--- viewer: false license: cc-by-4.0 tags: - chemistry - biology - molecular dynamics - neural network potential pretty_name: 'mdCATH: A Large-Scale MD Dataset for Data-Driven Computational Biophysics' --- # mdCATH: A Large-Scale MD Dataset for Data-Driven Computational Biophysics This dataset comprises all-atom systems for 5,398 CATH domains, modeled with a state-of-the-art classical force field, and simulated in five replicates each at five temperatures from 320 K to 450 K. ## Availability - [torchmd-net dataloader](https://github.com/torchmd/torchmd-net/blob/main/torchmdnet/datasets/mdcath.py) - [playmolecule](https://open.playmolecule.org/mdcath) - [scripts to load, convert and rebuild](https://github.com/compsciencelab/mdCATH) ## Citing The Dataset Please cite this manuscript for papers that use the mdCATH dataset: > Antonio Mirarchi, Toni Giorgino, Gianni De Fabritiis. "mdCATH: A Large-Scale MD Dataset for Data-Driven Computational Biophysics" ([arXiv:2407.14794](https://arxiv.org/abs/2407.14794v1)) ## Dataset Size | Description | Value | |:---------------------|:-------------| | Domains | 5,398 | | Trajectories | 134,950 | | Total sampled time | 62.6 ms | | Total atoms | 11,671,592 | | Total amino acids | 740,813 | | Avg. traj. length | 464 ns | | Avg. system size | 2,162 atoms | | Avg. domain length | 137 AAs | | Total file size | 3.3 TB |