper> web_data_wrapper_; scoped_refptr<WebDataServiceFake> web_data_service_; std::unique_ptr<MockPersonalDataManager> personal_data_manager_; syncer::DataTypeAssociationStats association_stats_; base::WeakPtrFactory<DataTypeDebugInfoListener> debug_ptr_factory_; DISALLOW_COPY_AND_ASSIGN(ProfileSyncServiceAutofillTest); }; class AddAutofillProfileHelper { public: AddAutofillProfileHelper(ProfileSyncServiceAutofillTest* test, const std::vector<AutofillProfile>& entries) : callback_(base::BindOnce(&AddAutofillProfileHelper::AddAutofillCallback, base::Unretained(this), test, entries)), success_(false) {} base::OnceClosure callback() { return std::move(callback_); } bool success() { return success_; } private: void AddAutofillCallback(ProfileSyncServiceAutofillTest* test, const std::vector<AutofillProfile>& entries) { if (!test->CreateRoot(AUTOFILL_PROFILE)) return; for (size_t i = 0; i < entries.size(); ++i) { if (!test->AddAutofillSyncNode(entries[i])) return; } success_ = true; } base::OnceClosure callback_; bool success_; }; TEST_F(ProfileSyncServiceAutofillTest, HasProfileEmptySync) { std::vector<std::unique_ptr<AutofillProfile>> profiles; std::vector<AutofillProfile> expected_profiles; std::unique_ptr<AutofillProfile> profile0 = std::make_unique<AutofillProfile>(); autofill::test::SetProfileInfoWithGuid( profile0.get(), "54B3F9AA-335E-4F71-A27D-719C41564230", "Billing", "Mitchell", "Morrison", "[email protected]", "Fox", "123 Zoo St.", "unit 5", "Hollywood", "CA", "91601", "US", "12345678910"); expected_profiles.push_back(*profile0); profiles.push_back(std::move(profile0)); auto profile_returner = [&profiles]() { return std::move(profiles); }; EXPECT_CALL(autofill_table(), GetAutofillProfiles(_)) .WillOnce(DoAll(LoadAutofillProfiles(profile_returner), Return(true))); EXPECT_CALL(personal_data_manager(), Refresh()); SetIdleChangeProcessorExpectations(); CreateRootHelper create_root(this, AUTOFILL_PROFILE); StartAutofillProfileSyncService(create_root.callback()); ASSERT_TRUE(create_root.success()); std::vector<AutofillProfile> sync_profiles; ASSERT_TRUE(GetAutofillProfilesFromSyncDBUnderProfileNode(&sync_profiles)); EXPECT_EQ(1U, sync_profiles.size()); EXPECT_EQ(0, expected_profiles[0].Compare(sync_profiles[0])); } TEST_F(ProfileSyncServiceAutofillTest, HasNativeHasSyncMergeProfile) { AutofillProfile sync_profile; autofill::test::SetProfileInfoWithGuid( &sync_profile, "23355099-1170-4B71-8ED4-144470CC9EBE", "Billing", "Mitchell", "Morrison", "[email protected]", "Fox", "123 Zoo St.", "unit 5", "Hollywood", "CA", "91601", "US", "12345678910"); std::unique_ptr<AutofillProfile> native_profile = std::make_unique<AutofillProfile>(); autofill::test::SetProfileInfoWithGuid( native_profile.get(), "23355099-1170-4B71-8ED4-144470CC9EBE", "Billing", "Alicia", "Saenz", "[email protected]", "Fox", "1212 Center.", "Bld. 5", "Orlando", "FL", "32801", "US", "19482937549"); std::vector<std::unique_ptr<AutofillProfile>> native_profiles; native_profiles.push_back(std::move(native_profile)); auto profile_returner = [&native_profiles]() { return std::move(native_profiles); }; EXPECT_CALL(autofill_table(), GetAutofillProfiles(_)) .WillOnce(DoAll(LoadAutofillProfiles(profile_returner), Return(true))); std::vector<AutofillProfile> sync_profiles; sync_profiles.push_back(sync_profile); AddAutofillProfileHelper add_autofill(this, sync_profiles); EXPECT_CALL(autofill_table(), UpdateAutofillProfile(MatchProfiles(sync_profile))) .WillOnce(Return(true)); EXPECT_CALL(personal_data_manager(), Refresh()); StartAutofillProfileSyncService(add_autofill.callback()); ASSERT_TRUE(add_autofill.success()); std::vector<AutofillProfile> new_sync_profiles; ASSERT_TRUE( GetAutofillProfilesFromSyncDBUnderProfileNode(&new_sync_profiles)); ASSERT_EQ(1U, new_sync_profiles.size()); EXPECT_EQ(0, sync_profile.Compare(new_sync_profiles[0])); } // Tests that a sync with a new native profile that matches a more recent new // sync profile but with less information results in the native profile being // deleted and replaced by the sync profile with merged usage stats. TEST_F( ProfileSyncServiceAutofillTest, HasNativeHasSyncMergeSimilarProfileCombine_SyncHasMoreInfoAndMoreRecent) { // Create two almost identical profiles. The GUIDs are different and the // native profile has no value for company name. AutofillProfile sync_profile; autofill::test::SetProfileInfoWithGuid( &sync_profile, "23355099-1170-4B71-8ED4-144470CC9EBE", "Billing", "Mitchell", "Morrison", "[email protected]", "Fox", "123 Zoo St.", "unit 5", "Hollywood", "CA", "91601", "US", "12345678910"); sync_profile.set_use_date(base::Time::FromTimeT(4321)); std::unique_ptr<AutofillProfile> native_profile = std::make_unique<AutofillProfile>(); autofill::test::SetProfileInfoWithGuid( native_profile.get(), "23355099-1170-4B71-8ED4-144470CC9EBF", "Billing", "Mitchell", "Morrison", "[email protected]", "", "123 Zoo St.", "unit 5", "Hollywood", "CA", "91601", "US", "12345678910"); native_profile->set_use_date(base::Time::FromTimeT(1234)); AutofillProfile expected_profile(sync_profile); expected_profile.SetRawInfo(NAME_FULL, ASCIIToUTF16("Billing Mitchell Morrison")); expected_profile.set_use_count(1); std::vector<std::unique_ptr<AutofillProfile>> native_profiles; native_profiles.push_back(std::move(native_profile)); auto profile_returner = [&native_profiles]() { return std::move(native_profiles); }; EXPECT_CALL(autofill_table(), GetAutofillProfiles(_)) .WillOnce(DoAll(LoadAutofillProfiles(profile_returner), Return(true))); EXPECT_CALL(autofill_table(), AddAutofillProfile(MatchProfiles(expected_profile))) .WillOnce(Return(true)); EXPECT_CALL(autofill_table(), RemoveAutofillProfile("23355099-1170-4B71-8ED4-144470CC9EBF")) .WillOnce(Return(true)); std::vector<AutofillProfile> sync_profiles; sync_profiles.push_back(sync_profile); AddAutofillProfileHelper add_autofill(this, sync_profiles); EXPECT_CALL(personal_data_manager(), Refresh()); // Adds all entries in |sync_profiles| to sync. StartAutofillProfileSyncService(add_autofill.callback()); ASSERT_TRUE(add_autofill.success()); std::vector<AutofillProfile> new_sync_profiles; ASSERT_TRUE( GetAutofillProfilesFromSyncDBUnderProfileNode(&new_sync_profiles)); ASSERT_EQ(1U, new_sync_profiles.size()); // Check that key fields are the same. EXPECT_TRUE(new_sync_profiles[0].IsSubsetOf(sync_profile, "en-US")); // Make sure the additional information from the sync profile was kept. EXPECT_EQ(ASCIIToUTF16("Fox"), new_sync_profiles[0].GetRawInfo(ServerFieldType::COMPANY_NAME)); // Check that the latest use date is saved. EXPECT_EQ(base::Time::FromTimeT(4321), new_sync_profiles[0].use_date()); // Check that the use counts were added (default value is 1). EXPECT_EQ(1U, new_sync_profiles[0].use_count()); } // Tests that a sync with a new native profile that matches an older new sync // profile but with less information results in the native profile being deleted // and replaced by the sync profile with merged usage stats. TEST_F(ProfileSyncServiceAutofillTest, HasNativeHasSyncMergeSimilarProfileCombine_SyncHasMoreInfoAndOlder) { // Create two almost identical profiles. The GUIDs are different and the // native profile has no value for company name. AutofillProfile sync_profile; autofill::test::SetProfileInfoWithGuid( &sync_profile, "23355099-1170-4B71-8ED4-144470CC9EBE", "Billing", "Mitchell", "Morrison", "[email protected]", "Fox", "123 Zoo St.", "unit 5", "Hollywood", "CA", "91601", "US", "12345678910"); sync_profile.set_use_date(base::Time::FromTimeT(1234)); std::unique_ptr<AutofillProfile> native_profile = std::make_unique<AutofillProfile>(); autofill::test::SetProfileInfoWithGuid( native_profile.get(), "23355099-1170-4B71-8ED4-144470CC9EBF", "Billing", "Mitchell", "Morrison", "[email protected]", "", "123 Zoo St.", "unit 5", "Hollywood", "CA", "91601", "US", "12345678910"); native_profile->set_use_date(base::Time::FromTimeT(4321)); AutofillProfile expected_profile(sync_profile); expected_profile.SetRawInfo(NAME_FULL, ASCIIToUTF16("Billing Mitchell Morrison")); expected_profile.set_use_count(1); expected_profile.set_use_date(native_profile->use_date()); std::vector<std::unique_ptr<AutofillProfile>> native_profiles; native_profiles.push_back(std::move(native_profile)); auto profile_returner = [&native_profiles]() { return std::move(native_profiles); }; EXPECT_CALL(autofill_table(), GetAutofillProfiles(_)) .WillOnce(DoAll(LoadAutofillProfiles(profile_returner), Return(true))); EXPECT_CALL(autofill_table(), AddAutofillProfile(MatchProfiles(expected_profile))) .WillOnce(Return(true)); EXPECT_CALL(autofill_table(), RemoveAutofillProfile("23355099-1170-4B71-8ED4-144470CC9EBF")) .WillOnce(Return(true)); std::vector<AutofillProfile> sync_profiles; sync_profiles.push_back(sync_profile); AddAutofillProfileHelper add_autofill(this, sync_profiles); EXPECT_CALL(personal_data_manager(), Refresh()); // Adds all entries in |sync_profiles| to sync. StartAutofillProfileSyncService(add_autofill.callback()); ASSERT_TRUE(add_autofill.success()); std::vector<AutofillProfile> new_sync_profiles; ASSERT_TRUE( GetAutofillProfilesFromSyncDBUnderProfileNode(&new_sync_profiles)); ASSERT_EQ(1U, new_sync_profiles.size()); // Check that key fields are the same. EXPECT_TRUE(new_sync_profiles[0].IsSubsetOf(sync_profile, "en-US")); // Make sure the additional information from the sync profile was kept. EXPECT_EQ(ASCIIToUTF16("Fox"), new_sync_profiles[0].GetRawInfo(ServerFieldType::COMPANY_NAME)); // Check that the latest use date is saved. EXPECT_EQ(base::Time::FromTimeT(4321), new_sync_profiles[0].use_date()); // Check that the use counts were added (default value is 1). EXPECT_EQ(1U, new_sync_profiles[0].use_count()); } // Tests that a sync with a new native profile that matches an a new sync // profile but with more information results in the native profile being deleted // and replaced by the sync profile with the native profiles additional // information merged in. The merge should happen even if the sync profile is // more recent. TEST_F(ProfileSyncServiceAutofillTest, HasNativeHasSyncMergeSimilarProfileCombine_NativeHasMoreInfo) { // Create two almost identical profiles. The GUIDs are different and the // sync profile has no value for company name. AutofillProfile sync_profile; autofill::test::SetProfileInfoWithGuid( &sync_profile, "23355099-1170-4B71-8ED4-144470CC9EBE", "Billing", "Mitchell", "Morrison", "[email protected]", "", "123 Zoo St.", "unit 5", "Hollywood", "CA", "91601", "US", "12345678910"); sync_profile.set_use_date(base::Time::FromTimeT(4321)); std::unique_ptr<AutofillProfile> native_profile = std::make_unique<AutofillProfile>(); autofill::test::SetProfileInfoWithGuid( native_profile.get(), "23355099-1170-4B71-8ED4-144470CC9EBF", "Billing", "Mitchell", "Morrison", "[email protected]", "Fox", "123 Zoo St.", "unit 5", "Hollywood", "CA", "91601", "US", "12345678910"); native_profile->set_use_date(base::Time::FromTimeT(1234)); AutofillProfile expected_profile(*native_profile); expected_profile.SetRawInfo(NAME_FULL, ASCIIToUTF16("Billing Mitchell Morrison")); expected_profile.set_use_date(sync_profile.use_date()); expected_profile.set_use_count(1); std::vector<std::unique_ptr<AutofillProfile>> native_profiles; native_profiles.push_back(std::move(native_profile)); auto profile_returner = [&native_profiles]() { return std::move(native_profiles); }; EXPECT_CALL(autofill_table(), GetAutofillProfiles(_)) .WillOnce(DoAll(LoadAutofillProfiles(profile_returner), Return(true))); EXPECT_CALL(autofill_table(), AddAutofillProfile(MatchProfiles(expected_profile))) .WillOnce(Return(true)); EXPECT_CALL(autofill_table(), RemoveAutofillProfile("23355099-1170-4B71-8ED4-144470CC9EBF")) .WillOnce(Return(true)); std::vector<AutofillProfile> sync_profiles; sync_profiles.push_back(sync_profile); AddAutofillProfileHelper add_autofill(this, sync_profiles); EXPECT_CALL(personal_data_manager(), Refresh()); // Adds all entries in |sync_profiles| to sync. StartAutofillProfileSyncService(add_autofill.callback()); ASSERT_TRUE(add_autofill.success()); std::vector<AutofillProfile> new_sync_profiles; ASSERT_TRUE( GetAutofillProfilesFromSyncDBUnderProfileNode(&new_sync_profiles)); ASSERT_EQ(1U, new_sync_profiles.size()); // Check that key fields are the same. EXPECT_TRUE(new_sync_profiles[0].IsSubsetOf(expected_profile, "en-US")); // Make sure the additional information of the native profile was saved into // the sync profile. EXPECT_EQ(ASCIIToUTF16("Fox"), new_sync_profiles[0].GetRawInfo(ServerFieldType::COMPANY_NAME)); // Check that the latest use date is saved. EXPECT_EQ(base::Time::FromTimeT(4321), new_sync_profiles[0].use_date()); // Check that the use counts were added (default value is 1). EXPECT_EQ(1U, new_sync_profiles[0].use_count()); } // Tests that a sync with a new native profile that differ only by name a new // sync profile results in keeping both profiles. TEST_F(ProfileSyncServiceAutofillTest, HasNativeHasSync_DifferentPrimaryInfo) { AutofillProfile sync_profile; autofill::test::SetProfileInfoWithGuid( &sync_profile, "23355099-1170-4B71-8ED4-144470CC9EBE", "Billing", "Mitchell", "Morrison", "[email protected]", "Fox", "123 Zoo St.", "unit 5", "Hollywood", "CA", "91601", "US", "12345678910"); sync_profile.set_use_date(base::Time::FromTimeT(4321)); std::unique_ptr<AutofillProfile> native_profile = std::make_unique<AutofillProfile>(); autofill::test::SetProfileInfoWithGuid( native_profile.get(), "23355099-1170-4B71-8ED4-144470CC9EBF", "Billing", "John", "Smith", "[email protected]", "Fox", "123 Zoo St.", "unit 5", "Hollywood", "CA", "91601", "US", "12345678910"); native_profile->set_use_date(base::Time::FromTimeT(1234)); std::vector<std::unique_ptr<AutofillProfile>> native_profiles; native_profiles.push_back(std::move(native_profile)); auto profile_returner = [&native_profiles]() { return std::move(native_profiles); }; EXPECT_CALL(autofill_table(), GetAutofillProfiles(_)) .WillOnce(DoAll(LoadAutofillProfiles(profile_returner), Return(true))); EXPECT_CALL(autofill_table(), AddAutofillProfile(MatchProfiles(sync_profile))) .WillOnce(Return(true)); std::vector<AutofillProfile> sync_profiles; sync_profiles.push_back(sync_profile); AddAutofillProfileHelper add_autofill(this, sync_profiles); EXPECT_CALL(personal_data_manager(), Refresh()); // Adds all entries in |sync_profiles| to sync. StartAutofillProfileSyncService(add_autofill.callback()); ASSERT_TRUE(add_autofill.success()); std::vector<AutofillProfile> new_sync_profiles; ASSERT_TRUE( GetAutofillProfilesFromSyncDBUnderProfileNode(&new_sync_profiles)); // The two profiles should be kept. ASSERT_EQ(2U, new_sync_profiles.size()); } // Tests that a new native profile that is the same as a new sync profile except // with different GUIDs results in the native profile being deleted and replaced // by the sync profile. TEST_F(ProfileSyncServiceAutofillTest, MergeProfileWithDifferentGuid) { AutofillProfile sync_profile; autofill::test::SetProfileInfoWithGuid( &sync_profile, "23355099-1170-4B71-8ED4-144470CC9EBE", "Billing", "Mitchell", "Morrison", "[email protected]", "Fox", "123 Zoo St.", "unit 5", "Hollywood", "CA", "91601", "US", "12345678910"); sync_profile.set_use_count(20); sync_profile.set_use_date(base::Time::FromTimeT(1234)); std::string native_guid = "EDC609ED-7EEE-4F27-B00C-423242A9C44B"; std::unique_ptr<AutofillProfile> native_profile = std::make_unique<AutofillProfile>(); autofill::test::SetProfileInfoWithGuid( native_profile.get(), native_guid.c_str(), "Billing", "Mitchell", "Morrison", "[email protected]", "Fox", "123 Zoo St.", "unit 5", "Hollywood", "CA", "91601", "US", "12345678910"); native_profile->set_use_count(5); native_profile->set_use_date(base::Time::FromTimeT(4321)); std::vector<std::unique_ptr<AutofillProfile>> native_profiles; native_profiles.push_back(std::move(native_profile)); auto profile_returner = [&native_profiles]() { return std::move(native_profiles); }; EXPECT_CALL(autofill_table(), GetAutofillProfiles(_)) .WillOnce(DoAll(LoadAutofillProfiles(profile_returner), Return(true))); std::vector<AutofillProfile> sync_profiles; sync_profiles.push_back(sync_profile); AddAutofillProfileHelper add_autofill(this, sync_profiles); EXPECT_CALL(autofill_table(), AddAutofillProfile(_)).WillOnce(Return(true)); EXPECT_CALL(autofill_table(), RemoveAutofillProfile(native_guid)) .WillOnce(Return(true)); EXPECT_CALL(personal_data_manager(), Refresh()); StartAutofillProfileSyncService(add_autofill.callback()); ASSERT_TRUE(add_autofill.success()); std::vector<AutofillProfile> new_sync_profiles; ASSERT_TRUE( GetAutofillProfilesFromSyncDBUnderProfileNode(&new_sync_profiles)); // Check that the profiles were merged. ASSERT_EQ(1U, new_sync_profiles.size()); EXPECT_EQ(0, sync_profile.Compare(new_sync_profiles[0])); // Check that the sync guid was kept. EXPECT_EQ(sync_profile.guid(), new_sync_profiles[0].guid()); // Check that the sync profile use count was kept. EXPECT_EQ(20U, new_sync_profiles[0].use_count()); // Check that the sync profile use date was kept. EXPECT_EQ(base::Time::FromTimeT(1234), new_sync_profiles[0].use_date()); } TEST_F(ProfileSyncServiceAutofillTest, ProcessUserChangeAddProfile) { EXPECT_CALL(autofill_table(), GetAutofillProfiles(_)).WillOnce(Return(true)); EXPECT_CALL(personal_data_manager(), Refresh()); SetIdleChangeProcessorExpectations(); CreateRootHelper create_root(this, AUTOFILL_PROFILE); StartAutofillProfileSyncService(create_root.callback()); ASSERT_TRUE(create_root.success()); AutofillProfile added_profile; autofill::test::SetProfileInfoWithGuid( &added_profile, "D6ADA912-D374-4C0A-917D-F5C8EBE43011", "Josephine", "Alicia", "Saenz", "[email protected]", "Fox", "1212 Center.", "Bld. 5", "Orlando", "FL", "32801", "US", "19482937549"); // TODO(crbug.com/904390): Remove when the investigation is over. This call is // needed in the AutofillProfileChanged() callback. EXPECT_CALL(autofill_table(), GetServerProfiles(_)).WillOnce(Return(true)); AutofillProfileChange change(AutofillProfileChange::ADD, added_profile.guid(), &added_profile); web_data_service()->OnAutofillProfileChanged(change); std::vector<AutofillProfile> new_sync_profiles; ASSERT_TRUE( GetAutofillProfilesFromSyncDBUnderProfileNode(&new_sync_profiles)); ASSERT_EQ(1U, new_sync_profiles.size()); EXPECT_EQ(0, added_profile.Compare(new_sync_profiles[0])); } TEST_F(ProfileSyncServiceAutofillTest, ProcessUserChangeRemoveProfile) { AutofillProfile sync_profile; autofill::test::SetProfileInfoWithGuid( &sync_profile, "3BA5FA1B-1EC4-4BB3-9B57-EC92BE3C1A09", "Josephine", "Alicia", "Saenz", "[email protected]", "Fox", "1212 Center.", "Bld. 5", "Orlando", "FL", "32801", "US", "19482937549"); std::unique_ptr<AutofillProfile> native_profile = std::make_unique<AutofillProfile>(); autofill::test::SetProfileInfoWithGuid( native_profile.get(), "3BA5FA1B-1EC4-4BB3-9B57-EC92BE3C1A09", "Josephine", "Alicia", "Saenz", "[email protected]", "Fox", "1212 Center.", "Bld. 5", "Orlando", "FL", "32801", "US", "19482937549"); std::vector<std::unique_ptr<AutofillProfile>> native_profiles; native_profiles.push_back(std::move(native_profile)); auto profile_returner = [&native_profiles]() { return std::move(native_profiles); }; EXPECT_CALL(autofill_table(), GetAutofillProfiles(_)) .WillOnce(DoAll(LoadAutofillProfiles(profile_returner), Return(true))); std::vector<AutofillProfile> sync_profiles; sync_profiles.push_back(sync_profile); AddAutofillProfileHelper add_autofill(this, sync_profiles); EXPECT_CALL(personal_data_manager(), Refresh()); StartAutofillProfileSyncService(add_autofill.callback()); ASSERT_TRUE(add_autofill.success()); AutofillProfileChange change(AutofillProfileChange::REMOVE, sync_profile.guid(), nullptr); web_data_service()->OnAutofillProfileChanged(change); std::vector<AutofillProfile> new_sync_profiles; ASSERT_TRUE( GetAutofillProfilesFromSyncDBUnderProfileNode(&new_sync_profiles)); ASSERT_EQ(0U, new_sync_profiles.size()); } } // namespace browser_sync
[ "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98", "[email protected]@0039d316-1c4b-4281-b951-d872f2087c98" ]
[ [ [ 1, 1 ] ], [ [ 2, 4 ], [ 9, 10 ], [ 12, 13 ], [ 61, 61 ], [ 63, 63 ], [ 76, 76 ], [ 87, 87 ], [ 89, 90 ], [ 94, 94 ], [ 130, 130 ], [ 132, 132 ], [ 150, 151 ], [ 243, 243 ], [ 285, 285 ], [ 287, 287 ], [ 300, 300 ], [ 327, 327 ], [ 337, 338 ], [ 373, 373 ], [ 404, 404 ], [ 406, 407 ], [ 418, 419 ], [ 481, 482 ], [ 490, 490 ], [ 495, 497 ], [ 524, 524 ], [ 530, 530 ], [ 549, 550 ], [ 552, 552 ], [ 560, 560 ], [ 568, 568 ], [ 572, 576 ], [ 578, 580 ], [ 1008, 1009 ] ], [ [ 5, 7 ], [ 18, 18 ], [ 20, 20 ], [ 25, 27 ], [ 30, 31 ], [ 34, 34 ], [ 38, 39 ], [ 41, 48 ], [ 51, 52 ], [ 54, 57 ], [ 59, 60 ], [ 62, 62 ], [ 72, 72 ], [ 74, 75 ], [ 88, 88 ], [ 93, 93 ], [ 95, 96 ], [ 99, 120 ], [ 122, 123 ], [ 131, 131 ], [ 138, 139 ], [ 141, 149 ], [ 156, 161 ], [ 169, 169 ], [ 171, 175 ], [ 177, 179 ], [ 181, 198 ], [ 200, 204 ], [ 208, 210 ], [ 217, 220 ], [ 222, 222 ], [ 224, 225 ], [ 228, 228 ], [ 237, 237 ], [ 244, 254 ], [ 256, 256 ], [ 260, 266 ], [ 268, 271 ], [ 277, 280 ], [ 284, 284 ], [ 286, 286 ], [ 289, 290 ], [ 292, 296 ], [ 301, 301 ], [ 303, 306 ], [ 308, 310 ], [ 321, 322 ], [ 333, 335 ], [ 339, 341 ], [ 350, 350 ], [ 354, 354 ], [ 357, 358 ], [ 361, 370 ], [ 374, 388 ], [ 391, 391 ], [ 393, 395 ], [ 397, 403 ], [ 408, 409 ], [ 411, 417 ], [ 420, 421 ], [ 423, 423 ], [ 428, 463 ], [ 465, 466 ], [ 468, 469 ], [ 473, 474 ], [ 479, 480 ], [ 484, 484 ], [ 488, 488 ], [ 494, 494 ], [ 500, 500 ], [ 506, 506 ], [ 513, 518 ], [ 527, 529 ], [ 531, 548 ], [ 551, 551 ], [ 553, 559 ], [ 561, 561 ], [ 566, 567 ], [ 577, 577 ], [ 582, 582 ], [ 584, 589 ], [ 591, 595 ], [ 597, 598 ], [ 608, 611 ], [ 613, 618 ], [ 620, 626 ], [ 630, 630 ], [ 632, 636 ], [ 640, 641 ], [ 646, 653 ], [ 655, 659 ], [ 661, 667 ], [ 670, 672 ], [ 674, 686 ], [ 689, 689 ], [ 691, 693 ], [ 697, 763 ], [ 767, 884 ], [ 887, 889 ], [ 893, 898 ], [ 901, 908 ], [ 910, 916 ], [ 920, 920 ], [ 922, 926 ], [ 930, 932 ], [ 935, 935 ], [ 937, 940 ], [ 944, 945 ], [ 947, 948 ], [ 952, 955 ], [ 957, 963 ], [ 966, 967 ], [ 974, 983 ], [ 985, 991 ], [ 995, 997 ], [ 1000, 1002 ], [ 1005, 1006 ], [ 1010, 1010 ] ], [ [ 8, 8 ], [ 19, 19 ] ], [ [ 11, 11 ], [ 121, 121 ] ], [ [ 14, 14 ], [ 29, 29 ], [ 69, 69 ], [ 91, 91 ], [ 135, 135 ], [ 255, 255 ], [ 258, 259 ], [ 272, 276 ], [ 281, 283 ], [ 317, 320 ], [ 324, 326 ], [ 330, 331 ], [ 405, 405 ], [ 410, 410 ], [ 491, 491 ], [ 526, 526 ] ], [ [ 15, 15 ], [ 562, 565 ], [ 569, 571 ], [ 599, 599 ], [ 637, 637 ], [ 927, 927 ], [ 949, 949 ], [ 998, 998 ] ], [ [ 16, 16 ], [ 78, 78 ], [ 504, 504 ], [ 509, 509 ], [ 590, 590 ], [ 596, 596 ], [ 602, 602 ], [ 604, 606 ], [ 612, 612 ], [ 619, 619 ], [ 627, 627 ], [ 629, 629 ], [ 631, 631 ], [ 638, 638 ], [ 642, 642 ], [ 885, 886 ], [ 943, 943 ], [ 946, 946 ], [ 950, 950 ], [ 956, 956 ], [ 964, 964 ], [ 968, 968 ], [ 970, 972 ], [ 984, 984 ], [ 992, 992 ], [ 994, 994 ], [ 999, 999 ], [ 1003, 1003 ] ], [ [ 17, 17 ] ], [ [ 21, 21 ] ], [ [ 22, 23 ], [ 28, 28 ] ], [ [ 24, 24 ], [ 140, 140 ], [ 483, 483 ], [ 499, 499 ], [ 583, 583 ], [ 600, 600 ], [ 607, 607 ], [ 628, 628 ], [ 639, 639 ], [ 891, 891 ], [ 918, 918 ], [ 929, 929 ], [ 951, 951 ], [ 965, 965 ], [ 973, 973 ], [ 993, 993 ], [ 1004, 1004 ] ], [ [ 32, 33 ], [ 35, 37 ] ], [ [ 40, 40 ], [ 49, 50 ], [ 53, 53 ] ], [ [ 58, 58 ], [ 170, 170 ], [ 176, 176 ], [ 180, 180 ], [ 199, 199 ], [ 205, 207 ], [ 211, 212 ], [ 215, 216 ], [ 221, 221 ], [ 223, 223 ], [ 226, 226 ], [ 233, 236 ], [ 238, 242 ], [ 267, 267 ], [ 311, 312 ], [ 323, 323 ], [ 329, 329 ], [ 332, 332 ], [ 336, 336 ] ], [ [ 64, 68 ], [ 70, 71 ], [ 73, 73 ], [ 97, 98 ], [ 124, 128 ], [ 288, 288 ], [ 291, 291 ], [ 297, 299 ], [ 313, 316 ], [ 328, 328 ], [ 344, 344 ], [ 352, 353 ], [ 390, 390 ], [ 392, 392 ] ], [ [ 77, 77 ], [ 152, 155 ], [ 307, 307 ], [ 492, 493 ], [ 643, 645 ], [ 654, 654 ], [ 660, 660 ], [ 668, 669 ], [ 673, 673 ], [ 687, 688 ], [ 690, 690 ], [ 694, 696 ], [ 764, 765 ] ], [ [ 79, 79 ], [ 82, 82 ], [ 92, 92 ], [ 502, 502 ] ], [ [ 80, 81 ], [ 83, 86 ], [ 485, 485 ], [ 487, 487 ], [ 489, 489 ], [ 501, 501 ], [ 507, 508 ] ], [ [ 129, 129 ], [ 162, 163 ], [ 166, 168 ], [ 525, 525 ] ], [ [ 133, 134 ], [ 136, 137 ] ], [ [ 164, 165 ] ], [ [ 213, 214 ], [ 345, 345 ], [ 347, 349 ], [ 351, 351 ], [ 355, 355 ], [ 464, 464 ], [ 467, 467 ], [ 486, 486 ], [ 498, 498 ], [ 503, 503 ], [ 505, 505 ], [ 510, 512 ], [ 519, 523 ], [ 581, 581 ], [ 601, 601 ], [ 890, 890 ], [ 892, 892 ], [ 899, 900 ], [ 909, 909 ], [ 917, 917 ], [ 919, 919 ], [ 921, 921 ], [ 928, 928 ], [ 933, 934 ], [ 936, 936 ], [ 941, 942 ], [ 1007, 1007 ] ], [ [ 227, 227 ], [ 229, 232 ] ], [ [ 257, 257 ], [ 389, 389 ], [ 396, 396 ] ], [ [ 302, 302 ] ], [ [ 342, 343 ], [ 356, 356 ], [ 359, 360 ], [ 371, 372 ], [ 422, 422 ], [ 424, 427 ], [ 470, 472 ], [ 475, 478 ] ], [ [ 346, 346 ], [ 766, 766 ] ], [ [ 603, 603 ], [ 969, 969 ] ] ]