Datasets:
File size: 5,964 Bytes
3b1ddfa c3ccd8e 3b1ddfa c3ccd8e 3b1ddfa ea77161 c3ccd8e ea77161 c3ccd8e 3b1ddfa ea77161 3b1ddfa ea77161 3b1ddfa c3ccd8e ea77161 3b1ddfa ea77161 3b1ddfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
"""SI-NLI is a Slovene natural language inference dataset."""
import csv
import logging
import os
import datasets
_CITATION = """\
@misc{sinli,
title = {Slovene Natural Language Inference Dataset {SI}-{NLI}},
author = {Klemen, Matej and {\v Z}agar, Ale{\v s} and {\v C}ibej, Jaka and Robnik-{\v S}ikonja, Marko},
url = {http://hdl.handle.net/11356/1707},
note = {Slovenian language resource repository {CLARIN}.{SI}},
year = {2022}
}
"""
_DESCRIPTION = """\
SI-NLI (Slovene Natural Language Inference Dataset) contains 5,937 human-created Slovene sentence pairs
(premise and hypothesis) that are manually labeled with the labels "entailment", "contradiction", and "neutral".
The dataset was created using sentences that appear in the Slovenian reference corpus ccKres.
Annotators were tasked to modify the hypothesis in a candidate pair in a way that reflects one of the labels.
The dataset is balanced since the annotators created three modifications (entailment, contradiction, neutral)
for each candidate sentence pair.
"""
_HOMEPAGE = "http://hdl.handle.net/11356/1707"
_LICENSE = "Creative Commons - Attribution 4.0 International (CC BY 4.0)"
_URLS = {
"si-nli": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1707/SI-NLI.zip"
}
NA_STR = ""
UNIFIED_LABELS = {"E": "entailment", "N": "neutral", "C": "contradiction"}
class SINLI(datasets.GeneratorBasedBuilder):
"""SI-NLI is a Slovene natural language inference dataset."""
VERSION = datasets.Version("1.0.1")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="public", version=VERSION,
description="Load the publicly available dataset (without test labels)."),
datasets.BuilderConfig(name="private", version=VERSION,
description="Load the privately available dataset by manuallly providing the path to the data."),
]
DEFAULT_CONFIG_NAME = "public"
def _info(self):
features = datasets.Features({
"pair_id": datasets.Value("string"),
"premise": datasets.Value("string"),
"hypothesis": datasets.Value("string"),
"annotation1": datasets.Value("string"),
"annotator1_id": datasets.Value("string"),
"annotation2": datasets.Value("string"),
"annotator2_id": datasets.Value("string"),
"annotation3": datasets.Value("string"),
"annotator3_id": datasets.Value("string"),
"annotation_final": datasets.Value("string"),
"label": datasets.Value("string")
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION
)
def _split_generators(self, dl_manager):
split_prefix = ""
if self.config.name == "public":
urls = _URLS["si-nli"]
data_dir = dl_manager.download_and_extract(urls)
else:
# `data_dir` must have the map SI-NLI inside and train.tsv, dev.tsv, test.tsv
if dl_manager.manual_dir is None or not os.path.exists(dl_manager.manual_dir):
logging.warning("data_dir does not point to a valid directory")
# Allow user to specify path to the private data directory: `load_dataset(..., data_dir=...)`
data_dir = dl_manager.manual_dir
if data_dir is None:
split_prefix = "dummy_"
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"file_path": os.path.join(data_dir, "SI-NLI", "train.tsv"),
"split": f"{split_prefix}train"
}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"file_path": os.path.join(data_dir, "SI-NLI", "dev.tsv"),
"split": f"{split_prefix}dev"
}
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"file_path": os.path.join(data_dir, "SI-NLI", "test.tsv"),
"split": f"{split_prefix}test"
}
)
]
def _generate_examples(self, file_path, split):
if split.startswith("dummy"):
return None
with open(file_path, encoding="utf-8") as f:
reader = csv.reader(f, delimiter="\t", quotechar='"')
header = next(reader)
for i, row in enumerate(reader):
pair_id = annotation1 = annotator1_id = annotation2 = annotator2_id = annotation3 = annotator3_id = \
annotation_final = label = NA_STR
# Public test set only contains the premise and the hypothesis
if len(row) == 2:
premise, hypothesis = row
# Public train/validation set and private test set contain additional annotation data
else:
pair_id, premise, hypothesis, annotation1, _, annotator1_id, annotation2, _, annotator2_id, \
annotation3, _, annotator3_id, annotation_final, label = row
yield i, {
"pair_id": pair_id,
"premise": premise, "hypothesis": hypothesis,
"annotation1": UNIFIED_LABELS.get(annotation1, annotation1), "annotator1_id": annotator1_id,
"annotation2": UNIFIED_LABELS.get(annotation2, annotation2), "annotator2_id": annotator2_id,
"annotation3": UNIFIED_LABELS.get(annotation3, annotation3), "annotator3_id": annotator3_id,
"annotation_final": UNIFIED_LABELS.get(annotation_final, annotation_final),
"label": label
}
|