Datasets:
update
Browse files- README.md +60 -23
- extract_train.py +25 -5
- setup.ipynb +55 -54
README.md
CHANGED
|
@@ -184,11 +184,21 @@ The dataset has been modified and organized for benchmarking purposes:
|
|
| 184 |
|
| 185 |
We provide example implementations using four state-of-the-art foundation models:
|
| 186 |
- [CONCH](https://huggingface.co/MahmoodLab/CONCH)
|
|
|
|
| 187 |
- [GigaPath](https://huggingface.co/prov-gigapath/prov-gigapath)
|
| 188 |
- [UNI](https://huggingface.co/MahmoodLab/UNI)
|
| 189 |
- [UNI2](https://huggingface.co/MahmoodLab/UNI2-h)
|
| 190 |
-
- [H-Optimus](https://huggingface.co/bioptimus/H-optimus-0)
|
|
|
|
|
|
|
| 191 |
- [Virchow2](https://huggingface.co/paige-ai/Virchow2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
See `licenses/references.txt` for model citations.
|
| 194 |
|
|
@@ -196,27 +206,51 @@ See `licenses/references.txt` for model citations.
|
|
| 196 |
**Note:** The provided script is a simplified example of training code. In practice, hyperparameter tuning and additional techniques were employed to achieve the following results.
|
| 197 |
#### Internal Split Results
|
| 198 |
|
| 199 |
-
| Model | Accuracy | Balanced Accuracy |
|
| 200 |
-
|
| 201 |
-
|
|
| 202 |
-
| H-Optimus | 0.
|
| 203 |
-
|
|
| 204 |
-
|
|
| 205 |
-
|
|
| 206 |
-
|
|
| 207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
#### External Split Results
|
| 210 |
|
| 211 |
-
| Model | Accuracy | Balanced Accuracy |
|
| 212 |
-
|
| 213 |
-
|
|
| 214 |
-
|
|
| 215 |
-
|
|
| 216 |
-
|
|
| 217 |
-
|
|
| 218 |
-
|
|
| 219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
### Getting Started
|
| 222 |
|
|
@@ -292,18 +326,21 @@ dataset = wds.WebDataset(patterns[mode], shardshuffle=False) \
|
|
| 292 |
model_name: "h_optimus" # Model selection: "h_optimus", etc.
|
| 293 |
split_type: "internal" # Split type: "internal" or "external"
|
| 294 |
device: "cuda" # Computation device: "cuda" or "cpu"
|
|
|
|
| 295 |
feature_exist: True # Skip feature extraction if features already exist
|
| 296 |
max_iter: 1000 # Maximum iterations for training
|
| 297 |
-
cost: 0.0001 # Cost parameter for
|
| 298 |
```
|
| 299 |
|
| 300 |
Configuration parameters:
|
| 301 |
- `model_name`: Foundation model to use for feature extraction
|
| 302 |
- `split_type`: Dataset split strategy
|
|
|
|
| 303 |
- `device`: Computation device (GPU/CPU)
|
| 304 |
- `feature_exist`: Skip feature extraction if True and features are already available
|
| 305 |
-
- `max_iter`: Maximum training iterations for
|
| 306 |
-
- `cost`: Regularization parameter for
|
|
|
|
| 307 |
|
| 308 |
2. Define models and transforms in `extract_train.py`:
|
| 309 |
```python
|
|
@@ -320,7 +357,7 @@ python extract_train.py
|
|
| 320 |
This will:
|
| 321 |
- Extract features using the specified foundation model
|
| 322 |
- Save features to H5 files
|
| 323 |
-
- Perform linear probing
|
| 324 |
- Output accuracy and balanced accuracy metrics
|
| 325 |
|
| 326 |
## License
|
|
|
|
| 184 |
|
| 185 |
We provide example implementations using four state-of-the-art foundation models:
|
| 186 |
- [CONCH](https://huggingface.co/MahmoodLab/CONCH)
|
| 187 |
+
- [CONCHv1.5](https://huggingface.co/MahmoodLab/conchv1_5)
|
| 188 |
- [GigaPath](https://huggingface.co/prov-gigapath/prov-gigapath)
|
| 189 |
- [UNI](https://huggingface.co/MahmoodLab/UNI)
|
| 190 |
- [UNI2](https://huggingface.co/MahmoodLab/UNI2-h)
|
| 191 |
+
- [H-Optimus-0](https://huggingface.co/bioptimus/H-optimus-0)
|
| 192 |
+
- [H-Optimus-1](https://huggingface.co/bioptimus/H-optimus-1)
|
| 193 |
+
- [Virchow](https://huggingface.co/paige-ai/Virchow)
|
| 194 |
- [Virchow2](https://huggingface.co/paige-ai/Virchow2)
|
| 195 |
+
- [Phikon](https://huggingface.co/owkin/phikon)
|
| 196 |
+
- [Phikon-v2](https://huggingface.co/owkin/phikon-v2)
|
| 197 |
+
- [Kaiko](https://github.com/kaiko-ai/towards_large_pathology_fms)
|
| 198 |
+
- [Lunit](https://huggingface.co/1aurent/vit_small_patch8_224.lunit_dino)
|
| 199 |
+
- [Hibou](https://huggingface.co/histai/hibou-L)
|
| 200 |
+
- [CTransPath](https://github.com/Xiyue-Wang/TransPath)
|
| 201 |
+
- ResNet
|
| 202 |
|
| 203 |
See `licenses/references.txt` for model citations.
|
| 204 |
|
|
|
|
| 206 |
**Note:** The provided script is a simplified example of training code. In practice, hyperparameter tuning and additional techniques were employed to achieve the following results.
|
| 207 |
#### Internal Split Results
|
| 208 |
|
| 209 |
+
| Model | Accuracy (LogReg) | Balanced Accuracy (LogReg) | Accuracy (KNN) | Balanced Accuracy (KNN) | Accuracy (Prototype) | Balanced Accuracy (Prototype) |
|
| 210 |
+
|-----|-----------------|--------------------------|--------------|-----------------------|--------------------|-----------------------------|
|
| 211 |
+
| Kaiko(l14)* | 0.8608 | **0.8662** | 0.8116 | 0.7636 | 0.7708 | 0.7434 |
|
| 212 |
+
| H-Optimus-1 | **0.8616** | 0.8557 | **0.8164** | **0.7671** | **0.7730** | **0.7579** |
|
| 213 |
+
| UNI2 | 0.8564 | 0.8501 | 0.7962 | 0.7434 | 0.7546 | 0.7476 |
|
| 214 |
+
| H-Optimus-0 | 0.8498 | 0.8399 | 0.7930 | 0.7307 | 0.7492 | 0.7321 |
|
| 215 |
+
| Virchow2 | 0.8455 | 0.8351 | 0.7686 | 0.6989 | 0.6671 | 0.6500 |
|
| 216 |
+
| Phikon-v2 | 0.8289 | 0.8212 | 0.7467 | 0.6777 | 0.6982 | 0.6869 |
|
| 217 |
+
| Phikon | 0.8342 | 0.8111 | 0.7207 | 0.6255 | 0.6625 | 0.6385 |
|
| 218 |
+
| Virchow | 0.8223 | 0.8008 | 0.7244 | 0.6262 | 0.6087 | 0.5759 |
|
| 219 |
+
| Hibou | 0.8189 | 0.7985 | 0.7433 | 0.6618 | 0.6291 | 0.6034 |
|
| 220 |
+
| UNI | 0.8144 | 0.7923 | 0.7634 | 0.6897 | 0.7109 | 0.6946 |
|
| 221 |
+
| GigaPath | 0.8161 | 0.7878 | 0.7444 | 0.6676 | 0.6967 | 0.6675 |
|
| 222 |
+
| Lunit* | 0.7919 | 0.7535 | 0.7427 | 0.6539 | 0.6611 | 0.6427 |
|
| 223 |
+
| CONCHv1.5 | 0.7709 | 0.7306 | 0.7162 | 0.6313 | 0.6614 | 0.6383 |
|
| 224 |
+
| CONCH | 0.7672 | 0.7295 | 0.7028 | 0.6139 | 0.6150 | 0.6097 |
|
| 225 |
+
| CTransPath | 0.7255 | 0.6748 | 0.6200 | 0.5057 | 0.5158 | 0.4857 |
|
| 226 |
+
| ResNet | 0.6395 | 0.5581 | 0.5114 | 0.3816 | 0.3154 | 0.2973 |
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
\* Training data contains TCGA dataset.
|
| 230 |
|
| 231 |
#### External Split Results
|
| 232 |
|
| 233 |
+
| Model | Accuracy (LogReg) | Balanced Accuracy (LogReg) | Accuracy (KNN) | Balanced Accuracy (KNN) | Accuracy (Prototype) | Balanced Accuracy (Prototype) |
|
| 234 |
+
|-----|-----------------|--------------------------|--------------|-----------------------|--------------------|-----------------------------|
|
| 235 |
+
| H-Optimus-1 | **0.8080** | **0.7450** | **0.7700** | **0.6955** | **0.7572** | **0.7363** |
|
| 236 |
+
| Kaiko(b8)* | 0.7920 | 0.7370 | 0.7181 | 0.6597 | 0.7509 | 0.7134 |
|
| 237 |
+
| UNI2 | 0.7648 | 0.7262 | 0.7210 | 0.6498 | 0.7018 | 0.6839 |
|
| 238 |
+
| H-Optimus-0 | 0.7845 | 0.7213 | 0.7209 | 0.6579 | 0.7106 | 0.6842 |
|
| 239 |
+
| Virchow2 | 0.7744 | 0.6919 | 0.7221 | 0.6544 | 0.6482 | 0.6331 |
|
| 240 |
+
| UNI | 0.7373 | 0.6581 | 0.6668 | 0.5887 | 0.6612 | 0.6232 |
|
| 241 |
+
| Phikon-v2 | 0.7185 | 0.6535 | 0.5857 | 0.5040 | 0.6197 | 0.5752 |
|
| 242 |
+
| Virchow | 0.7274 | 0.6490 | 0.6464 | 0.5541 | 0.5847 | 0.5636 |
|
| 243 |
+
| GigaPath | 0.7246 | 0.6379 | 0.6426 | 0.5495 | 0.6361 | 0.5960 |
|
| 244 |
+
| Phikon | 0.7311 | 0.6351 | 0.5511 | 0.4586 | 0.5474 | 0.5104 |
|
| 245 |
+
| Hibou | 0.6696 | 0.6161 | 0.5155 | 0.4436 | 0.4911 | 0.4765 |
|
| 246 |
+
| CONCHv1.5 | 0.7080 | 0.6098 | 0.6762 | 0.5846 | 0.6415 | 0.6100 |
|
| 247 |
+
| Lunit* | 0.6851 | 0.6044 | 0.6021 | 0.5098 | 0.5862 | 0.5503 |
|
| 248 |
+
| CONCH | 0.6991 | 0.5975 | 0.6626 | 0.5735 | 0.5954 | 0.5905 |
|
| 249 |
+
| CTransPath | 0.6160 | 0.5215 | 0.5229 | 0.4205 | 0.4498 | 0.4128 |
|
| 250 |
+
| ResNet | 0.4967 | 0.3929 | 0.3960 | 0.2871 | 0.2657 | 0.2392 |
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
\* Training data contains TCGA dataset.
|
| 254 |
|
| 255 |
### Getting Started
|
| 256 |
|
|
|
|
| 326 |
model_name: "h_optimus" # Model selection: "h_optimus", etc.
|
| 327 |
split_type: "internal" # Split type: "internal" or "external"
|
| 328 |
device: "cuda" # Computation device: "cuda" or "cpu"
|
| 329 |
+
eval_name: "logreg" # Evaluation method: "logreg", "knn", or "proto"
|
| 330 |
feature_exist: True # Skip feature extraction if features already exist
|
| 331 |
max_iter: 1000 # Maximum iterations for training
|
| 332 |
+
cost: 0.0001 # Cost parameter for logistic regression
|
| 333 |
```
|
| 334 |
|
| 335 |
Configuration parameters:
|
| 336 |
- `model_name`: Foundation model to use for feature extraction
|
| 337 |
- `split_type`: Dataset split strategy
|
| 338 |
+
- `eval_name`: Methods of evaluation (logreg, knn, proto)
|
| 339 |
- `device`: Computation device (GPU/CPU)
|
| 340 |
- `feature_exist`: Skip feature extraction if True and features are already available
|
| 341 |
+
- `max_iter`: Maximum training iterations for logistic regression
|
| 342 |
+
- `cost`: Regularization parameter for logistic regression
|
| 343 |
+
- `k`: Number of Nearest Neighbors in KNN
|
| 344 |
|
| 345 |
2. Define models and transforms in `extract_train.py`:
|
| 346 |
```python
|
|
|
|
| 357 |
This will:
|
| 358 |
- Extract features using the specified foundation model
|
| 359 |
- Save features to H5 files
|
| 360 |
+
- Perform linear probing, KNN, and prototype classification
|
| 361 |
- Output accuracy and balanced accuracy metrics
|
| 362 |
|
| 363 |
## License
|
extract_train.py
CHANGED
|
@@ -34,6 +34,7 @@ import h5py
|
|
| 34 |
import numpy as np
|
| 35 |
from tqdm import tqdm
|
| 36 |
from sklearn.linear_model import LogisticRegression
|
|
|
|
| 37 |
from sklearn.metrics import accuracy_score, balanced_accuracy_score
|
| 38 |
from huggingface_hub import login
|
| 39 |
import braceexpand
|
|
@@ -53,8 +54,10 @@ model_dic = {
|
|
| 53 |
# if you want to use other model, please check the path
|
| 54 |
}
|
| 55 |
configs["model_path"] = model_dic[configs["model_name"]]
|
|
|
|
| 56 |
configs["max_iter"] = configs.get("max_iter", 1000)
|
| 57 |
configs["cost"] = configs.get("cost", 0.0001)
|
|
|
|
| 58 |
|
| 59 |
# load meta data
|
| 60 |
metadata_path = os.path.join(work_dir, "train_val_test_split.csv")
|
|
@@ -264,11 +267,28 @@ def get_feats_labels(hdf5_file_path, mode="train", batch_size=32):
|
|
| 264 |
def train_eval(train_feats, train_labels, test_feats, test_labels):
|
| 265 |
global configs
|
| 266 |
|
| 267 |
-
# define model
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
acc = accuracy_score(test_labels, pred)
|
| 273 |
balanced_acc = balanced_accuracy_score(test_labels, pred)
|
| 274 |
print(f"Accuracy = {acc:.3f}, Balanced Accuracy = {balanced_acc:.3f}")
|
|
|
|
| 34 |
import numpy as np
|
| 35 |
from tqdm import tqdm
|
| 36 |
from sklearn.linear_model import LogisticRegression
|
| 37 |
+
from sklearn.neighbors import KNeighborsClassifier
|
| 38 |
from sklearn.metrics import accuracy_score, balanced_accuracy_score
|
| 39 |
from huggingface_hub import login
|
| 40 |
import braceexpand
|
|
|
|
| 54 |
# if you want to use other model, please check the path
|
| 55 |
}
|
| 56 |
configs["model_path"] = model_dic[configs["model_name"]]
|
| 57 |
+
configs["eval_name"] = configs.get("eval_name", "logreg") # ["logreg", "knn", "proto"]
|
| 58 |
configs["max_iter"] = configs.get("max_iter", 1000)
|
| 59 |
configs["cost"] = configs.get("cost", 0.0001)
|
| 60 |
+
configs["k"] = configs.get("k", 10)
|
| 61 |
|
| 62 |
# load meta data
|
| 63 |
metadata_path = os.path.join(work_dir, "train_val_test_split.csv")
|
|
|
|
| 267 |
def train_eval(train_feats, train_labels, test_feats, test_labels):
|
| 268 |
global configs
|
| 269 |
|
| 270 |
+
# define model, train, evaluation
|
| 271 |
+
if configs["eval_name"] == "logreg":
|
| 272 |
+
model = LogisticRegression(C=configs["cost"], max_iter=configs["max_iter"])
|
| 273 |
+
model.fit(train_feats, train_labels)
|
| 274 |
+
pred = model.predict(test_feats)
|
| 275 |
+
|
| 276 |
+
if configs["eval_name"] == "knn":
|
| 277 |
+
model = KNeighborsClassifier(n_neighbors=configs["k"])
|
| 278 |
+
model.fit(train_feats.numpy(), train_labels.numpy())
|
| 279 |
+
pred = model.predict(test_feats.numpy())
|
| 280 |
+
test_labels = test_labels.numpy()
|
| 281 |
+
|
| 282 |
+
if configs["eval_name"] == "proto":
|
| 283 |
+
unique_labels = sorted(np.unique(train_labels.numpy()))
|
| 284 |
+
feats_proto = torch.vstack([
|
| 285 |
+
train_feats[train_labels == c].mean(dim=0) for c in unique_labels
|
| 286 |
+
])
|
| 287 |
+
labels_proto = torch.tensor(unique_labels)
|
| 288 |
+
pw_dist = (test_feats[:, None] - feats_proto[None, :]).norm(dim=-1, p=2)
|
| 289 |
+
pred = labels_proto[pw_dist.argmin(dim=1)]
|
| 290 |
+
|
| 291 |
+
# result
|
| 292 |
acc = accuracy_score(test_labels, pred)
|
| 293 |
balanced_acc = balanced_accuracy_score(test_labels, pred)
|
| 294 |
print(f"Accuracy = {acc:.3f}, Balanced Accuracy = {balanced_acc:.3f}")
|
setup.ipynb
CHANGED
|
@@ -31,8 +31,10 @@
|
|
| 31 |
},
|
| 32 |
{
|
| 33 |
"cell_type": "code",
|
| 34 |
-
"
|
| 35 |
-
|
|
|
|
|
|
|
| 36 |
"metadata": {
|
| 37 |
"colab": {
|
| 38 |
"base_uri": "https://localhost:8080/"
|
|
@@ -40,33 +42,31 @@
|
|
| 40 |
"id": "FccnVVy0GAVR",
|
| 41 |
"outputId": "e90aefeb-6cd3-4875-cc53-e7241c84589a"
|
| 42 |
},
|
|
|
|
|
|
|
| 43 |
"outputs": [
|
| 44 |
{
|
| 45 |
-
"name": "stdout",
|
| 46 |
"output_type": "stream",
|
|
|
|
| 47 |
"text": [
|
| 48 |
"Python 3.11.11\n"
|
| 49 |
]
|
| 50 |
}
|
| 51 |
-
],
|
| 52 |
-
"source": [
|
| 53 |
-
"# check python version (this example is google colab environment)\n",
|
| 54 |
-
"!python --version"
|
| 55 |
]
|
| 56 |
},
|
| 57 |
{
|
| 58 |
"cell_type": "code",
|
| 59 |
-
"execution_count": 2,
|
| 60 |
-
"id": "48KZGOUK74nm",
|
| 61 |
-
"metadata": {
|
| 62 |
-
"id": "48KZGOUK74nm"
|
| 63 |
-
},
|
| 64 |
-
"outputs": [],
|
| 65 |
"source": [
|
| 66 |
"# set your huggingface token\n",
|
| 67 |
"import os\n",
|
| 68 |
"token = \"your huggingface token\""
|
| 69 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
},
|
| 71 |
{
|
| 72 |
"cell_type": "code",
|
|
@@ -81,8 +81,8 @@
|
|
| 81 |
},
|
| 82 |
"outputs": [
|
| 83 |
{
|
| 84 |
-
"name": "stdout",
|
| 85 |
"output_type": "stream",
|
|
|
|
| 86 |
"text": [
|
| 87 |
"Cloning into 'demo'...\n",
|
| 88 |
"remote: Enumerating objects: 199, done.\u001b[K\n",
|
|
@@ -96,7 +96,8 @@
|
|
| 96 |
}
|
| 97 |
],
|
| 98 |
"source": [
|
| 99 |
-
"
|
|
|
|
| 100 |
]
|
| 101 |
},
|
| 102 |
{
|
|
@@ -113,8 +114,10 @@
|
|
| 113 |
},
|
| 114 |
{
|
| 115 |
"cell_type": "code",
|
| 116 |
-
"
|
| 117 |
-
|
|
|
|
|
|
|
| 118 |
"metadata": {
|
| 119 |
"colab": {
|
| 120 |
"base_uri": "https://localhost:8080/"
|
|
@@ -122,24 +125,23 @@
|
|
| 122 |
"id": "RZVfsHws-djt",
|
| 123 |
"outputId": "83b081d6-9249-4b24-e451-c0347e752d03"
|
| 124 |
},
|
|
|
|
|
|
|
| 125 |
"outputs": [
|
| 126 |
{
|
| 127 |
-
"name": "stdout",
|
| 128 |
"output_type": "stream",
|
|
|
|
| 129 |
"text": [
|
| 130 |
"/content/drive/MyDrive/demo\n"
|
| 131 |
]
|
| 132 |
}
|
| 133 |
-
],
|
| 134 |
-
"source": [
|
| 135 |
-
"# move directory\n",
|
| 136 |
-
"%cd repository_directory"
|
| 137 |
]
|
| 138 |
},
|
| 139 |
{
|
| 140 |
"cell_type": "code",
|
| 141 |
-
"
|
| 142 |
-
|
|
|
|
| 143 |
"metadata": {
|
| 144 |
"colab": {
|
| 145 |
"base_uri": "https://localhost:8080/"
|
|
@@ -147,18 +149,17 @@
|
|
| 147 |
"id": "umN5ZMRHHA7z",
|
| 148 |
"outputId": "199d9667-1044-4c1a-e004-bf4f5b14a56d"
|
| 149 |
},
|
|
|
|
|
|
|
| 150 |
"outputs": [
|
| 151 |
{
|
| 152 |
-
"name": "stdout",
|
| 153 |
"output_type": "stream",
|
|
|
|
| 154 |
"text": [
|
| 155 |
"config.yaml extract_train.py \u001b[0m\u001b[01;34mlicenses\u001b[0m/ requirements.txt train_val_test_split.csv\n",
|
| 156 |
"\u001b[01;34mdata\u001b[0m/ \u001b[01;34mfeatures\u001b[0m/ README.md setup.ipynb\n"
|
| 157 |
]
|
| 158 |
}
|
| 159 |
-
],
|
| 160 |
-
"source": [
|
| 161 |
-
"%ls"
|
| 162 |
]
|
| 163 |
},
|
| 164 |
{
|
|
@@ -166,16 +167,16 @@
|
|
| 166 |
"execution_count": 6,
|
| 167 |
"id": "56b69da0",
|
| 168 |
"metadata": {
|
|
|
|
| 169 |
"colab": {
|
| 170 |
"base_uri": "https://localhost:8080/"
|
| 171 |
},
|
| 172 |
-
"id": "56b69da0",
|
| 173 |
"outputId": "09cdfc42-751e-432c-c978-7ca0ef4379c4"
|
| 174 |
},
|
| 175 |
"outputs": [
|
| 176 |
{
|
| 177 |
-
"name": "stdout",
|
| 178 |
"output_type": "stream",
|
|
|
|
| 179 |
"text": [
|
| 180 |
"Collecting braceexpand==0.1.7 (from -r requirements.txt (line 1))\n",
|
| 181 |
" Downloading braceexpand-0.1.7-py2.py3-none-any.whl.metadata (3.0 kB)\n",
|
|
@@ -281,8 +282,11 @@
|
|
| 281 |
},
|
| 282 |
{
|
| 283 |
"cell_type": "code",
|
| 284 |
-
"
|
| 285 |
-
|
|
|
|
|
|
|
|
|
|
| 286 |
"metadata": {
|
| 287 |
"colab": {
|
| 288 |
"base_uri": "https://localhost:8080/",
|
|
@@ -291,10 +295,12 @@
|
|
| 291 |
"id": "kvflBfrrSyU4",
|
| 292 |
"outputId": "5b10426c-c3e3-4eff-cbcd-0fa1f6f96d46"
|
| 293 |
},
|
|
|
|
|
|
|
| 294 |
"outputs": [
|
| 295 |
{
|
| 296 |
-
"name": "stdout",
|
| 297 |
"output_type": "stream",
|
|
|
|
| 298 |
"text": [
|
| 299 |
"Requirement already satisfied: scikit-learn in /usr/local/lib/python3.11/dist-packages (1.6.1)\n",
|
| 300 |
"Requirement already satisfied: numpy>=1.19.5 in /usr/local/lib/python3.11/dist-packages (from scikit-learn) (1.26.4)\n",
|
|
@@ -315,24 +321,19 @@
|
|
| 315 |
]
|
| 316 |
},
|
| 317 |
{
|
|
|
|
| 318 |
"data": {
|
| 319 |
"application/vnd.colab-display-data+json": {
|
| 320 |
-
"id": "9f6ede4ac0cd447db545799914707e3b",
|
| 321 |
"pip_warning": {
|
| 322 |
"packages": [
|
| 323 |
"six"
|
| 324 |
]
|
| 325 |
-
}
|
|
|
|
| 326 |
}
|
| 327 |
},
|
| 328 |
-
"metadata": {}
|
| 329 |
-
"output_type": "display_data"
|
| 330 |
}
|
| 331 |
-
],
|
| 332 |
-
"source": [
|
| 333 |
-
"# if scikit-leran is not installed, run this command\n",
|
| 334 |
-
"# !pip install scikit-learn\n",
|
| 335 |
-
"# !pip install scipy six==1.16.0"
|
| 336 |
]
|
| 337 |
},
|
| 338 |
{
|
|
@@ -352,16 +353,16 @@
|
|
| 352 |
"execution_count": 1,
|
| 353 |
"id": "d3d70745",
|
| 354 |
"metadata": {
|
|
|
|
| 355 |
"colab": {
|
| 356 |
"base_uri": "https://localhost:8080/"
|
| 357 |
},
|
| 358 |
-
"id": "d3d70745",
|
| 359 |
"outputId": "2c674c7b-d821-43be-aad1-8172985e9439"
|
| 360 |
},
|
| 361 |
"outputs": [
|
| 362 |
{
|
| 363 |
-
"name": "stdout",
|
| 364 |
"output_type": "stream",
|
|
|
|
| 365 |
"text": [
|
| 366 |
"Collecting spams-bin\n",
|
| 367 |
" Downloading spams_bin-2.6.10-cp311-cp311-manylinux_2_28_x86_64.whl.metadata (754 bytes)\n",
|
|
@@ -656,16 +657,16 @@
|
|
| 656 |
"execution_count": 2,
|
| 657 |
"id": "5f3a7c3e",
|
| 658 |
"metadata": {
|
|
|
|
| 659 |
"colab": {
|
| 660 |
"base_uri": "https://localhost:8080/"
|
| 661 |
},
|
| 662 |
-
"id": "5f3a7c3e",
|
| 663 |
"outputId": "b7639582-b37b-4e71-e459-8b56266c7ef4"
|
| 664 |
},
|
| 665 |
"outputs": [
|
| 666 |
{
|
| 667 |
-
"name": "stdout",
|
| 668 |
"output_type": "stream",
|
|
|
|
| 669 |
"text": [
|
| 670 |
"{'model_name': 'h_optimus', 'split_type': 'internal', 'device': 'cuda', 'feature_exist': True, 'max_iter': 1000, 'cost': 0.0001, 'model_path': 'hf-hub:bioptimus/H-optimus-0'}\n",
|
| 671 |
"Directory already exists: ./features\n",
|
|
@@ -691,11 +692,6 @@
|
|
| 691 |
}
|
| 692 |
],
|
| 693 |
"metadata": {
|
| 694 |
-
"accelerator": "GPU",
|
| 695 |
-
"colab": {
|
| 696 |
-
"gpuType": "T4",
|
| 697 |
-
"provenance": []
|
| 698 |
-
},
|
| 699 |
"kernelspec": {
|
| 700 |
"display_name": "Python 3",
|
| 701 |
"name": "python3"
|
|
@@ -703,8 +699,13 @@
|
|
| 703 |
"language_info": {
|
| 704 |
"name": "python",
|
| 705 |
"version": "3.x"
|
| 706 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 707 |
},
|
| 708 |
"nbformat": 4,
|
| 709 |
"nbformat_minor": 5
|
| 710 |
-
}
|
|
|
|
| 31 |
},
|
| 32 |
{
|
| 33 |
"cell_type": "code",
|
| 34 |
+
"source": [
|
| 35 |
+
"# check python version (this example is google colab environment)\n",
|
| 36 |
+
"!python --version"
|
| 37 |
+
],
|
| 38 |
"metadata": {
|
| 39 |
"colab": {
|
| 40 |
"base_uri": "https://localhost:8080/"
|
|
|
|
| 42 |
"id": "FccnVVy0GAVR",
|
| 43 |
"outputId": "e90aefeb-6cd3-4875-cc53-e7241c84589a"
|
| 44 |
},
|
| 45 |
+
"id": "FccnVVy0GAVR",
|
| 46 |
+
"execution_count": 1,
|
| 47 |
"outputs": [
|
| 48 |
{
|
|
|
|
| 49 |
"output_type": "stream",
|
| 50 |
+
"name": "stdout",
|
| 51 |
"text": [
|
| 52 |
"Python 3.11.11\n"
|
| 53 |
]
|
| 54 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
]
|
| 56 |
},
|
| 57 |
{
|
| 58 |
"cell_type": "code",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
"source": [
|
| 60 |
"# set your huggingface token\n",
|
| 61 |
"import os\n",
|
| 62 |
"token = \"your huggingface token\""
|
| 63 |
+
],
|
| 64 |
+
"metadata": {
|
| 65 |
+
"id": "48KZGOUK74nm"
|
| 66 |
+
},
|
| 67 |
+
"id": "48KZGOUK74nm",
|
| 68 |
+
"execution_count": 2,
|
| 69 |
+
"outputs": []
|
| 70 |
},
|
| 71 |
{
|
| 72 |
"cell_type": "code",
|
|
|
|
| 81 |
},
|
| 82 |
"outputs": [
|
| 83 |
{
|
|
|
|
| 84 |
"output_type": "stream",
|
| 85 |
+
"name": "stdout",
|
| 86 |
"text": [
|
| 87 |
"Cloning into 'demo'...\n",
|
| 88 |
"remote: Enumerating objects: 199, done.\u001b[K\n",
|
|
|
|
| 96 |
}
|
| 97 |
],
|
| 98 |
"source": [
|
| 99 |
+
"# repository url need to be changed\n",
|
| 100 |
+
"!git clone https://oauth2:{token}@huggingface.co/datasets/kooo-sh/demo/"
|
| 101 |
]
|
| 102 |
},
|
| 103 |
{
|
|
|
|
| 114 |
},
|
| 115 |
{
|
| 116 |
"cell_type": "code",
|
| 117 |
+
"source": [
|
| 118 |
+
"# move directory\n",
|
| 119 |
+
"%cd repository_directory"
|
| 120 |
+
],
|
| 121 |
"metadata": {
|
| 122 |
"colab": {
|
| 123 |
"base_uri": "https://localhost:8080/"
|
|
|
|
| 125 |
"id": "RZVfsHws-djt",
|
| 126 |
"outputId": "83b081d6-9249-4b24-e451-c0347e752d03"
|
| 127 |
},
|
| 128 |
+
"id": "RZVfsHws-djt",
|
| 129 |
+
"execution_count": 4,
|
| 130 |
"outputs": [
|
| 131 |
{
|
|
|
|
| 132 |
"output_type": "stream",
|
| 133 |
+
"name": "stdout",
|
| 134 |
"text": [
|
| 135 |
"/content/drive/MyDrive/demo\n"
|
| 136 |
]
|
| 137 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
]
|
| 139 |
},
|
| 140 |
{
|
| 141 |
"cell_type": "code",
|
| 142 |
+
"source": [
|
| 143 |
+
"%ls"
|
| 144 |
+
],
|
| 145 |
"metadata": {
|
| 146 |
"colab": {
|
| 147 |
"base_uri": "https://localhost:8080/"
|
|
|
|
| 149 |
"id": "umN5ZMRHHA7z",
|
| 150 |
"outputId": "199d9667-1044-4c1a-e004-bf4f5b14a56d"
|
| 151 |
},
|
| 152 |
+
"id": "umN5ZMRHHA7z",
|
| 153 |
+
"execution_count": 5,
|
| 154 |
"outputs": [
|
| 155 |
{
|
|
|
|
| 156 |
"output_type": "stream",
|
| 157 |
+
"name": "stdout",
|
| 158 |
"text": [
|
| 159 |
"config.yaml extract_train.py \u001b[0m\u001b[01;34mlicenses\u001b[0m/ requirements.txt train_val_test_split.csv\n",
|
| 160 |
"\u001b[01;34mdata\u001b[0m/ \u001b[01;34mfeatures\u001b[0m/ README.md setup.ipynb\n"
|
| 161 |
]
|
| 162 |
}
|
|
|
|
|
|
|
|
|
|
| 163 |
]
|
| 164 |
},
|
| 165 |
{
|
|
|
|
| 167 |
"execution_count": 6,
|
| 168 |
"id": "56b69da0",
|
| 169 |
"metadata": {
|
| 170 |
+
"id": "56b69da0",
|
| 171 |
"colab": {
|
| 172 |
"base_uri": "https://localhost:8080/"
|
| 173 |
},
|
|
|
|
| 174 |
"outputId": "09cdfc42-751e-432c-c978-7ca0ef4379c4"
|
| 175 |
},
|
| 176 |
"outputs": [
|
| 177 |
{
|
|
|
|
| 178 |
"output_type": "stream",
|
| 179 |
+
"name": "stdout",
|
| 180 |
"text": [
|
| 181 |
"Collecting braceexpand==0.1.7 (from -r requirements.txt (line 1))\n",
|
| 182 |
" Downloading braceexpand-0.1.7-py2.py3-none-any.whl.metadata (3.0 kB)\n",
|
|
|
|
| 282 |
},
|
| 283 |
{
|
| 284 |
"cell_type": "code",
|
| 285 |
+
"source": [
|
| 286 |
+
"# if scikit-leran is not installed, run this command\n",
|
| 287 |
+
"# !pip install scikit-learn\n",
|
| 288 |
+
"# !pip install scipy six==1.16.0"
|
| 289 |
+
],
|
| 290 |
"metadata": {
|
| 291 |
"colab": {
|
| 292 |
"base_uri": "https://localhost:8080/",
|
|
|
|
| 295 |
"id": "kvflBfrrSyU4",
|
| 296 |
"outputId": "5b10426c-c3e3-4eff-cbcd-0fa1f6f96d46"
|
| 297 |
},
|
| 298 |
+
"id": "kvflBfrrSyU4",
|
| 299 |
+
"execution_count": 7,
|
| 300 |
"outputs": [
|
| 301 |
{
|
|
|
|
| 302 |
"output_type": "stream",
|
| 303 |
+
"name": "stdout",
|
| 304 |
"text": [
|
| 305 |
"Requirement already satisfied: scikit-learn in /usr/local/lib/python3.11/dist-packages (1.6.1)\n",
|
| 306 |
"Requirement already satisfied: numpy>=1.19.5 in /usr/local/lib/python3.11/dist-packages (from scikit-learn) (1.26.4)\n",
|
|
|
|
| 321 |
]
|
| 322 |
},
|
| 323 |
{
|
| 324 |
+
"output_type": "display_data",
|
| 325 |
"data": {
|
| 326 |
"application/vnd.colab-display-data+json": {
|
|
|
|
| 327 |
"pip_warning": {
|
| 328 |
"packages": [
|
| 329 |
"six"
|
| 330 |
]
|
| 331 |
+
},
|
| 332 |
+
"id": "9f6ede4ac0cd447db545799914707e3b"
|
| 333 |
}
|
| 334 |
},
|
| 335 |
+
"metadata": {}
|
|
|
|
| 336 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
]
|
| 338 |
},
|
| 339 |
{
|
|
|
|
| 353 |
"execution_count": 1,
|
| 354 |
"id": "d3d70745",
|
| 355 |
"metadata": {
|
| 356 |
+
"id": "d3d70745",
|
| 357 |
"colab": {
|
| 358 |
"base_uri": "https://localhost:8080/"
|
| 359 |
},
|
|
|
|
| 360 |
"outputId": "2c674c7b-d821-43be-aad1-8172985e9439"
|
| 361 |
},
|
| 362 |
"outputs": [
|
| 363 |
{
|
|
|
|
| 364 |
"output_type": "stream",
|
| 365 |
+
"name": "stdout",
|
| 366 |
"text": [
|
| 367 |
"Collecting spams-bin\n",
|
| 368 |
" Downloading spams_bin-2.6.10-cp311-cp311-manylinux_2_28_x86_64.whl.metadata (754 bytes)\n",
|
|
|
|
| 657 |
"execution_count": 2,
|
| 658 |
"id": "5f3a7c3e",
|
| 659 |
"metadata": {
|
| 660 |
+
"id": "5f3a7c3e",
|
| 661 |
"colab": {
|
| 662 |
"base_uri": "https://localhost:8080/"
|
| 663 |
},
|
|
|
|
| 664 |
"outputId": "b7639582-b37b-4e71-e459-8b56266c7ef4"
|
| 665 |
},
|
| 666 |
"outputs": [
|
| 667 |
{
|
|
|
|
| 668 |
"output_type": "stream",
|
| 669 |
+
"name": "stdout",
|
| 670 |
"text": [
|
| 671 |
"{'model_name': 'h_optimus', 'split_type': 'internal', 'device': 'cuda', 'feature_exist': True, 'max_iter': 1000, 'cost': 0.0001, 'model_path': 'hf-hub:bioptimus/H-optimus-0'}\n",
|
| 672 |
"Directory already exists: ./features\n",
|
|
|
|
| 692 |
}
|
| 693 |
],
|
| 694 |
"metadata": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 695 |
"kernelspec": {
|
| 696 |
"display_name": "Python 3",
|
| 697 |
"name": "python3"
|
|
|
|
| 699 |
"language_info": {
|
| 700 |
"name": "python",
|
| 701 |
"version": "3.x"
|
| 702 |
+
},
|
| 703 |
+
"colab": {
|
| 704 |
+
"provenance": [],
|
| 705 |
+
"gpuType": "T4"
|
| 706 |
+
},
|
| 707 |
+
"accelerator": "GPU"
|
| 708 |
},
|
| 709 |
"nbformat": 4,
|
| 710 |
"nbformat_minor": 5
|
| 711 |
+
}
|