system HF staff commited on
Commit
8ca2693
0 Parent(s):

Update files from the datasets library (from 1.0.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.0.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "Movie Review Dataset.\nThis is a dataset of containing 5,331 positive and 5,331 negative processed \nsentences from Rotten Tomatoes movie reviews. This data was first used in Bo \nPang and Lillian Lee, ``Seeing stars: Exploiting class relationships for \nsentiment categorization with respect to rating scales.'', Proceedings of the \nACL, 2005.\n", "citation": "@InProceedings{Pang+Lee:05a,\n author = {Bo Pang and Lillian Lee},\n title = {Seeing stars: Exploiting class relationships for sentiment\n categorization with respect to rating scales},\n booktitle = {Proceedings of the ACL},\n year = 2005\n}\n", "homepage": "http://www.cs.cornell.edu/people/pabo/movie-review-data/", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["neg", "pos"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "supervised_keys": {"input": "", "output": ""}, "builder_name": "rotten_tomatoes_movie_review", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1074810, "num_examples": 8530, "dataset_name": "rotten_tomatoes_movie_review"}, "validation": {"name": "validation", "num_bytes": 134679, "num_examples": 1066, "dataset_name": "rotten_tomatoes_movie_review"}, "test": {"name": "test", "num_bytes": 135972, "num_examples": 1066, "dataset_name": "rotten_tomatoes_movie_review"}}, "download_checksums": {"https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz": {"num_bytes": 487770, "checksum": "a05befe52aafda71d458d188a1c54506a998b1308613ba76bbda2e5029409ce9"}}, "download_size": 487770, "dataset_size": 1345461, "size_in_bytes": 1833231}}
dummy/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23b0f403770991d7ef26edf47b1117293dd4a0a387a86e0fa6caaf39d8fcb50c
3
+ size 1568
rotten_tomatoes.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """Rotten tomatoes movie reviews dataset."""
18
+
19
+ from __future__ import absolute_import, division, print_function
20
+
21
+ import os
22
+
23
+ import datasets
24
+
25
+
26
+ _DESCRIPTION = """\
27
+ Movie Review Dataset.
28
+ This is a dataset of containing 5,331 positive and 5,331 negative processed
29
+ sentences from Rotten Tomatoes movie reviews. This data was first used in Bo
30
+ Pang and Lillian Lee, ``Seeing stars: Exploiting class relationships for
31
+ sentiment categorization with respect to rating scales.'', Proceedings of the
32
+ ACL, 2005.
33
+ """
34
+
35
+ _CITATION = """\
36
+ @InProceedings{Pang+Lee:05a,
37
+ author = {Bo Pang and Lillian Lee},
38
+ title = {Seeing stars: Exploiting class relationships for sentiment
39
+ categorization with respect to rating scales},
40
+ booktitle = {Proceedings of the ACL},
41
+ year = 2005
42
+ }
43
+ """
44
+
45
+ _DOWNLOAD_URL = "https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz"
46
+
47
+
48
+ class RottenTomatoesMovieReview(datasets.GeneratorBasedBuilder):
49
+ """Cornell Rotten Tomatoes movie reviews dataset."""
50
+
51
+ VERSION = datasets.Version("1.0.0")
52
+
53
+ def _info(self):
54
+ return datasets.DatasetInfo(
55
+ description=_DESCRIPTION,
56
+ features=datasets.Features(
57
+ {"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["neg", "pos"])}
58
+ ),
59
+ supervised_keys=[""],
60
+ homepage="http://www.cs.cornell.edu/people/pabo/movie-review-data/",
61
+ citation=_CITATION,
62
+ )
63
+
64
+ def _vocab_text_gen(self, train_file):
65
+ for _, ex in self._generate_examples(train_file):
66
+ yield ex["text"]
67
+
68
+ def _split_generators(self, dl_manager):
69
+ """ Downloads Rotten Tomatoes sentences. """
70
+ extracted_folder_path = dl_manager.download_and_extract(_DOWNLOAD_URL)
71
+ return [
72
+ datasets.SplitGenerator(
73
+ name=datasets.Split.TRAIN,
74
+ gen_kwargs={"split_key": "train", "data_dir": extracted_folder_path},
75
+ ),
76
+ datasets.SplitGenerator(
77
+ name=datasets.Split.VALIDATION,
78
+ gen_kwargs={"split_key": "validation", "data_dir": extracted_folder_path},
79
+ ),
80
+ datasets.SplitGenerator(
81
+ name=datasets.Split.TEST,
82
+ gen_kwargs={"split_key": "test", "data_dir": extracted_folder_path},
83
+ ),
84
+ ]
85
+
86
+ def _get_examples_from_split(self, split_key, data_dir):
87
+ """Reads Rotten Tomatoes sentences and splits into 80% train,
88
+ 10% validation, and 10% test, as is the practice set out in Jinfeng
89
+ Li, ``TEXTBUGGER: Generating Adversarial Text Against Real-world
90
+ Applications.''
91
+ """
92
+ data_dir = os.path.join(data_dir, "rt-polaritydata")
93
+
94
+ pos_samples = open(os.path.join(data_dir, "rt-polarity.pos"), encoding="latin-1").readlines()
95
+ pos_samples = list(map(lambda t: t.strip(), pos_samples))
96
+
97
+ neg_samples = open(os.path.join(data_dir, "rt-polarity.neg"), encoding="latin-1").readlines()
98
+ neg_samples = list(map(lambda t: t.strip(), neg_samples))
99
+
100
+ # 80/10/10 split
101
+ i1 = int(len(pos_samples) * 0.8 + 0.5)
102
+ i2 = int(len(pos_samples) * 0.9 + 0.5)
103
+ train_samples = pos_samples[:i1] + neg_samples[:i1]
104
+ train_labels = (["pos"] * i1) + (["neg"] * i1)
105
+ validation_samples = pos_samples[i1:i2] + neg_samples[i1:i2]
106
+ validation_labels = (["pos"] * (i2 - i1)) + (["neg"] * (i2 - i1))
107
+ test_samples = pos_samples[i2:] + neg_samples[i2:]
108
+ test_labels = (["pos"] * (len(pos_samples) - i2)) + (["neg"] * (len(pos_samples) - i2))
109
+
110
+ if split_key == "train":
111
+ return (train_samples, train_labels)
112
+ if split_key == "validation":
113
+ return (validation_samples, validation_labels)
114
+ if split_key == "test":
115
+ return (test_samples, test_labels)
116
+ else:
117
+ raise ValueError(f"Invalid split key {split_key}")
118
+
119
+ def _generate_examples(self, split_key, data_dir):
120
+ """Yields examples for a given split of MR."""
121
+ split_text, split_labels = self._get_examples_from_split(split_key, data_dir)
122
+ for text, label in zip(split_text, split_labels):
123
+ data_key = split_key + "_" + text
124
+ feature_dict = {"text": text, "label": label}
125
+ yield data_key, feature_dict