File size: 3,271 Bytes
618a738
bc1bb3a
618a738
 
 
 
 
bc1bb3a
 
 
618a738
 
 
 
 
 
 
bc1bb3a
618a738
 
 
bc1bb3a
618a738
bc1bb3a
b35d43b
bc1bb3a
eb84575
618a738
 
23075ff
 
 
 
9bd5f49
 
c1464a3
b646926
 
9bd5f49
 
c1464a3
 
 
 
 
 
 
 
9bd5f49
 
c1464a3
 
9bd5f49
c1464a3
 
 
9bd5f49
c1464a3
 
 
9bd5f49
618a738
85a9e1c
 
 
618a738
 
 
b35d43b
618a738
b646926
b35d43b
 
 
618a738
b35d43b
 
 
 
 
618a738
 
b35d43b
 
618a738
 
 
23075ff
 
b646926
618a738
 
 
 
 
 
23075ff
 
618a738
 
 
 
 
 
23075ff
618a738
 
 
 
 
 
 
23075ff
618a738
23075ff
618a738
 
 
 
23075ff
618a738
23075ff
618a738
 
 
 
 
23075ff
618a738
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
pretty_name: "Mulitmodal Sea-Land Segmentation Dataset"
language:
- en
license: "cc-by-4.0"
tags:
- remote-sensing
- sea-land segmaentation
- mulitmodal
- sentinel
- geospatial
- image
- environmental-monitoring
task_categories:
- image-classification
- image-segmentation
---
# Mulitmodal Sea-Land Segmentation Dataset

## Dataset Overview

This dataset contains optical and SAR images from Sentinel-2 and Sentinel-1.

### Optical image  
The Optical images were acquired from the Sentinel-2 satellite.
### SAR image   
The SAR images were acquired from the Sentinel-1 satellite. Specifically, the Interferometric Wide Swath (IW) mode was used, incorporating both Vertical-Vertical (VV) and Vertical-Horizontal (VH) polarizations.The Sentinel-1 data underwent preprocessing in SNAP software, including orbit correction, thermal noise removal, radiometric calibration, and terrain correction. Finally, the data were resampled to a resolution of 10 m Γ— 10 m to align with the selected Sentinel-2 spectral bands. 

---


## Dataset Specifications

<table>
<tr>
<th>Property</th>
<th>Optical image</th>
<th>SAR image</th>
</tr>
<tr>
<th>Source</th>
<td >Sentinel-2 satellite</td>
<td>Sentinel-1 Satellite</td>
</tr>
  <tr>
<th>Spectral Bands</th>
<td >Red, Green, Blue, and Near-Infrared</td>
<td>VV, VH</td>
</tr>
<tr>
<td>Spatial Resolution</td>
<td colspan=2>10 meters</td>
</tr>
<tr>
<td>Image Patch Size</td>
<td colspan=2>224 Γ— 224 pixels</td>
</tr>
<tr>
<td>Total Image Pairs</td>
<td colspan=2>1286</td>
</table>


---


## Dataset Structure and File Organization

The dataset is organized into paired folders for image patches and corresponding labels:
```
-LandSea/
β”œβ”€β”€ opts/ (optical image)
β”‚ β”œβ”€β”€ 1_1.tif
β”‚ β”œβ”€β”€ 1_2.tif
β”‚ └── ...
β”œβ”€β”€ sars/ (SAR image)
β”‚ β”œβ”€β”€ 1_1_0.tif
β”‚ β”œβ”€β”€ 1_1_1.tif
β”‚ β”œβ”€β”€ 1_2_0.tif
β”‚ β”œβ”€β”€ 1_2_1.tif
β”‚ └── ...
β”œβ”€β”€ labels/
β”‚ β”œβ”€β”€ 1_1.tif
β”‚ β”œβ”€β”€ 1_2.tif
β”‚ └── ...
└── README.md
```
- Each sample consists of three images: one optical image and two SAR images. For example, the optical image is stored as β€˜opts/1_1.tif’, and the corresponding SAR images are β€˜sars/1_1_0.tif’ and β€˜sars/1_1_1.tif’, representing the VV and VH polarization channels, respectively.
- The corresponding sea-land segmentation map is stored in the `lbls` directory.

---

## Labels

The label files are binary masks:

- Pixel value `0`: land  
- Pixel value `1`: sea

---




<!-- ## Potential Applications

- Glacier dynamics monitoring  
- Polar environmental change detection  
- Multispectral image analysis  
- Time-series remote sensing research  
- Climate-related environmental studies

--- -->

<!-- ## Dataset Access

The complete dataset is publicly available on GitHub:  
πŸ‘‰ [https://github.com/cuibinge/Glacier-Dataset](https://github.com/cuibinge/Glacier-Dataset)

--- -->

<!-- ## Citation

If you use this dataset in your research, please cite:

**VPGCD-Net: A Visual Prompt Driven Network for Glacier Change Detection in Remote Sensing Imagery**. Zhishen Shi, Bing'e Cui, et al. *IEEE Geoscience and Remote Sensing Letters*, 2025.

--- -->

## Contact

For dataset-related inquiries, please contact:  
πŸ“§ [email protected]