File size: 5,822 Bytes
5f14409
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f6c998
 
 
 
 
 
5f14409
 
 
 
 
 
 
3f6c998
 
 
 
 
5f14409
99a6999
 
 
 
c44623e
99a6999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c44623e
 
 
 
99a6999
 
c44623e
99a6999
 
 
 
 
 
 
5f14409
99a6999
 
5f14409
99a6999
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
---
dataset_info:
  features:
  - name: LPimage
    dtype: image
  - name: image1
    dtype: image
  - name: image2
    dtype: image
  - name: image3
    dtype: image
  - name: image4
    dtype: image
  - name: image5
    dtype: image
  - name: annotator1_ranking
    sequence: int32
    length: 5
  - name: annotator1_best
    dtype: int32
  - name: annotator1_worst
    dtype: int32
  - name: annotator2_ranking
    sequence: int32
    length: 5
  - name: annotator2_best
    dtype: int32
  - name: annotator2_worst
    dtype: int32
  - name: annotator3_ranking
    sequence: int32
    length: 5
  - name: annotator3_best
    dtype: int32
  - name: annotator3_worst
    dtype: int32
  - name: annotator4_ranking
    sequence: int32
    length: 5
  - name: annotator4_best
    dtype: int32
  - name: annotator4_worst
    dtype: int32
  - name: annotator5_ranking
    sequence: int32
    length: 5
  - name: annotator5_best
    dtype: int32
  - name: annotator5_worst
    dtype: int32
  - name: best_annotator
    dtype: string
  - name: average_rank_correlation
    dtype: float32
  splits:
  - name: train
    num_bytes: 4531824679.0
    num_examples: 900
  download_size: 4429349535
  dataset_size: 4531824679.0
license: cc-by-nc-sa-4.0
task_categories:
- visual-question-answering
language:
- ja
size_categories:
- n<1K
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---

# BannerBench: Benchmarking Vision Language Models for Multi-Ad Selection with Human Preferences

### Dataset Summary
The BannerBench is designed to evaluate the ability of VLMs to identify the banner that best matches human preferences from a set of candidates.

## Dataset Structure
The structure of the raw dataset is as follows:

```JSON
{
    "train": Dataset({
        "features": [
          'LPimage', 'image1', 'image2', 'image3', 'image4', 'image5', 
          'annotator1_ranking', 'annotator1_best', 'annotator1_worst', 
          'annotator2_ranking', 'annotator2_best', 'annotator2_worst', 
          'annotator3_ranking', 'annotator3_best', 'annotator3_worst', 
          'annotator4_ranking', 'annotator4_best', 'annotator4_worst', 
          'annotator5_ranking', 'annotator5_best', 'annotator5_worst', 
          'best_annotator', 'average_rank_correlation'
        ],
    })
}
```

### Example
```Python
from datasets import load_dataset

dataset = load_dataset("cyberagent/BannerBench")

print(dataset)
# DatasetDict({
#     train: Dataset({
#         features: ['LPimage', 'image1', 'image2', 'image3', 'image4', 'image5', 'annotator1_ranking', 'annotator1_best', 'annotator1_worst', 'annotator2_ranking', 'annotator2_best', 'annotator2_worst', 'annotator3_ranking', 'annotator3_best', 'annotator3_worst', 'annotator4_ranking', 'annotator4_best', 'annotator4_worst', 'annotator5_ranking', 'annotator5_best', 'annotator5_worst', 'best_annotator', 'average_rank_correlation'],
#         num_rows: 900
#     })
# })
```

An example of the dataset is as follows:

```JSON
{
  "LPimage": <PIL.PngImagePlugin.PngImageFile image mode=RGB size=1280x5352 at 0x7F09A24675D0>,
  "image1": <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1080x1080 at 0x7F09A1C9B250>,
  "image2": <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1080x1080 at 0x7F09A1CB52D0>,
  "image3": <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1080x1080 at 0x7F09A1CB5810>,
  "image4": <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1080x1080 at 0x7F09A1CB5E50>, 
  "image5": <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1080x1080 at 0x7F09A1CB6490>, 
  "annotator1_ranking": [2, 4, 1, 3, 5], 
  "annotator1_best": 3, 
  "annotator1_worst": 5, 
  "annotator2_ranking": [4, 5, 1, 2, 3], 
  "annotator2_best": 3, 
  "annotator2_worst": 2, 
  "annotator3_ranking": [3, 2, 1, 4, 5], 
  "annotator3_best": 3, 
  "annotator3_worst": 5, 
  "annotator4_ranking": [3, 4, 5, 2, 1], 
  "annotator4_best": 5, 
  "annotator4_worst": 3, 
  "annotator5_ranking": [1, 4, 2, 3, 5], 
  "annotator5_best": 1, 
  "annotator5_worst": 5, 
  "best_annotator": "annotator1", 
  "average_rank_correlation": 0.6534000039100647
}
```

### Data Fields

- LPimage: The Landing-Page image related image[1-5].
- image[1-5]: The Banners derived from a "LPimage".
- annotator[1-5]_ranking: Ranking of the advertisemental images in most prefered order by annotators 1 to 5.
- annotator[1-5]_best: The advertisement image is the most preferred one by annotators 1 to 5 in the Best-Choice task.
- annotator[1-5]_worst: The advertisement image is the least preferred one by annotators 1 to 5 in the Best-Choice task.
- best_annotator: The annotator whose average rank correlation with the other four annotators is the highest
- average_rank_correlation: The average of the top half of all possible annotator pairs, selected based on their rank correlation.

## Dataset Creation

BannerBench construction process consists of the following 3 steps;
1. we collected sets of five banners derived from a single LP (Banner Sets; BSs),
2. we annotated human preference to the BSs,
3. we propose two subtasks: Ranking and Best-Choice.

## Considerations for Using the Data
Since BannerBench is intended solely for evaluation purposes, it is not designed for training use; the benchmark focuses on assessing the inductive capabilities of VLMs.

## License
AdTEC dataset is released under the [CreativeCommons Attribution-NonCommercial-ShareAlike 4.0 International license](./LICENSE).

### Citation Information
To cite this work, please use the following format:
```
@misc{otake2025banner,
  author = {Hiroto Otake and Peinan Zhang and Yusuke Sakai and Masato Mita and Hiroki Ouchi and Taro Watanabe},
  title = {BannerBench: Benchmarking Vision Language Models for Multi-Ad Selection with Human Preferences},
  year = {2025}
}
```