| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						"""Multilingual Disaster Response Messages dataset.""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from __future__ import absolute_import, division, print_function | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import csv | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import datasets | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_DESCRIPTION = """\ | 
					
					
						
						| 
							 | 
						This dataset contains 30,000 messages drawn from events including an earthquake in Haiti in 2010, an earthquake in Chile in 2010, floods in Pakistan in 2010, super-storm Sandy in the U.S.A. in 2012, and news articles spanning a large number of years and 100s of different disasters. | 
					
					
						
						| 
							 | 
						The data has been encoded with 36 different categories related to disaster response and has been stripped of messages with sensitive information in their entirety. | 
					
					
						
						| 
							 | 
						Upon release, this is the featured dataset of a new Udacity course on Data Science and the AI4ALL summer school and is especially utile for text analytics and natural language processing (NLP) tasks and models. | 
					
					
						
						| 
							 | 
						The input data in this job contains thousands of untranslated disaster-related messages and their English translations. | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_CITATION = """\ | 
					
					
						
						| 
							 | 
						@inproceedings{title={Multilingual Disaster Response Messages} | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_TRAIN_DOWNLOAD_URL = ( | 
					
					
						
						| 
							 | 
						    "https://datasets.appen.com/appen_datasets/disaster_response_data/disaster_response_messages_training.csv" | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						_TEST_DOWNLOAD_URL = ( | 
					
					
						
						| 
							 | 
						    "https://datasets.appen.com/appen_datasets/disaster_response_data/disaster_response_messages_test.csv" | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class DisasterResponseMessages(datasets.GeneratorBasedBuilder): | 
					
					
						
						| 
							 | 
						    """Multilingual Disaster Response Messages dataset.""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _info(self): | 
					
					
						
						| 
							 | 
						        return datasets.DatasetInfo( | 
					
					
						
						| 
							 | 
						            description=_DESCRIPTION, | 
					
					
						
						| 
							 | 
						            features=datasets.Features( | 
					
					
						
						| 
							 | 
						                { | 
					
					
						
						| 
							 | 
						                    "split": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    "message": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    "original": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    "genre": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    "related": datasets.ClassLabel(names=["false", "true", "maybe"]), | 
					
					
						
						| 
							 | 
						                    "PII": datasets.Value("int8"), | 
					
					
						
						| 
							 | 
						                    "request": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "offer": datasets.Value("int8"), | 
					
					
						
						| 
							 | 
						                    "aid_related": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "medical_help": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "medical_products": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "search_and_rescue": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "security": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "military": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "child_alone": datasets.Value("int8"), | 
					
					
						
						| 
							 | 
						                    "water": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "food": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "shelter": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "clothing": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "money": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "missing_people": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "refugees": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "death": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "other_aid": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "infrastructure_related": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "transport": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "buildings": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "electricity": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "tools": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "hospitals": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "shops": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "aid_centers": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "other_infrastructure": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "weather_related": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "floods": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "storm": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "fire": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "earthquake": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "cold": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "other_weather": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                    "direct_report": datasets.ClassLabel(names=["false", "true"]), | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						            ), | 
					
					
						
						| 
							 | 
						            homepage="https://appen.com/datasets/combined-disaster-response-data/", | 
					
					
						
						| 
							 | 
						            citation=_CITATION, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _split_generators(self, dl_manager): | 
					
					
						
						| 
							 | 
						        train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL) | 
					
					
						
						| 
							 | 
						        test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL) | 
					
					
						
						| 
							 | 
						        return [ | 
					
					
						
						| 
							 | 
						            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), | 
					
					
						
						| 
							 | 
						            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), | 
					
					
						
						| 
							 | 
						        ] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _generate_examples(self, filepath): | 
					
					
						
						| 
							 | 
						        """Generate Distaster Response Messages examples.""" | 
					
					
						
						| 
							 | 
						        with open(filepath, encoding="utf-8") as csv_file: | 
					
					
						
						| 
							 | 
						            csv_reader = csv.reader( | 
					
					
						
						| 
							 | 
						                csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            next(csv_reader, None) | 
					
					
						
						| 
							 | 
						            for id_, row in enumerate(csv_reader): | 
					
					
						
						| 
							 | 
						                row = row[1:] | 
					
					
						
						| 
							 | 
						                ( | 
					
					
						
						| 
							 | 
						                    split, | 
					
					
						
						| 
							 | 
						                    message, | 
					
					
						
						| 
							 | 
						                    original, | 
					
					
						
						| 
							 | 
						                    genre, | 
					
					
						
						| 
							 | 
						                    related, | 
					
					
						
						| 
							 | 
						                    PII, | 
					
					
						
						| 
							 | 
						                    request, | 
					
					
						
						| 
							 | 
						                    offer, | 
					
					
						
						| 
							 | 
						                    aid_related, | 
					
					
						
						| 
							 | 
						                    medical_help, | 
					
					
						
						| 
							 | 
						                    medical_products, | 
					
					
						
						| 
							 | 
						                    search_and_rescue, | 
					
					
						
						| 
							 | 
						                    security, | 
					
					
						
						| 
							 | 
						                    military, | 
					
					
						
						| 
							 | 
						                    child_alone, | 
					
					
						
						| 
							 | 
						                    water, | 
					
					
						
						| 
							 | 
						                    food, | 
					
					
						
						| 
							 | 
						                    shelter, | 
					
					
						
						| 
							 | 
						                    clothing, | 
					
					
						
						| 
							 | 
						                    money, | 
					
					
						
						| 
							 | 
						                    missing_people, | 
					
					
						
						| 
							 | 
						                    refugees, | 
					
					
						
						| 
							 | 
						                    death, | 
					
					
						
						| 
							 | 
						                    other_aid, | 
					
					
						
						| 
							 | 
						                    infrastructure_related, | 
					
					
						
						| 
							 | 
						                    transport, | 
					
					
						
						| 
							 | 
						                    buildings, | 
					
					
						
						| 
							 | 
						                    electricity, | 
					
					
						
						| 
							 | 
						                    tools, | 
					
					
						
						| 
							 | 
						                    hospitals, | 
					
					
						
						| 
							 | 
						                    shops, | 
					
					
						
						| 
							 | 
						                    aid_centers, | 
					
					
						
						| 
							 | 
						                    other_infrastructure, | 
					
					
						
						| 
							 | 
						                    weather_related, | 
					
					
						
						| 
							 | 
						                    floods, | 
					
					
						
						| 
							 | 
						                    storm, | 
					
					
						
						| 
							 | 
						                    fire, | 
					
					
						
						| 
							 | 
						                    earthquake, | 
					
					
						
						| 
							 | 
						                    cold, | 
					
					
						
						| 
							 | 
						                    other_weather, | 
					
					
						
						| 
							 | 
						                    direct_report, | 
					
					
						
						| 
							 | 
						                ) = row | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                yield id_, { | 
					
					
						
						| 
							 | 
						                    "split": (split), | 
					
					
						
						| 
							 | 
						                    "message": (message), | 
					
					
						
						| 
							 | 
						                    "original": (original), | 
					
					
						
						| 
							 | 
						                    "genre": (genre), | 
					
					
						
						| 
							 | 
						                    "related": int(related), | 
					
					
						
						| 
							 | 
						                    "PII": int(PII), | 
					
					
						
						| 
							 | 
						                    "request": int(request), | 
					
					
						
						| 
							 | 
						                    "offer": int(offer), | 
					
					
						
						| 
							 | 
						                    "aid_related": int(aid_related), | 
					
					
						
						| 
							 | 
						                    "medical_help": int(medical_help), | 
					
					
						
						| 
							 | 
						                    "medical_products": int(medical_products), | 
					
					
						
						| 
							 | 
						                    "search_and_rescue": int(search_and_rescue), | 
					
					
						
						| 
							 | 
						                    "security": int(security), | 
					
					
						
						| 
							 | 
						                    "military": int(military), | 
					
					
						
						| 
							 | 
						                    "child_alone": int(child_alone), | 
					
					
						
						| 
							 | 
						                    "water": int(water), | 
					
					
						
						| 
							 | 
						                    "food": int(food), | 
					
					
						
						| 
							 | 
						                    "shelter": int(shelter), | 
					
					
						
						| 
							 | 
						                    "clothing": int(clothing), | 
					
					
						
						| 
							 | 
						                    "money": int(money), | 
					
					
						
						| 
							 | 
						                    "missing_people": int(missing_people), | 
					
					
						
						| 
							 | 
						                    "refugees": int(refugees), | 
					
					
						
						| 
							 | 
						                    "death": int(death), | 
					
					
						
						| 
							 | 
						                    "other_aid": int(other_aid), | 
					
					
						
						| 
							 | 
						                    "infrastructure_related": int(infrastructure_related), | 
					
					
						
						| 
							 | 
						                    "transport": int(transport), | 
					
					
						
						| 
							 | 
						                    "buildings": int(buildings), | 
					
					
						
						| 
							 | 
						                    "electricity": int(electricity), | 
					
					
						
						| 
							 | 
						                    "tools": int(tools), | 
					
					
						
						| 
							 | 
						                    "hospitals": int(hospitals), | 
					
					
						
						| 
							 | 
						                    "shops": int(shops), | 
					
					
						
						| 
							 | 
						                    "aid_centers": int(aid_centers), | 
					
					
						
						| 
							 | 
						                    "other_infrastructure": int(other_infrastructure), | 
					
					
						
						| 
							 | 
						                    "weather_related": int(weather_related), | 
					
					
						
						| 
							 | 
						                    "floods": int(floods), | 
					
					
						
						| 
							 | 
						                    "storm": int(storm), | 
					
					
						
						| 
							 | 
						                    "fire": int(fire), | 
					
					
						
						| 
							 | 
						                    "earthquake": int(earthquake), | 
					
					
						
						| 
							 | 
						                    "cold": int(cold), | 
					
					
						
						| 
							 | 
						                    "other_weather": int(other_weather), | 
					
					
						
						| 
							 | 
						                    "direct_report": int(direct_report), | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						
 |