File size: 1,433 Bytes
aada0b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
library_name: peft
license: other
base_model: /workspace/qwen2_vl_lora_sft_trajdpo_v3
tags:
- llama-factory
- lora
- generated_from_trainer
model-index:
- name: webshopv_sft300_3hist_sft_trajdpo_v3_iter2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# webshopv_sft300_3hist_sft_trajdpo_v3_iter2

This model is a fine-tuned version of [/workspace/qwen2_vl_lora_sft_trajdpo_v3](https://huggingface.co//workspace/qwen2_vl_lora_sft_trajdpo_v3) on the vl_dpo_data dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 100
- num_epochs: 2.0

### Training results



### Framework versions

- PEFT 0.12.0
- Transformers 4.45.0.dev0
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.19.1