--- dataset_info: features: - name: id_doc dtype: string - name: words sequence: sequence: sequence: string - name: lemmas sequence: sequence: sequence: string - name: msds sequence: sequence: sequence: string - name: ne_tags sequence: sequence: sequence: string - name: mentions list: - name: id_mention dtype: string - name: mention_data struct: - name: idx_par dtype: uint32 - name: idx_sent dtype: uint32 - name: word_indices sequence: uint32 - name: global_word_indices sequence: uint32 - name: coref_clusters sequence: sequence: string splits: - name: train num_bytes: 21547216 num_examples: 756 download_size: 21892324 dataset_size: 21547216 license: cc-by-sa-4.0 language: - sl pretty_name: SentiCoref size_categories: - n<1K --- # Dataset card for SentiCoref ### Usage ``` import datasets data = datasets.load_dataset("cjvt/senticoref", trust_remote_code=True) ``` ### Dataset Summary The dataset contains the SentiCoref corpus, annotated for coreference. It is part of the SUK training bundle of corpora. For more details please check the paper or the [Clarin repository](http://hdl.handle.net/11356/1959) from which this dataset is being loaded. ## Dataset Structure ### Data Instances ``` { 'id_doc': 'senticoref1', 'words': [ [ ['Evropska', 'komisija', 'mora', 'narediti', 'analizo', 'vzrokov', 'rasti', 'cen', 'hrane', ',', 'menita', 'kmetijski', 'minister', 'Jarc', 'in', 'njegov', 'francoski', 'kolega', '.'], ['Bo', 'evropska', 'komisija', 'analizirala', 'vzroke', 'rasti', 'cen', 'hrane', '.'], ... ], ... ], 'lemmas': [ [ ['evropski', 'komisija', 'morati', 'narediti', 'analiza', 'vzrok', 'rast', 'cena', 'hrana', ',', 'meniti', 'kmetijski', 'minister', 'Jarc', 'in', 'njegov', 'francoski', 'kolega', '.'], ['biti', 'evropski', 'komisija', 'analizirati', 'vzrok', 'rast', 'cena', 'hrana', '.'], ... ] ], 'msds': [ [ ['mte:Ppnzei', 'mte:Sozei', 'mte:Ggnste', 'mte:Ggdn', 'mte:Sozet', 'mte:Sommr', 'mte:Sozer', 'mte:Sozmr', 'mte:Sozer', 'mte:U', 'mte:Ggnstd', 'mte:Ppnmeid', 'mte:Somei', 'mte:Slmei', 'mte:Vp', 'mte:Zstmeiem', 'mte:Ppnmeid', 'mte:Somei', 'mte:U'], ['mte:Gp-pte-n', 'mte:Ppnzei', 'mte:Sozei', 'mte:Ggvd-ez', 'mte:Sommt', 'mte:Sozer', 'mte:Sozmr', 'mte:Sozer', 'mte:U'], ... ], ... ], 'ne_tags': [ [ ['B-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-PER', 'O', 'O', 'O', 'O', 'O'], ['O', 'B-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'O'], ... ], ... ], 'mentions': [ {'id_mention': 'senticoref1.1.1.ne1', 'mention_data': {'idx_par': 0, 'idx_sent': 0, 'word_indices': [0, 1], 'global_word_indices': [0, 1]}}, ... ], 'coref_clusters': [ ['senticoref1.1.1.ne1', 'senticoref1.1.2.ne1', 'senticoref1.1.3.ne1'], ['senticoref1.1.1.phr52-1', 'senticoref1.1.3.phr52-2', 'senticoref1.1.11.phr52-3'], ['senticoref1.1.1.t5', 'senticoref1.1.3.t6', 'senticoref1.1.11.t11', 'senticoref1.1.11.t17'], ['senticoref1.1.1.phr13-1', 'senticoref1.1.2.phr13-2'], ... ] } ``` ### Data Fields - `id_doc`: a string ID of the document (corresponds to file name in this case); - `words`: a `List[List[List[String]]]` containing document words; - `lemmas`: a `List[List[List[String]]]` containing document lemmas; - `msds`: a `List[List[List[String]]]` containing document morphosyntactic features, encoded using MULTEXT-East V6; - `ne_tags`: a `List[List[List[String]]]` containing document named entity tags, encoded using IOB2 scheme; - `mentions`: a list of dicts for each mention. Each mention contains an ID (`id_mention`) and positions of words inside mention (determined by `idx_sent`, `word_indices`; or equivalently `global_word_indices` if sentences are flattened into a single list) - `coref_clusters`: a list of lists of strings containing mention IDs contained inside each coreference cluster. ## Additional Information ### Dataset Curators Špela Arhar Holdt; et al. (please see http://hdl.handle.net/11356/1959 for the full list of contributors) ### Licensing Information CC BY-SA 4.0 ### Citation Information ``` @article{senticoref-paper, title={Neural coreference resolution for Slovene language}, author={Matej Klemen and Slavko Žitnik}, journal={Computer Science and Information Systems}, year={2022}, volume={19}, pages={495-521} } ``` ``` @misc{suk-clarin, title = {Training corpus {SUK} 1.1}, author = {Arhar Holdt, {\v S}pela and Krek, Simon and Dobrovoljc, Kaja and Erjavec, Toma{\v z} and Gantar, Polona and {\v C}ibej, Jaka and Pori, Eva and Ter{\v c}on, Luka and Munda, Tina and {\v Z}itnik, Slavko and Robida, Nejc and Blagus, Neli and Mo{\v z}e, Sara and Ledinek, Nina and Holz, Nanika and Zupan, Katja and Kuzman, Taja and Kav{\v c}i{\v c}, Teja and {\v S}krjanec, Iza and Marko, Dafne and Jezer{\v s}ek, Lucija and Zajc, Anja}, url = {http://hdl.handle.net/11356/1959}, note = {Slovenian language resource repository {CLARIN}.{SI}}, copyright = {Creative Commons - Attribution-{ShareAlike} 4.0 International ({CC} {BY}-{SA} 4.0)}, issn = {2820-4042}, year = {2024} } ``` ### Contributions Thanks to [@matejklemen](https://github.com/matejklemen) for adding this dataset.