elainezhu commited on
Commit
6de9d84
·
verified ·
1 Parent(s): 0c80f63

Upload file for report 9aa7ad0f-2e14-4e6d-bebf-a96311c9dac1

Browse files
uploads/9aa7ad0f-2e14-4e6d-bebf-a96311c9dac1_Class.v ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Parameter P Q R : Prop.
2
+ Theorem T' : (P -> Q -> R) -> P -> Q -> R.
3
+ Proof.
4
+ exact (fun Hpqr Hp Hq => Hpqr Hp Hq).
5
+ Qed.
6
+
7
+ (*
8
+ ; T' : (P Q R) [P Q -> R] P Q -> R
9
+ (define (T' Hpqr Hp Hq)
10
+ (Hpqr Hp Hq))
11
+ *)
12
+
13
+ Check false.
14
+
15
+ Check True.
16
+
17
+ Print True.
18
+
19
+ Theorem T3 : (not (1 = 2)).
20
+ Proof.
21
+ unfold not.
22
+ intros H.
23
+ discriminate H.
24
+ Qed.
25
+
26
+ Definition and_1 (p: P /\ Q) : P :=
27
+ match p with
28
+ | conj Hp Hq => Hp
29
+ end.
30
+
31
+ (*
32
+ (define-struct conj [a b])
33
+ (define-contract (And P Q (Struct conj P Q))
34
+
35
+ (: and_1 (All (P Q) (-> (And P Q) P)))
36
+ (define (and_1 p)
37
+ (conj-a p)))
38
+ *)
39
+
40
+ (*Theorem demorgan1 : forall P Q: Prop,
41
+ not(P \/ Q) <-> not P /\ not Q.
42
+ Proof.
43
+ intros P Q.
44
+ split.
45
+ constructor.
46
+ - (* intros H.*)
47
+ refine (fun H => _).
48
+ unfold not in *.
49
+ (* constructor *)
50
+ refine (conj _ _).
51
+ eauto.
52
+ eauto.*)
53
+
54
+ Theorem demorganprop: forall P Q: bool,
55
+ negb (orb P Q) = andb (negb P) (negb Q).
56
+ Proof.
57
+ intros P Q.
58
+ destruct P; destruct Q; reflexivity.
59
+ Qed.
60
+
61
+ Theorem demorganliteauto : forall P Q : Prop,
62
+ not (P \/ Q) <-> not P /\ not Q.
63
+ Proof.
64
+ intros P Q.
65
+ constructor.
66
+ - intros. constructor; info_eauto.
67
+ - intros. destruct H. unfold not. intros.
68
+ destruct H1; eauto.
69
+ Qed.
70
+
71
+
72
+ Inductive ArithExp : Set :=
73
+ | num : nat -> ArithExp
74
+ | add : ArithExp -> ArithExp -> ArithExp.
75
+
76
+ Definition a1 := num 1.
77
+ Definition a2 := add (num 2) a1.
78
+ Definition a4:= match a2 with
79
+ | add sub1 _ => sub1
80
+ | num _ => a1
81
+ end.
82
+
83
+ Eval compute in a4.
84
+
85
+ Inductive ArithExp1 : Set :=
86
+ | num1 (n : nat)
87
+ | add1 (l r : ArithExp1).
88
+
89
+ Definition partial := (add (num 3)).
90
+ Definition a3 := partial (num 5).
91
+
92
+ Eval compute in a3.
93
+
94
+ Fixpoint eval (e : ArithExp) : nat :=
95
+ match e with
96
+ | num n => n
97
+ | add e1 e2 => Nat.add (eval e1) (eval e2)
98
+ end.
99
+
100
+ Eval compute in (eval a3).
101
+
102
+ Fixpoint const_fold (e : ArithExp) : ArithExp :=
103
+ match e with
104
+ | num n => num n
105
+ | add l r =>
106
+ match l, r with
107
+ | num n1, num n2 => num (Nat.add n1 n2)
108
+ | l', r' => add (const_fold l') (const_fold r')
109
+ end
110
+ end.
111
+
112
+ Inductive Color : Set :=
113
+ | red : Color
114
+ | green : Color
115
+ | blue : Color.
116
+
117
+ Inductive RGB : Set :=
118
+ | mk :nat -> nat -> nat -> RGB.
119
+
120
+ Definition colorToRGB (c : Color) : RGB :=
121
+ match c with
122
+ | red => mk 255 0 0
123
+ | green => mk 0 255 0
124
+ | blue => mk 0 0 255
125
+ end.
126
+
127
+ Definition RGBtoColor (r: RGB) : Color :=
128
+ match r with
129
+ | mk 255 0 0 => red
130
+ | mk 0 255 0 => green
131
+ | mk 0 0 255 => blue
132
+ | _ => red
133
+ end.
134
+
135
+ Theorem colorRGB_roundtrip : forall c,
136
+ RGBtoColor (colorToRGB c) = c.
137
+ Proof.
138
+ intros c.
139
+ destruct c; reflexivity.
140
+ Qed.
141
+
142
+ Fixpoint double (n : nat) : nat :=
143
+ match n with
144
+ | 0 => 0
145
+ | S n' => S (S (double n'))
146
+ end.
147
+
148
+ Eval compute in double 10.
149
+
150
+ Theorem double_succ : forall n,
151
+ double (S n) = S (S (double n)).
152
+ Proof.
153
+ intros n.
154
+ simpl.
155
+ reflexivity.
156
+ Qed.
157
+
158
+ Inductive ev : nat -> Prop :=
159
+ | ev_0 : ev 0
160
+ | ev_SS : forall n,
161
+ ev n -> ev (S (S n)).
162
+
163
+ Fixpoint ev_pred (n : nat) : Prop :=
164
+ match n with
165
+ | 0 => True
166
+ | S (S n) => ev_pred n'
167
+ | _ => False
168
+ end.
169
+
170
+ Theorem ev_4 : ev 4.
171
+ Proof.
172
+ apply ev_SS.
173
+ apply ev_SS.
174
+ apply ev_0.
175
+ Qed.
176
+