Delete loading script
Browse files- qangaroo.py +0 -126
qangaroo.py
DELETED
|
@@ -1,126 +0,0 @@
|
|
| 1 |
-
"""TODO(qangaroo): Add a description here."""
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
import json
|
| 5 |
-
import os
|
| 6 |
-
|
| 7 |
-
import datasets
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
# TODO(qangaroo): BibTeX citation
|
| 11 |
-
|
| 12 |
-
_CITATION = """
|
| 13 |
-
"""
|
| 14 |
-
|
| 15 |
-
# TODO(quangaroo):
|
| 16 |
-
_DESCRIPTION = """\
|
| 17 |
-
We have created two new Reading Comprehension datasets focussing on multi-hop (alias multi-step) inference.
|
| 18 |
-
|
| 19 |
-
Several pieces of information often jointly imply another fact. In multi-hop inference, a new fact is derived by combining facts via a chain of multiple steps.
|
| 20 |
-
|
| 21 |
-
Our aim is to build Reading Comprehension methods that perform multi-hop inference on text, where individual facts are spread out across different documents.
|
| 22 |
-
|
| 23 |
-
The two QAngaroo datasets provide a training and evaluation resource for such methods.
|
| 24 |
-
"""
|
| 25 |
-
|
| 26 |
-
_MEDHOP_DESCRIPTION = """\
|
| 27 |
-
With the same format as WikiHop, this dataset is based on research paper abstracts from PubMed, and the queries are about interactions between pairs of drugs.
|
| 28 |
-
The correct answer has to be inferred by combining information from a chain of reactions of drugs and proteins.
|
| 29 |
-
"""
|
| 30 |
-
_WIKIHOP_DESCRIPTION = """\
|
| 31 |
-
With the same format as WikiHop, this dataset is based on research paper abstracts from PubMed, and the queries are about interactions between pairs of drugs.
|
| 32 |
-
The correct answer has to be inferred by combining information from a chain of reactions of drugs and proteins.
|
| 33 |
-
"""
|
| 34 |
-
|
| 35 |
-
_URL = "qangaroo_v1.1.zip"
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
class QangarooConfig(datasets.BuilderConfig):
|
| 39 |
-
def __init__(self, data_dir, **kwargs):
|
| 40 |
-
"""BuilderConfig for qangaroo dataset
|
| 41 |
-
|
| 42 |
-
Args:
|
| 43 |
-
data_dir: directory for the given dataset name
|
| 44 |
-
**kwargs: keyword arguments forwarded to super.
|
| 45 |
-
|
| 46 |
-
"""
|
| 47 |
-
|
| 48 |
-
super(QangarooConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
| 49 |
-
|
| 50 |
-
self.data_dir = data_dir
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
class Qangaroo(datasets.GeneratorBasedBuilder):
|
| 54 |
-
"""TODO(qangaroo): Short description of my dataset."""
|
| 55 |
-
|
| 56 |
-
# TODO(qangaroo): Set up version.
|
| 57 |
-
VERSION = datasets.Version("0.1.0")
|
| 58 |
-
BUILDER_CONFIGS = [
|
| 59 |
-
QangarooConfig(name="medhop", description=_MEDHOP_DESCRIPTION, data_dir="medhop"),
|
| 60 |
-
QangarooConfig(name="masked_medhop", description=_MEDHOP_DESCRIPTION, data_dir="medhop"),
|
| 61 |
-
QangarooConfig(name="wikihop", description=_WIKIHOP_DESCRIPTION, data_dir="wikihop"),
|
| 62 |
-
QangarooConfig(name="masked_wikihop", description=_WIKIHOP_DESCRIPTION, data_dir="wikihop"),
|
| 63 |
-
]
|
| 64 |
-
|
| 65 |
-
def _info(self):
|
| 66 |
-
# TODO(qangaroo): Specifies the datasets.DatasetInfo object
|
| 67 |
-
return datasets.DatasetInfo(
|
| 68 |
-
# This is the description that will appear on the datasets page.
|
| 69 |
-
description=_DESCRIPTION,
|
| 70 |
-
# datasets.features.FeatureConnectors
|
| 71 |
-
features=datasets.Features(
|
| 72 |
-
{
|
| 73 |
-
# These are the features of your dataset like images, labels ...
|
| 74 |
-
"query": datasets.Value("string"),
|
| 75 |
-
"supports": datasets.features.Sequence(datasets.Value("string")),
|
| 76 |
-
"candidates": datasets.features.Sequence(datasets.Value("string")),
|
| 77 |
-
"answer": datasets.Value("string"),
|
| 78 |
-
"id": datasets.Value("string")
|
| 79 |
-
# These are the features of your dataset like images, labels ...
|
| 80 |
-
}
|
| 81 |
-
),
|
| 82 |
-
# If there's a common (input, target) tuple from the features,
|
| 83 |
-
# specify them here. They'll be used if as_supervised=True in
|
| 84 |
-
# builder.as_dataset.
|
| 85 |
-
supervised_keys=None,
|
| 86 |
-
# Homepage of the dataset for documentation
|
| 87 |
-
homepage="http://qangaroo.cs.ucl.ac.uk/index.html",
|
| 88 |
-
citation=_CITATION,
|
| 89 |
-
)
|
| 90 |
-
|
| 91 |
-
def _split_generators(self, dl_manager):
|
| 92 |
-
"""Returns SplitGenerators."""
|
| 93 |
-
# TODO(qangaroo): Downloads the data and defines the splits
|
| 94 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
| 95 |
-
# download and extract URLs
|
| 96 |
-
dl_dir = dl_manager.download_and_extract(_URL)
|
| 97 |
-
data_dir = os.path.join(dl_dir, "qangaroo_v1.1")
|
| 98 |
-
train_file = "train.masked.json" if "masked" in self.config.name else "train.json"
|
| 99 |
-
dev_file = "dev.masked.json" if "masked" in self.config.name else "dev.json"
|
| 100 |
-
return [
|
| 101 |
-
datasets.SplitGenerator(
|
| 102 |
-
name=datasets.Split.TRAIN,
|
| 103 |
-
# These kwargs will be passed to _generate_examples
|
| 104 |
-
gen_kwargs={"filepath": os.path.join(data_dir, self.config.data_dir, train_file)},
|
| 105 |
-
),
|
| 106 |
-
datasets.SplitGenerator(
|
| 107 |
-
name=datasets.Split.VALIDATION,
|
| 108 |
-
# These kwargs will be passed to _generate_examples
|
| 109 |
-
gen_kwargs={"filepath": os.path.join(data_dir, self.config.data_dir, dev_file)},
|
| 110 |
-
),
|
| 111 |
-
]
|
| 112 |
-
|
| 113 |
-
def _generate_examples(self, filepath):
|
| 114 |
-
"""Yields examples."""
|
| 115 |
-
# TODO(quangaroo): Yields (key, example) tuples from the dataset
|
| 116 |
-
with open(filepath, encoding="utf-8") as f:
|
| 117 |
-
data = json.load(f)
|
| 118 |
-
for example in data:
|
| 119 |
-
id_ = example["id"]
|
| 120 |
-
yield id_, {
|
| 121 |
-
"id": example["id"],
|
| 122 |
-
"query": example["query"],
|
| 123 |
-
"supports": example["supports"],
|
| 124 |
-
"candidates": example["candidates"],
|
| 125 |
-
"answer": example["answer"],
|
| 126 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|