Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
kmchiti commited on
Commit
92f44c5
·
verified ·
1 Parent(s): 5fb538c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md CHANGED
@@ -30,4 +30,82 @@ configs:
30
  path: data/valid-*
31
  - split: test
32
  path: data/test-*
 
 
33
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  path: data/valid-*
31
  - split: test
32
  path: data/test-*
33
+ size_categories:
34
+ - 1B<n<10B
35
  ---
36
+ # ZINC_22 Pretraining Dataset
37
+
38
+ ## Dataset Description
39
+ This dataset is derived from the **ZINC-22** database (~70B synthesizable compounds as of Sept 2024) and was prepared for large-scale pretraining of molecular language models. We randomly sampled **1.5 billion molecules** using a **stratified heavy-atom count split** (4–49 atoms) to ensure coverage of diverse chemical sizes.
40
+ All molecules were **deduplicated** to remove repeats, **canonicalized** in SMILES format, and **converted** into multiple string representations: SMILES, SELFIES, SAFE, DeepSMILES.
41
+
42
+ ---
43
+
44
+ ## Precomputed Statistics
45
+ This repository includes precomputed reference statistics (`*_stats.pkl`) for evaluating generated molecules against validation and test sets.
46
+ These statistics are used to compute the following metrics:
47
+
48
+ - **FCD** – Fréchet ChemNet Distance
49
+ - **SNN** – Similarity to Nearest Neighbor
50
+ - **Frag** – Fragment similarity (BRICS decomposition)
51
+ - **Scaf** – Scaffold similarity (Bemis–Murcko scaffolds)
52
+
53
+ ### File Naming Convention
54
+ Files are provided for multiple reference set sizes:
55
+ - `_175k` → 175,000 molecules
56
+ - `_500k` → 500,000 molecules
57
+ - `_1M` → 1 million molecules
58
+ - `_3M` → 3 million molecules
59
+ - *(no suffix)* → full set
60
+
61
+ By convention:
62
+ - `valid_stats_*` → computed from the **random validation split**
63
+ - `test_stats_*` → computed from the **scaffold-based split**
64
+
65
+ These statistics enable **consistent and reproducible** evaluation across experiments.
66
+
67
+ ---
68
+
69
+ ## How to Use
70
+
71
+ Before running the example below, make sure you have these packages installed:
72
+ ```bash
73
+ pip install rdkit fcd-torch
74
+ ```
75
+ ### Example: Download stats from the Hub and compute FCD
76
+
77
+ ```python
78
+ from huggingface_hub import hf_hub_download
79
+ import pickle
80
+ from fcd_torch import FCD as FCDMetric
81
+
82
+ # 1. Download the precomputed stats file from Hugging Face Hub
83
+ stats_path = hf_hub_download(
84
+ repo_id="chandar-lab/ZINC_22",
85
+ repo_type="dataset",
86
+ filename="valid_stats_175k.pkl" # change to desired file
87
+ )
88
+
89
+ # 2. Load the reference stats
90
+ with open(stats_path, "rb") as f:
91
+ reference_stats = pickle.load(f)
92
+
93
+ # 3. Compute FCD for your generated molecules
94
+ generated_smiles = ["CCO", "CCN", "CCCN", "CCCN"] # replace with your generated set
95
+ fcd_calculator = FCDMetric(batch_size=4)
96
+
97
+ fcd_value = fcd_calculator(gen=generated_smiles, pref=reference_stats["FCD"])
98
+ print(f"FCD score: {fcd_value:.4f}")
99
+ ```
100
+
101
+ ## Citation
102
+
103
+ ```bibtex
104
+ @article{chitsaz2024novomolgen,
105
+ title={NovoMolGen: Rethinking Molecular Language Model Pretraining},
106
+ author={Chitsaz, Kamran and Balaji, Roshan and Fournier, Quentin and
107
+ Bhatt, Nirav Pravinbhai and Chandar, Sarath},
108
+ journal={arXiv preprint},
109
+ year={2025},
110
+ }
111
+ ```