--- license: mit language: - en size_categories: - 1KSeeing from Another Perspective: Evaluating Multi-View Understanding in MLLMs # Dataset Card for All-Angles Bench ## Dataset Description The dataset presents a comprehensive benchmark consisting of over 2,100 human-annotated multi-view question-answer (QA) pairs, spanning 90 real-world scenes. Each scene is captured from multiple viewpoints, providing diverse perspectives and context for the associated questions. ## Dataset Sources - **[EgoHumans](https://github.com/rawalkhirodkar/egohumans)** - Egocentric multi-view human activity understanding dataset - **[Ego-Exo4D](https://github.com/facebookresearch/Ego4d)** - Large-scale egocentric and exocentric video dataset for multi-person interaction understanding ## Direct Usage ```python from datasets import load_dataset dataset = load_dataset("ch-chenyu/All-Angles-Bench") ``` ## Prepare Full Benchmark Data on Local Machine 1. **Set up Git lfs and clone the benchmark:** ```bash $ conda install git-lfs $ git lfs install $ git lfs clone https://huggingface.co/datasets/ch-chenyu/All-Angles-Bench ``` 2. **Download Ego4D-Exo dataset and extract the frames for the benchmark scenes:** We provide the image files for the EgoHumans dataset. For the Ego-Exo4D dataset, due to licensing restrictions, you will need to first sign the license agreement from the official Ego-Exo4D repository at https://ego4ddataset.com/egoexo-license/. After signing the license, you would get `Access ID` and `Access Key` via email. Then follow the steps below to set up access: ```bash $ pip install awscli $ aws configure ``` When prompted, enter the following: ```bash AWS Access Key ID [None]: your Access ID AWS Secret Access Key [None]: your Access Key Default region name [None]: us-west-2 Default output format [None]: json ``` Once configured, run the following to download the dataset (`downscaled_takes/448`) from this [page](https://docs.ego-exo4d-data.org/download/#setup-aws-client), and then use the preprocessing scripts to extract the corresponding images. ```bash $ pip install ego4d --upgrade $ egoexo -o All-Angles-Bench/ --parts downscaled_takes/448 $ python All-Angles-Bench/scripts/process_ego4d_exo.py --input All-Angles-Bench ``` 3. **Transform JSON metadata into benchmark TSV format:** To convert the metadata from JSON format into a structured TSV format compatible with benchmark evaluation scripts in [VLMEvalKit](https://github.com/open-compass/VLMEvalKit), run: ```bash $ python All-Angles-Bench/scripts/json2tsv_pair.py --input All-Angles-Bench/data.json ``` ## Dataset Structure The JSON data contains the following key-value pairs: | Key | Type | Description | |------------------|------------|-----------------------------------------------------------------------------| | `index` | Integer | Unique identifier for the data entry (e.g. `1221`) | | `folder` | String | Directory name where the scene is stored (e.g. `"05_volleyball"`) | | `category` | String | Task category (e.g. `"counting"`) | | `pair_idx` | String | Index of a corresponding paired question (if applicable) | | `image_path` | List | Array of input image paths | | `question` | String | Natural language query about the scene | | `A`/`B`/`C` | String | Multiple choice options | | `answer` | String | Correct option label (e.g. `"B"`) | | `sourced_dataset`| String | Source dataset name (e.g. `"EgoHumans"`) | ## Citation ```bibtex @article{yeh2025seeing, title={Seeing from Another Perspective: Evaluating Multi-View Understanding in MLLMs}, author={Chun-Hsiao Yeh, Chenyu Wang, Shengbang Tong, Ta-Ying Cheng, Ruoyu Wang, Tianzhe Chu, Yuexiang Zhai, Yubei Chen, Shenghua Gao and Yi Ma}, journal={arXiv preprint arXiv:2504.15280}, year={2025} } ``` ## Acknowledgements You may refer to related work that serves as foundations for our framework and code repository, [EgoHumans](https://github.com/rawalkhirodkar/egohumans), [Ego-Exo4D](https://github.com/facebookresearch/Ego4d), [VLMEvalKit](https://github.com/open-compass/VLMEvalKit). Thanks for their wonderful work and data.