|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TODO: Add a description here.""" |
|
|
|
|
|
import csv |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{kaggle:dataset, |
|
title = {Telugu News - Natural Language Processing for Indian Languages}, |
|
authors={Sudalai Rajkumar, Anusha Motamarri}, |
|
year={2019} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
This dataset contains Telugu language news articles along with respective |
|
topic labels (business, editorial, entertainment, nation, sport) extracted from |
|
the daily Andhra Jyoti. This dataset could be used to build Classification and Language Models. |
|
""" |
|
|
|
_HOMEPAGE = "https://www.kaggle.com/sudalairajkumar/telugu-nlp" |
|
|
|
_LICENSE = "Data files © Original Authors" |
|
|
|
|
|
class TeluguNews(datasets.GeneratorBasedBuilder): |
|
"""Telugu News Articles with Topics.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
@property |
|
def manual_download_instructions(self): |
|
return """\ |
|
You need to visit Kaggle @ https://www.kaggle.com/sudalairajkumar/telugu-nlp, |
|
and manually download the `telugu_news` dataset. This will download a file called |
|
`telugu_news.zip` to your laptop. Unzip the file and move the two CSV files |
|
(train and test) files to <path/to/folder>. You can then use |
|
`datasets.load_dataset("telugu_news", data_dir="<path/to/folder>")` to load the datset. |
|
""" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"sno": datasets.Value("int32"), |
|
"date": datasets.Value("string"), |
|
"heading": datasets.Value("string"), |
|
"body": datasets.Value("string"), |
|
"topic": datasets.features.ClassLabel( |
|
names=["business", "editorial", "entertainment", "nation", "sports"], |
|
), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) |
|
|
|
if not os.path.exists(data_dir): |
|
raise FileNotFoundError( |
|
f"{data_dir} does not exist. Download instructions: {self.manual_download_instructions} " |
|
) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "train_telugu_news.csv"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "test_telugu_news.csv"), |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""Yields examples.""" |
|
|
|
with open(filepath, encoding="utf-8") as csv_file: |
|
csv_reader = csv.reader(csv_file) |
|
next(csv_reader, None) |
|
|
|
for id_, row in enumerate(csv_reader): |
|
sno, date, heading, body, topic = row |
|
yield id_, { |
|
"sno": sno, |
|
"date": date, |
|
"heading": heading, |
|
"body": body, |
|
"topic": topic, |
|
} |
|
|