Datasets:
File size: 1,433 Bytes
aada0b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
library_name: peft
license: other
base_model: /workspace/qwen2_vl_lora_sft_trajdpo_v3
tags:
- llama-factory
- lora
- generated_from_trainer
model-index:
- name: webshopv_sft300_3hist_sft_trajdpo_v3_iter2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# webshopv_sft300_3hist_sft_trajdpo_v3_iter2
This model is a fine-tuned version of [/workspace/qwen2_vl_lora_sft_trajdpo_v3](https://huggingface.co//workspace/qwen2_vl_lora_sft_trajdpo_v3) on the vl_dpo_data dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 100
- num_epochs: 2.0
### Training results
### Framework versions
- PEFT 0.12.0
- Transformers 4.45.0.dev0
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.19.1 |