# NVR Entity Recognition Dataset (Standardized) ## Dataset Structure This dataset follows the COCO format for object detection training: ``` dataset/ ├── images/ │ ├── train/ # Training images (68 images) │ ├── val/ # Validation images (19 images) │ └── test/ # Test images (11 images) ├── annotations/ │ ├── train.json # Training annotations (COCO format) │ ├── val.json # Validation annotations (COCO format) │ └── test.json # Test annotations (COCO format) └── dataset_config.json # Dataset configuration and metadata ``` ## Categories 19 categories identified from folder structure: - back-sleeping (ID: 1) - bedroom (ID: 2) - blanket-in-bassinet (ID: 3) - face-down (ID: 4) - pacifier_pacifier-fell-out (ID: 5) - pacifier_pacifier-in-mouth (ID: 6) - reference_subject (ID: 7) - side-sleeping (ID: 8) - smothering_baby-under-blanket (ID: 9) - smothering_smothering (ID: 10) - smothering_smothering-high-risk (ID: 11) - subject-obscured (ID: 12) - swaddling_normal-swaddle (ID: 13) - swaddling_swaddle-breakout (ID: 14) - unsafe-object-presence_button-battery (ID: 15) - unsafe-object-presence_pill (ID: 16) - unsafe-object-presence_screw (ID: 17) - unsafe-object-presence_sim-opener (ID: 18) - zone-empty (ID: 19) ## Usage This dataset can be loaded directly with popular ML frameworks: ### PyTorch/Detectron2 ```python from detectron2.data.datasets import register_coco_instances register_coco_instances("nvr_train", {}, "annotations/train.json", "images/train") register_coco_instances("nvr_val", {}, "annotations/val.json", "images/val") ``` ### TensorFlow/Keras ```python import tensorflow_datasets as tfds # Load COCO format dataset dataset = tfds.load('coco', data_dir='path/to/dataset') ``` ## Original Folder Structure Preserved All original folder classification information is preserved in the annotation metadata: - `camera_location`: Which camera captured the image - `primary_category`: Main classification (sleeping_position, event, reference_subject) - `subcategory`: Specific category within primary - `specific_event`: Detailed event classification where applicable