Datasets:
Commit
·
4ed9329
1
Parent(s):
4c7f1ae
Update PR with scripts and README.md
Browse files- README.md +114 -0
- folder_list.txt +83 -0
- scripts/json2tsv_pair.py +60 -0
- scripts/process_ego4d_exo.py +89 -0
README.md
CHANGED
@@ -17,6 +17,28 @@ size_categories:
|
|
17 |
# Dataset Card for All-Angles Bench
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
## Dataset Description
|
21 |
|
22 |
<!-- Provide a longer summary of what this dataset is. -->
|
@@ -31,6 +53,98 @@ The dataset presents a comprehensive benchmark consisting of over 2,100 human-an
|
|
31 |
- **[Ego-Exo4D](https://github.com/facebookresearch/Ego4d)** - Large-scale egocentric and exocentric video dataset for multi-person interaction understanding
|
32 |
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
## Usage
|
35 |
|
36 |
```python
|
|
|
17 |
# Dataset Card for All-Angles Bench
|
18 |
|
19 |
|
20 |
+
## Dataset Description
|
21 |
+
|
22 |
+
<!-- Provide a longer summary of what this dataset is. -->
|
23 |
+
The dataset presents a comprehensive benchmark consistin---
|
24 |
+
license: mit
|
25 |
+
language:
|
26 |
+
- en
|
27 |
+
size_categories:
|
28 |
+
- 1K<n<10K
|
29 |
+
---
|
30 |
+
|
31 |
+
<h1>Seeing from Another Perspective: Evaluating Multi-View Understanding in MLLMs</h1>
|
32 |
+
|
33 |
+
|
34 |
+
<a href='https://danielchyeh.github.io/All-Angles-Bench/'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
|
35 |
+
<a href='https://arxiv.org/pdf/2504.15280'><img src='https://img.shields.io/badge/Paper-PDF-orange'></a>
|
36 |
+
<a href='https://arxiv.org/abs/2504.15280'><img src='https://img.shields.io/badge/Arxiv-Page-purple'></a>
|
37 |
+
<a href="https://github.com/Chenyu-Wang567/All-Angles-Bench/tree/main"><img src='https://img.shields.io/badge/Code-Github-red'></a>
|
38 |
+
|
39 |
+
# Dataset Card for All-Angles Bench
|
40 |
+
|
41 |
+
|
42 |
## Dataset Description
|
43 |
|
44 |
<!-- Provide a longer summary of what this dataset is. -->
|
|
|
53 |
- **[Ego-Exo4D](https://github.com/facebookresearch/Ego4d)** - Large-scale egocentric and exocentric video dataset for multi-person interaction understanding
|
54 |
|
55 |
|
56 |
+
## Usage
|
57 |
+
|
58 |
+
```python
|
59 |
+
from datasets import load_dataset
|
60 |
+
|
61 |
+
dataset = load_dataset("ch-chenyu/All-Angles-Bench")
|
62 |
+
```
|
63 |
+
|
64 |
+
|
65 |
+
## Prepare Full Benchmark Data on Local Machine
|
66 |
+
|
67 |
+
1. **Set up Git lfs and clone the benchmark:**
|
68 |
+
```bash
|
69 |
+
$ conda install git-lfs
|
70 |
+
$ git lfs install
|
71 |
+
|
72 |
+
$ git lfs clone https://huggingface.co/datasets/ch-chenyu/All-Angles-Bench
|
73 |
+
```
|
74 |
+
|
75 |
+
|
76 |
+
2. **Download Ego4D-Exo dataset and extract the frames for the benchmark scenes:**
|
77 |
+
|
78 |
+
We provide the image files for the EgoHumans dataset. For the Ego-Exo4D dataset, due to licensing restrictions, you will need to first sign the license agreement from the official Ego-Exo4D repository at https://ego4ddataset.com/egoexo-license/. After signing the license, you can download the dataset (`downscaled_takes/448`) and then use the preprocessing scripts to extract the corresponding images.
|
79 |
+
|
80 |
+
```bash
|
81 |
+
$ pip install ego4d --upgrade
|
82 |
+
$ egoexo -o All-Angles-Bench/ --parts downscaled_takes/448
|
83 |
+
|
84 |
+
$ python All-Angles-Bench/scripts/process_ego4d_exo.py --input All-Angles-Bench
|
85 |
+
```
|
86 |
+
|
87 |
+
3. **Transform JSON metadata into benchmark TSV format:**
|
88 |
+
|
89 |
+
To convert the metadata from JSON format into a structured TSV format compatible with benchmark evaluation scripts in [VLMEvalKit](https://github.com/open-compass/VLMEvalKit), run:
|
90 |
+
```bash
|
91 |
+
$ python All-Angles-Bench/scripts/json2tsv_pair.py --input All-Angles-Bench/data.json
|
92 |
+
|
93 |
+
```
|
94 |
+
|
95 |
+
|
96 |
+
## Dataset Structure
|
97 |
+
|
98 |
+
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
|
99 |
+
|
100 |
+
|
101 |
+
The JSON data contains the following key-value pairs:
|
102 |
+
|
103 |
+
| Key | Type | Description |
|
104 |
+
|------------------|------------|-----------------------------------------------------------------------------|
|
105 |
+
| `index` | Integer | Unique identifier for the data entry (e.g. `1221`) |
|
106 |
+
| `folder` | String | Directory name where the scene is stored (e.g. `"05_volleyball"`) |
|
107 |
+
| `category` | String | Task category (e.g. `"counting"`) |
|
108 |
+
| `pair_idx` | String | Index of a corresponding paired question (if applicable) |
|
109 |
+
| `image_path` | List | Array of input image paths |
|
110 |
+
| `question` | String | Natural language query about the scene |
|
111 |
+
| `A`/`B`/`C` | String | Multiple choice options |
|
112 |
+
| `answer` | String | Correct option label (e.g. `"B"`) |
|
113 |
+
| `sourced_dataset`| String | Source dataset name (e.g. `"EgoHumans"`) |
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
## Citation
|
120 |
+
|
121 |
+
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
|
122 |
+
|
123 |
+
```bibtex
|
124 |
+
@article{yeh2025seeing,
|
125 |
+
title={Seeing from Another Perspective: Evaluating Multi-View Understanding in MLLMs},
|
126 |
+
author={Chun-Hsiao Yeh, Chenyu Wang, Shengbang Tong, Ta-Ying Cheng, Ruoyu Wang, Tianzhe Chu, Yuexiang Zhai, Yubei Chen, Shenghua Gao and Yi Ma},
|
127 |
+
journal={arXiv preprint arXiv:2504.15280},
|
128 |
+
year={2025}
|
129 |
+
}
|
130 |
+
```
|
131 |
+
|
132 |
+
## Acknowledgements
|
133 |
+
You may refer to related work that serves as foundations for our framework and code repository,
|
134 |
+
[EgoHumans](https://github.com/rawalkhirodkar/egohumans),
|
135 |
+
[Ego-Exo4D](https://github.com/facebookresearch/Ego4d),
|
136 |
+
[VLMEvalKit](https://github.com/open-compass/VLMEvalKit).
|
137 |
+
Thanks for their wonderful work and data.g of over 2,100 human-annotated multi-view question-answer (QA) pairs, spanning 90 real-world scenes. Each scene is captured from multiple viewpoints, providing diverse perspectives and context for the associated questions.
|
138 |
+
|
139 |
+
|
140 |
+
## Dataset Sources
|
141 |
+
|
142 |
+
<!-- Provide the basic links for the dataset. -->
|
143 |
+
|
144 |
+
- **[EgoHumans](https://github.com/rawalkhirodkar/egohumans)** - Egocentric multi-view human activity understanding dataset
|
145 |
+
- **[Ego-Exo4D](https://github.com/facebookresearch/Ego4d)** - Large-scale egocentric and exocentric video dataset for multi-person interaction understanding
|
146 |
+
|
147 |
+
|
148 |
## Usage
|
149 |
|
150 |
```python
|
folder_list.txt
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
uniandes_bouldering_012_29
|
2 |
+
georgiatech_bike_15_4
|
3 |
+
georgiatech_cooking_11_02_6
|
4 |
+
utokyo_omelet_5_1001_4
|
5 |
+
utokyo_pcr_2001_23_2
|
6 |
+
indiana_cooking_23_2
|
7 |
+
nus_cooking_17_5
|
8 |
+
indiana_bike_11_9
|
9 |
+
nus_cpr_25_1
|
10 |
+
georgiatech_covid_09_2
|
11 |
+
cmu_soccer03_1
|
12 |
+
minnesota_cooking_060_2
|
13 |
+
sfu_cooking027_9
|
14 |
+
iiith_piano_003_2
|
15 |
+
cmu_soccer12_2
|
16 |
+
utokyo_salad_12_1018_4
|
17 |
+
cmu_bike20_3
|
18 |
+
cmu_bike21_3
|
19 |
+
cmu_bike18_6
|
20 |
+
utokyo_sushi_4_1008_4
|
21 |
+
sfu_cooking032_3
|
22 |
+
utokyo_soccer_8000_17_6
|
23 |
+
cmu_bike19_5
|
24 |
+
cmu_bike15_3
|
25 |
+
cmu_bike14_3
|
26 |
+
unc_music_04-26-23_02_11
|
27 |
+
cmu_bike16_3
|
28 |
+
cmu_bike17_3
|
29 |
+
sfu_cooking031_10
|
30 |
+
iiith_guitar_002_10
|
31 |
+
cmu_bike11_5
|
32 |
+
cmu_bike12_5
|
33 |
+
fair_cooking_05_6
|
34 |
+
sfu_cooking024_2
|
35 |
+
sfu_cooking022_2
|
36 |
+
cmu_bike01_7
|
37 |
+
sfu_cooking029_2
|
38 |
+
sfu_cooking015_2
|
39 |
+
cmu_soccer08_3
|
40 |
+
sfu_cooking030_6
|
41 |
+
cmu_bike06_2
|
42 |
+
cmu_soccer11_2
|
43 |
+
nus_covidtest_49_1
|
44 |
+
sfu_basketball016_5
|
45 |
+
sfu_basketball_04_2
|
46 |
+
sfu_basketball014_9
|
47 |
+
uniandes_dance_020_31
|
48 |
+
sfu_basketball017_9
|
49 |
+
unc_soccer_09-22-23_01_13
|
50 |
+
indiana_music_04_2
|
51 |
+
minnesota_rockclimbing_021_32
|
52 |
+
sfu_basketball012_12
|
53 |
+
iiith_cooking_90_2
|
54 |
+
unc_basketball_03-31-23_02_38
|
55 |
+
fair_bike_06_7
|
56 |
+
uniandes_basketball_005_10
|
57 |
+
utokyo_cpr_2005_28_2
|
58 |
+
nus_soccer_17_3
|
59 |
+
sfu_cooking_005_4
|
60 |
+
cmu_bike08_2
|
61 |
+
cmu_bike09_4
|
62 |
+
iiith_soccer_033_6
|
63 |
+
sfu_covid_013_12
|
64 |
+
cmu_bike05_2
|
65 |
+
cmu_bike02_5
|
66 |
+
sfu_basketball015_7
|
67 |
+
cmu_soccer16_6
|
68 |
+
cmu_soccer15_5
|
69 |
+
cmu_bike13_4
|
70 |
+
uniandes_cooking_001_5
|
71 |
+
sfu_basketball013_28
|
72 |
+
cmu_bike10_7
|
73 |
+
sfu_cooking020_8
|
74 |
+
sfu_cooking026_4
|
75 |
+
sfu_cooking023_8
|
76 |
+
sfu_cooking025_5
|
77 |
+
sfu_cooking028_8
|
78 |
+
cmu_bike03_2
|
79 |
+
cmu_soccer06_6
|
80 |
+
cmu_soccer07_2
|
81 |
+
sfu_cooking017_4
|
82 |
+
cmu_soccer09_2
|
83 |
+
cmu_soccer14_4
|
scripts/json2tsv_pair.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import csv
|
3 |
+
import os
|
4 |
+
import argparse
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
def process_question(question, A, B, C):
|
8 |
+
options = [A, B, C]
|
9 |
+
question_no_options = question.replace(A, "").replace(B, "").replace(C, "")
|
10 |
+
question_no_options = question_no_options.strip().replace(",", "").strip()
|
11 |
+
|
12 |
+
while len(options) < 3:
|
13 |
+
options.append("")
|
14 |
+
return question_no_options, options
|
15 |
+
|
16 |
+
def main(json_path):
|
17 |
+
json_path = Path(json_path).resolve()
|
18 |
+
base_path = json_path.parent # All-Angles-Bench/
|
19 |
+
output_dir = base_path / "bench_tsv"
|
20 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
21 |
+
output_path = output_dir / "all_angles_bench_huggingface.tsv"
|
22 |
+
|
23 |
+
with open(json_path, 'r', encoding='utf-8') as f:
|
24 |
+
data = json.load(f)
|
25 |
+
|
26 |
+
tsv_data = []
|
27 |
+
|
28 |
+
for entry in data:
|
29 |
+
folder = entry["folder"]
|
30 |
+
category = entry["category"]
|
31 |
+
image_paths = entry["image_path"]
|
32 |
+
modified_input_images = [str(base_path / p) for p in image_paths]
|
33 |
+
|
34 |
+
question = entry["question"]
|
35 |
+
answer = entry["answer"]
|
36 |
+
index = entry["index"]
|
37 |
+
pair_idx = entry["pair_idx"]
|
38 |
+
|
39 |
+
A = entry["A"]
|
40 |
+
B = entry["B"]
|
41 |
+
C = entry["C"]
|
42 |
+
question_no_options, options = process_question(question, A, B, C)
|
43 |
+
|
44 |
+
tsv_data.append([
|
45 |
+
index, folder, category, pair_idx, modified_input_images,
|
46 |
+
question_no_options
|
47 |
+
] + options + [answer])
|
48 |
+
|
49 |
+
with open(output_path, 'w', newline='', encoding='utf-8') as tsv_file:
|
50 |
+
tsv_writer = csv.writer(tsv_file, delimiter='\t')
|
51 |
+
tsv_writer.writerow(['index', 'folder', 'category', 'pair_idx', 'image_path', 'question', 'A', 'B', 'C', 'answer'])
|
52 |
+
tsv_writer.writerows(tsv_data)
|
53 |
+
|
54 |
+
print(f"Saved TSV to {output_path}")
|
55 |
+
|
56 |
+
if __name__ == "__main__":
|
57 |
+
parser = argparse.ArgumentParser()
|
58 |
+
parser.add_argument('--input', required=True, help='Path to the data.json file (e.g., All-Angles-Bench/data.json)')
|
59 |
+
args = parser.parse_args()
|
60 |
+
main(args.input)
|
scripts/process_ego4d_exo.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
import argparse
|
4 |
+
from pathlib import Path
|
5 |
+
import cv2
|
6 |
+
|
7 |
+
def extract_frames_from_video(video_path, output_folder, num_frames=16):
|
8 |
+
cap = cv2.VideoCapture(video_path)
|
9 |
+
|
10 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
11 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
12 |
+
|
13 |
+
interval = total_frames // num_frames
|
14 |
+
|
15 |
+
output_folder.mkdir(parents=True, exist_ok=True)
|
16 |
+
|
17 |
+
for i in range(num_frames):
|
18 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, i * interval)
|
19 |
+
|
20 |
+
ret, frame = cap.read()
|
21 |
+
if not ret:
|
22 |
+
break
|
23 |
+
|
24 |
+
frame_filename = output_folder / f"frame{i + 1}_{Path(video_path).stem}.jpg"
|
25 |
+
cv2.imwrite(str(frame_filename), frame)
|
26 |
+
|
27 |
+
cap.release()
|
28 |
+
|
29 |
+
def process_subfolders(root_path, folder_list, output_root):
|
30 |
+
for subfolder in Path(root_path).iterdir():
|
31 |
+
if subfolder.is_dir():
|
32 |
+
folder_name = subfolder.name
|
33 |
+
if folder_name not in folder_list:
|
34 |
+
continue
|
35 |
+
|
36 |
+
target_folder = subfolder / "frame_aligned_videos/downscaled/448"
|
37 |
+
|
38 |
+
if target_folder.exists() and target_folder.is_dir():
|
39 |
+
for video_file in target_folder.glob("cam*.mp4"):
|
40 |
+
print(f"Processing video: {video_file}")
|
41 |
+
new_subfolder = Path(output_root) / subfolder.name
|
42 |
+
new_subfolder.mkdir(parents=True, exist_ok=True)
|
43 |
+
|
44 |
+
extract_frames_from_video(video_file, new_subfolder)
|
45 |
+
|
46 |
+
def move_and_rename_frames_from_file(file_path, destination_root, source_root):
|
47 |
+
with open(file_path, 'r') as f:
|
48 |
+
folder_list = [line.strip() for line in f.readlines()]
|
49 |
+
|
50 |
+
for folder in folder_list:
|
51 |
+
folder_path = Path(os.path.join(source_root, folder))
|
52 |
+
if folder_path.exists() and folder_path.is_dir():
|
53 |
+
target_folder = Path(destination_root) / folder_path.name
|
54 |
+
target_folder.mkdir(parents=True, exist_ok=True)
|
55 |
+
|
56 |
+
for frame_file in folder_path.glob("frame2_*.jpg"):
|
57 |
+
new_filename = frame_file.name.replace("frame2_", "")
|
58 |
+
|
59 |
+
destination_file = target_folder / new_filename
|
60 |
+
|
61 |
+
shutil.move(str(frame_file), str(destination_file))
|
62 |
+
print(f"Moved and renamed {frame_file} to {destination_file}")
|
63 |
+
else:
|
64 |
+
print(f"Folder {folder} does not exist or is not a directory.")
|
65 |
+
|
66 |
+
if __name__ == "__main__":
|
67 |
+
parser = argparse.ArgumentParser()
|
68 |
+
parser.add_argument('--input', required=True, help='Path to All-Angles-Bench (root folder)')
|
69 |
+
args = parser.parse_args()
|
70 |
+
|
71 |
+
root_input = Path(args.input)
|
72 |
+
folder_list_file = root_input / "folder_list.txt"
|
73 |
+
input_path = root_input / "takes"
|
74 |
+
output_root = root_input / "extracted_frames_huggingface"
|
75 |
+
destination_root = root_input / "ego_exo4d_scenes"
|
76 |
+
|
77 |
+
with open(folder_list_file, 'r') as f:
|
78 |
+
folder_list = [line.strip() for line in f.readlines()]
|
79 |
+
|
80 |
+
process_subfolders(input_path, folder_list, output_root)
|
81 |
+
print("Processing frames extraction completed!")
|
82 |
+
|
83 |
+
move_and_rename_frames_from_file(folder_list_file, destination_root, output_root)
|
84 |
+
print("Files moved and renamed successfully!")
|
85 |
+
|
86 |
+
# Clean up
|
87 |
+
if output_root.exists() and output_root.is_dir():
|
88 |
+
shutil.rmtree(output_root)
|
89 |
+
print(f"Removed intermediate folder: {output_root}")
|