danielrosehill Claude commited on
Commit
85dd753
·
1 Parent(s): fb719ac

Migrate to modern Hugging Face dataset format

Browse files

- Remove deprecated Python loading script (multimodal-ai-taxonomy.py)
- Remove auto-generated dataset_infos.json
- Add JSONL data files for direct dataset loading
- Update README with new data structure and usage examples
- Add conversion scripts to gitignore

This change enables the dataset to work with current versions of the
datasets library, which no longer support custom loading scripts.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <[email protected]>

.gitignore CHANGED
@@ -47,3 +47,7 @@ htmlcov/
47
 
48
  # Hugging Face
49
  dataset_infos.json.lock
 
 
 
 
 
47
 
48
  # Hugging Face
49
  dataset_infos.json.lock
50
+
51
+ # Conversion scripts (utilities, not part of distribution)
52
+ convert_to_modern_format.py
53
+ create_splits.py
README.md CHANGED
@@ -49,8 +49,21 @@ This is a reference taxonomy dataset for:
49
 
50
  ## Dataset Structure
51
 
52
- The taxonomy is organized as a hierarchical folder structure:
53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  ```
55
  taxonomy/
56
  ├── schema.json # Common schema definition
@@ -74,68 +87,48 @@ taxonomy/
74
 
75
  ### Data Instances
76
 
77
- Each modality entry contains:
78
 
79
  ```json
80
  {
81
  "id": "img-to-vid-lipsync-text",
82
  "name": "Image to Video (Lip Sync from Text)",
83
- "input": {
84
- "primary": "image",
85
- "secondary": ["text"]
86
- },
87
- "output": {
88
- "primary": "video",
89
- "audio": true,
90
- "audioType": "speech"
91
- },
92
- "characteristics": {
93
- "processType": "synthesis",
94
- "audioGeneration": "text-to-speech",
95
- "audioPrompting": "text-based",
96
- "lipSync": true,
97
- "lipSyncMethod": "generated-from-text",
98
- "motionType": "facial"
99
- },
100
- "metadata": {
101
- "maturityLevel": "mature",
102
- "commonUseCases": [
103
- "Avatar creation",
104
- "Character animation from portrait",
105
- "Marketing personalization"
106
- ],
107
- "platforms": ["Replicate", "FAL AI", "HeyGen"],
108
- "exampleModels": ["Wav2Lip", "SadTalker", "DreamTalk"]
109
- }
110
  }
111
  ```
112
 
113
- ### Data Fields
114
 
115
- **Top-level file fields:**
116
- - `fileType`: Always "multimodal-ai-taxonomy"
117
- - `outputModality`: The primary output type (video, audio, image, text, 3d-model)
118
- - `operationType`: Either "creation" or "editing"
119
- - `description`: Human-readable description of the file contents
120
- - `modalities`: Array of modality objects
121
 
122
- **Modality object fields:**
123
  - `id` (string): Unique identifier in kebab-case
124
  - `name` (string): Human-readable name
125
- - `input` (object):
126
- - `primary` (string): Main input modality
127
- - `secondary` (array): Additional optional inputs
128
- - `output` (object):
129
- - `primary` (string): Main output modality
130
- - `audio` (boolean): Whether audio is included (for video outputs)
131
- - `audioType` (string): Type of audio (speech, music, ambient, etc.)
132
- - `characteristics` (object): Modality-specific features (varies by type)
133
- - `metadata` (object):
134
- - `maturityLevel` (string): experimental, emerging, or mature
135
- - `commonUseCases` (array): Typical use cases
136
- - `platforms` (array): Platforms supporting this modality
137
- - `exampleModels` (array): Example model implementations
138
- - `relationships` (object, optional): Links to related modalities
139
 
140
  ### Data Splits
141
 
@@ -228,28 +221,32 @@ For detailed contribution guidelines, see `taxonomy/README.md`.
228
 
229
  ```python
230
  from datasets import load_dataset
 
231
 
232
  # Load the entire taxonomy
233
- dataset = load_dataset("YOUR_USERNAME/multimodal-ai-taxonomy")
234
 
235
- # Access specific modality files
236
- video_creation = dataset["video_generation_creation"]
237
- audio_editing = dataset["audio_generation_editing"]
238
  ```
239
 
240
  ### Filtering by Characteristics
241
 
242
  ```python
243
  import json
 
244
 
245
- # Find all video generation modalities with lip sync
246
- with open("taxonomy/video-generation/creation/modalities.json") as f:
247
- data = json.load(f)
248
 
249
- lipsync_modalities = [
250
- m for m in data["modalities"]
251
- if m.get("characteristics", {}).get("lipSync") == True
252
- ]
 
 
 
253
 
254
  for modality in lipsync_modalities:
255
  print(f"{modality['name']}: {modality['id']}")
@@ -258,14 +255,23 @@ for modality in lipsync_modalities:
258
  ### Finding Models by Use Case
259
 
260
  ```python
261
- # Find mature image generation methods
262
- with open("taxonomy/image-generation/creation/modalities.json") as f:
263
- data = json.load(f)
264
 
265
- mature_methods = [
266
- m for m in data["modalities"]
267
- if m["metadata"]["maturityLevel"] == "mature"
 
 
 
 
 
 
268
  ]
 
 
 
 
 
269
  ```
270
 
271
  ## Contact
 
49
 
50
  ## Dataset Structure
51
 
52
+ The dataset is provided as JSONL files (JSON Lines format) for efficient loading:
53
 
54
+ ```
55
+ data/
56
+ ├── train.jsonl # Complete dataset
57
+ ├── taxonomy_video_creation.jsonl # Video creation modalities
58
+ ├── taxonomy_video_editing.jsonl # Video editing modalities
59
+ ├── taxonomy_audio_creation.jsonl # Audio creation modalities
60
+ ├── taxonomy_audio_editing.jsonl # Audio editing modalities
61
+ ├── taxonomy_image_creation.jsonl # Image creation modalities
62
+ ├── taxonomy_image_editing.jsonl # Image editing modalities
63
+ └── taxonomy_3d-model_creation.jsonl # 3D creation modalities
64
+ ```
65
+
66
+ Source taxonomy files (used for generation):
67
  ```
68
  taxonomy/
69
  ├── schema.json # Common schema definition
 
87
 
88
  ### Data Instances
89
 
90
+ Each modality entry in the JSONL files contains flattened fields:
91
 
92
  ```json
93
  {
94
  "id": "img-to-vid-lipsync-text",
95
  "name": "Image to Video (Lip Sync from Text)",
96
+ "input_primary": "image",
97
+ "input_secondary": ["text"],
98
+ "output_primary": "video",
99
+ "output_audio": true,
100
+ "output_audio_type": "speech",
101
+ "characteristics": "{\"processType\": \"synthesis\", \"audioGeneration\": \"text-to-speech\", \"lipSync\": true, \"motionType\": \"facial\"}",
102
+ "metadata_maturity_level": "mature",
103
+ "metadata_common_use_cases": ["Avatar creation", "Character animation from portrait"],
104
+ "metadata_platforms": ["Replicate", "FAL AI", "HeyGen"],
105
+ "metadata_example_models": ["Wav2Lip", "SadTalker", "DreamTalk"],
106
+ "relationships": "{}",
107
+ "output_modality": "video",
108
+ "operation_type": "creation"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
  }
110
  ```
111
 
112
+ Note: The `characteristics` and `relationships` fields are JSON strings that should be parsed when needed.
113
 
114
+ ### Data Fields
 
 
 
 
 
115
 
116
+ **JSONL record fields:**
117
  - `id` (string): Unique identifier in kebab-case
118
  - `name` (string): Human-readable name
119
+ - `input_primary` (string): Main input modality
120
+ - `input_secondary` (list of strings): Additional optional inputs
121
+ - `output_primary` (string): Main output modality
122
+ - `output_audio` (boolean): Whether audio is included (for video outputs)
123
+ - `output_audio_type` (string): Type of audio (speech, music, ambient, etc.)
124
+ - `characteristics` (JSON string): Modality-specific features (parse with json.loads)
125
+ - `metadata_maturity_level` (string): experimental, emerging, or mature
126
+ - `metadata_common_use_cases` (list of strings): Typical use cases
127
+ - `metadata_platforms` (list of strings): Platforms supporting this modality
128
+ - `metadata_example_models` (list of strings): Example model implementations
129
+ - `relationships` (JSON string): Links to related modalities (parse with json.loads)
130
+ - `output_modality` (string): The primary output type (video, audio, image, text, 3d-model)
131
+ - `operation_type` (string): Either "creation" or "editing"
 
132
 
133
  ### Data Splits
134
 
 
221
 
222
  ```python
223
  from datasets import load_dataset
224
+ import json
225
 
226
  # Load the entire taxonomy
227
+ dataset = load_dataset("danielrosehill/multimodal-ai-taxonomy", split="train")
228
 
229
+ # The dataset is now a flat structure - iterate through records
230
+ for record in dataset:
231
+ print(f"{record['name']}: {record['output_modality']} {record['operation_type']}")
232
  ```
233
 
234
  ### Filtering by Characteristics
235
 
236
  ```python
237
  import json
238
+ from datasets import load_dataset
239
 
240
+ # Load dataset
241
+ dataset = load_dataset("danielrosehill/multimodal-ai-taxonomy", split="train")
 
242
 
243
+ # Find all video generation modalities with lip sync
244
+ lipsync_modalities = []
245
+ for record in dataset:
246
+ if record['output_modality'] == 'video' and record['operation_type'] == 'creation':
247
+ characteristics = json.loads(record['characteristics'])
248
+ if characteristics.get('lipSync'):
249
+ lipsync_modalities.append(record)
250
 
251
  for modality in lipsync_modalities:
252
  print(f"{modality['name']}: {modality['id']}")
 
255
  ### Finding Models by Use Case
256
 
257
  ```python
258
+ from datasets import load_dataset
 
 
259
 
260
+ # Load dataset
261
+ dataset = load_dataset("danielrosehill/multimodal-ai-taxonomy", split="train")
262
+
263
+ # Find mature image generation methods
264
+ mature_image_gen = [
265
+ record for record in dataset
266
+ if record['output_modality'] == 'image'
267
+ and record['operation_type'] == 'creation'
268
+ and record['metadata_maturity_level'] == 'mature'
269
  ]
270
+
271
+ for method in mature_image_gen:
272
+ print(f"{method['name']}")
273
+ print(f" Platforms: {', '.join(method['metadata_platforms'])}")
274
+ print(f" Models: {', '.join(method['metadata_example_models'])}")
275
  ```
276
 
277
  ## Contact
data/taxonomy_3d-model_creation.jsonl ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ {"id": "text-to-3d", "name": "Text to 3D Model", "input_primary": "text", "input_secondary": [], "output_primary": "3d-model", "output_audio": false, "output_audio_type": "", "characteristics": "{\"processType\": \"synthesis\", \"generationType\": \"3d-synthesis\"}", "metadata_maturity_level": "emerging", "metadata_common_use_cases": ["3D asset generation", "Rapid prototyping", "Game asset creation"], "metadata_platforms": ["Replicate", "Meshy", "3DFY"], "metadata_example_models": ["Point-E", "Shap-E", "DreamFusion"], "relationships": "{}", "output_modality": "3d-model", "operation_type": "creation"}
2
+ {"id": "img-to-3d", "name": "Image to 3D Model", "input_primary": "image", "input_secondary": [], "output_primary": "3d-model", "output_audio": false, "output_audio_type": "", "characteristics": "{\"processType\": \"synthesis\", \"generationType\": \"3d-reconstruction\"}", "metadata_maturity_level": "emerging", "metadata_common_use_cases": ["3D reconstruction", "Object digitization", "Asset creation from photos"], "metadata_platforms": ["Replicate", "Meshy", "Luma AI"], "metadata_example_models": ["Zero-1-to-3", "Wonder3D"], "relationships": "{}", "output_modality": "3d-model", "operation_type": "creation"}
data/taxonomy_audio_creation.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {"id": "text-to-audio", "name": "Text to Audio", "input_primary": "text", "input_secondary": [], "output_primary": "audio", "output_audio": false, "output_audio_type": "general", "characteristics": "{\"processType\": \"synthesis\", \"audioType\": \"general\", \"audioCategories\": [\"speech\", \"sound-effects\", \"music\", \"ambient\"]}", "metadata_maturity_level": "mature", "metadata_common_use_cases": ["Sound effect generation", "Voiceover creation", "Audio asset production"], "metadata_platforms": ["Replicate", "ElevenLabs", "AudioCraft"], "metadata_example_models": ["AudioGen", "MusicGen"], "relationships": "{}", "output_modality": "audio", "operation_type": "creation"}
2
+ {"id": "text-to-speech", "name": "Text to Speech", "input_primary": "text", "input_secondary": [], "output_primary": "audio", "output_audio": false, "output_audio_type": "speech", "characteristics": "{\"processType\": \"synthesis\", \"audioType\": \"speech\", \"voiceCloning\": false}", "metadata_maturity_level": "mature", "metadata_common_use_cases": ["Narration", "Accessibility", "Voice assistants"], "metadata_platforms": ["ElevenLabs", "Google Cloud", "Azure", "AWS"], "metadata_example_models": ["ElevenLabs", "Google WaveNet", "Azure Neural TTS"], "relationships": "{}", "output_modality": "audio", "operation_type": "creation"}
3
+ {"id": "text-to-music", "name": "Text to Music", "input_primary": "text", "input_secondary": [], "output_primary": "audio", "output_audio": false, "output_audio_type": "music", "characteristics": "{\"processType\": \"synthesis\", \"audioType\": \"music\", \"melodic\": true}", "metadata_maturity_level": "emerging", "metadata_common_use_cases": ["Background music generation", "Musical composition", "Soundtrack creation"], "metadata_platforms": ["Replicate", "Stability AI"], "metadata_example_models": ["MusicGen", "Stable Audio"], "relationships": "{}", "output_modality": "audio", "operation_type": "creation"}
data/taxonomy_audio_editing.jsonl ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ {"id": "audio-to-audio-inpainting", "name": "Audio to Audio (Inpainting)", "input_primary": "audio", "input_secondary": ["text"], "output_primary": "audio", "output_audio": false, "output_audio_type": "general", "characteristics": "{\"processType\": \"inpainting\", \"modification\": \"selective-editing\"}", "metadata_maturity_level": "emerging", "metadata_common_use_cases": ["Audio editing", "Sound design", "Audio restoration"], "metadata_platforms": ["Experimental"], "metadata_example_models": [], "relationships": "{}", "output_modality": "audio", "operation_type": "editing"}
2
+ {"id": "music-to-music-inpainting", "name": "Music to Music (Inpainting)", "input_primary": "audio", "input_secondary": ["text"], "output_primary": "audio", "output_audio": false, "output_audio_type": "music", "characteristics": "{\"processType\": \"inpainting\", \"modification\": \"selective-editing\", \"melodic\": true, \"audioSubtype\": \"music\"}", "metadata_maturity_level": "experimental", "metadata_common_use_cases": ["Music editing", "Compositional modifications", "Arrangement changes"], "metadata_platforms": ["Experimental"], "metadata_example_models": [], "relationships": "{\"parent\": \"audio-to-audio-inpainting\", \"note\": \"Music inpainting is a specialized subset of audio inpainting\"}", "output_modality": "audio", "operation_type": "editing"}
data/taxonomy_image_creation.jsonl ADDED
@@ -0,0 +1 @@
 
 
1
+ {"id": "text-to-img", "name": "Text to Image", "input_primary": "text", "input_secondary": [], "output_primary": "image", "output_audio": false, "output_audio_type": "", "characteristics": "{\"processType\": \"synthesis\", \"generationType\": \"synthesis\"}", "metadata_maturity_level": "mature", "metadata_common_use_cases": ["Concept art generation", "Product mockups", "Marketing assets"], "metadata_platforms": ["Replicate", "Stability AI", "Midjourney", "DALL-E"], "metadata_example_models": ["Stable Diffusion", "DALL-E 3", "Midjourney"], "relationships": "{}", "output_modality": "image", "operation_type": "creation"}
data/taxonomy_image_editing.jsonl ADDED
@@ -0,0 +1 @@
 
 
1
+ {"id": "img-to-img", "name": "Image to Image", "input_primary": "image", "input_secondary": ["text"], "output_primary": "image", "output_audio": false, "output_audio_type": "", "characteristics": "{\"processType\": \"transformation\", \"transformationTypes\": [\"style-transfer\", \"enhancement\", \"editing\", \"inpainting\"]}", "metadata_maturity_level": "mature", "metadata_common_use_cases": ["Image editing", "Style transfer", "Image enhancement", "Object removal/addition"], "metadata_platforms": ["Replicate", "Stability AI", "Midjourney"], "metadata_example_models": ["Stable Diffusion img2img", "ControlNet"], "relationships": "{}", "output_modality": "image", "operation_type": "editing"}
data/taxonomy_video_creation.jsonl ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"id": "img-to-vid-no-audio", "name": "Image to Video (No Audio)", "input_primary": "image", "input_secondary": [], "output_primary": "video", "output_audio": false, "output_audio_type": "", "characteristics": "{\"processType\": \"synthesis\", \"audioGeneration\": \"none\", \"lipSync\": false, \"motionType\": \"general\"}", "metadata_maturity_level": "mature", "metadata_common_use_cases": ["Static image animation", "Product visualization", "Concept previsualization"], "metadata_platforms": ["Replicate", "FAL AI", "Stability AI"], "metadata_example_models": ["Stable Video Diffusion", "AnimateDiff"], "relationships": "{}", "output_modality": "video", "operation_type": "creation"}
2
+ {"id": "img-to-vid-ambient-audio", "name": "Image to Video (Ambient Audio)", "input_primary": "image", "input_secondary": ["text"], "output_primary": "video", "output_audio": true, "output_audio_type": "ambient", "characteristics": "{\"processType\": \"synthesis\", \"audioGeneration\": \"synthesized\", \"audioPrompting\": \"text-based\", \"lipSync\": false, \"motionType\": \"general\", \"audioCharacteristics\": [\"background\", \"environmental\", \"atmospheric\"]}", "metadata_maturity_level": "emerging", "metadata_common_use_cases": ["Scene ambiance creation", "Marketplace atmosphere", "Environmental storytelling"], "metadata_platforms": ["FAL AI", "Experimental"], "metadata_example_models": [], "relationships": "{}", "output_modality": "video", "operation_type": "creation"}
3
+ {"id": "img-to-vid-lipsync-text", "name": "Image to Video (Lip Sync from Text)", "input_primary": "image", "input_secondary": ["text"], "output_primary": "video", "output_audio": true, "output_audio_type": "speech", "characteristics": "{\"processType\": \"synthesis\", \"audioGeneration\": \"text-to-speech\", \"audioPrompting\": \"text-based\", \"lipSync\": true, \"lipSyncMethod\": \"generated-from-text\", \"motionType\": \"facial\"}", "metadata_maturity_level": "mature", "metadata_common_use_cases": ["Avatar creation", "Character animation from portrait", "Marketing personalization"], "metadata_platforms": ["Replicate", "FAL AI", "HeyGen"], "metadata_example_models": ["Wav2Lip", "SadTalker", "DreamTalk"], "relationships": "{}", "output_modality": "video", "operation_type": "creation"}
4
+ {"id": "img-to-vid-lipsync-audio", "name": "Image to Video (Lip Sync from Audio)", "input_primary": "image", "input_secondary": ["audio"], "output_primary": "video", "output_audio": true, "output_audio_type": "speech", "characteristics": "{\"processType\": \"synthesis\", \"audioGeneration\": \"reference-based\", \"audioPrompting\": \"audio-reference\", \"lipSync\": true, \"lipSyncMethod\": \"audio-driven\", \"motionType\": \"facial\"}", "metadata_maturity_level": "mature", "metadata_common_use_cases": ["Voice cloning with video", "Dubbing and localization", "Podcast video generation"], "metadata_platforms": ["Replicate", "FAL AI"], "metadata_example_models": ["Wav2Lip", "SadTalker"], "relationships": "{}", "output_modality": "video", "operation_type": "creation"}
5
+ {"id": "img-to-vid-lipsync-lora", "name": "Image to Video (Lip Sync with LoRA Character)", "input_primary": "image", "input_secondary": ["text", "lora-model"], "output_primary": "video", "output_audio": true, "output_audio_type": "speech", "characteristics": "{\"processType\": \"synthesis\", \"audioGeneration\": \"text-to-speech\", \"audioPrompting\": \"text-based\", \"lipSync\": true, \"lipSyncMethod\": \"generated-from-text\", \"characterReference\": \"lora\", \"motionType\": \"facial\"}", "metadata_maturity_level": "experimental", "metadata_common_use_cases": ["Consistent character animation", "Brand mascot videos", "Personalized avatars"], "metadata_platforms": ["Specialized services"], "metadata_example_models": [], "relationships": "{}", "output_modality": "video", "operation_type": "creation"}
6
+ {"id": "text-to-vid-no-audio", "name": "Text to Video (No Audio)", "input_primary": "text", "input_secondary": [], "output_primary": "video", "output_audio": false, "output_audio_type": "", "characteristics": "{\"processType\": \"synthesis\", \"audioGeneration\": \"none\", \"motionType\": \"general\"}", "metadata_maturity_level": "emerging", "metadata_common_use_cases": ["Concept visualization", "Storyboarding", "Creative exploration"], "metadata_platforms": ["Replicate", "FAL AI", "RunwayML"], "metadata_example_models": ["ModelScope", "ZeroScope"], "relationships": "{}", "output_modality": "video", "operation_type": "creation"}
7
+ {"id": "text-to-vid-with-audio", "name": "Text to Video (With Audio)", "input_primary": "text", "input_secondary": [], "output_primary": "video", "output_audio": true, "output_audio_type": "synchronized", "characteristics": "{\"processType\": \"synthesis\", \"audioGeneration\": \"synthesized\", \"audioPrompting\": \"text-based\", \"audioVideoSync\": true, \"motionType\": \"general\"}", "metadata_maturity_level": "experimental", "metadata_common_use_cases": ["Complete scene generation", "Multimedia storytelling"], "metadata_platforms": ["Experimental"], "metadata_example_models": [], "relationships": "{}", "output_modality": "video", "operation_type": "creation"}
8
+ {"id": "audio-to-vid", "name": "Audio to Video", "input_primary": "audio", "input_secondary": ["text"], "output_primary": "video", "output_audio": true, "output_audio_type": "original", "characteristics": "{\"processType\": \"synthesis\", \"audioVisualization\": true, \"motionType\": \"audio-reactive\"}", "metadata_maturity_level": "experimental", "metadata_common_use_cases": ["Music visualization", "Audio-reactive art", "Podcast video generation"], "metadata_platforms": ["Experimental"], "metadata_example_models": [], "relationships": "{}", "output_modality": "video", "operation_type": "creation"}
9
+ {"id": "multimodal-img-audio-to-vid", "name": "Image + Audio to Video", "input_primary": "image", "input_secondary": ["audio"], "output_primary": "video", "output_audio": true, "output_audio_type": "original", "characteristics": "{\"processType\": \"synthesis\", \"audioGeneration\": \"reference-based\", \"motionType\": \"audio-driven\", \"lipSync\": false}", "metadata_maturity_level": "experimental", "metadata_common_use_cases": ["Audio-driven animation", "Dance video generation", "Music-driven motion"], "metadata_platforms": ["Experimental"], "metadata_example_models": [], "relationships": "{}", "output_modality": "video", "operation_type": "creation"}
10
+ {"id": "multimodal-text-img-to-vid", "name": "Text + Image to Video", "input_primary": "text", "input_secondary": ["image"], "output_primary": "video", "output_audio": false, "output_audio_type": "", "characteristics": "{\"processType\": \"synthesis\", \"guidanceType\": \"text-and-visual\", \"motionType\": \"guided\"}", "metadata_maturity_level": "emerging", "metadata_common_use_cases": ["Guided video generation", "Controlled animation", "Reference-based video creation"], "metadata_platforms": ["Replicate", "FAL AI"], "metadata_example_models": ["AnimateDiff with ControlNet"], "relationships": "{}", "output_modality": "video", "operation_type": "creation"}
11
+ {"id": "3d-to-vid", "name": "3D Model to Video", "input_primary": "3d-model", "input_secondary": [], "output_primary": "video", "output_audio": false, "output_audio_type": "", "characteristics": "{\"processType\": \"rendering\", \"renderType\": \"3d-rendering\", \"motionType\": \"camera-path\"}", "metadata_maturity_level": "mature", "metadata_common_use_cases": ["3D visualization", "Product rendering", "Architectural visualization"], "metadata_platforms": ["Blender", "Unreal Engine", "Unity"], "metadata_example_models": [], "relationships": "{}", "output_modality": "video", "operation_type": "creation"}
data/taxonomy_video_editing.jsonl ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ {"id": "vid-to-vid-no-audio", "name": "Video to Video (No Audio)", "input_primary": "video", "input_secondary": ["text"], "output_primary": "video", "output_audio": false, "output_audio_type": "", "characteristics": "{\"processType\": \"transformation\", \"transformationTypes\": [\"style-transfer\", \"motion-modification\", \"object-editing\"], \"preserveAudio\": false}", "metadata_maturity_level": "emerging", "metadata_common_use_cases": ["Video style transfer", "Video editing", "Motion manipulation"], "metadata_platforms": ["Replicate", "RunwayML"], "metadata_example_models": ["Gen-2", "Video ControlNet"], "relationships": "{}", "output_modality": "video", "operation_type": "editing"}
2
+ {"id": "vid-to-vid-preserve-audio", "name": "Video to Video (Preserve Audio)", "input_primary": "video", "input_secondary": ["text"], "output_primary": "video", "output_audio": true, "output_audio_type": "original", "characteristics": "{\"processType\": \"transformation\", \"transformationTypes\": [\"style-transfer\", \"motion-modification\", \"object-editing\"], \"preserveAudio\": true, \"audioHandling\": \"passthrough\"}", "metadata_maturity_level": "emerging", "metadata_common_use_cases": ["Video style transfer with audio", "Content transformation maintaining soundtrack"], "metadata_platforms": ["Replicate", "RunwayML"], "metadata_example_models": [], "relationships": "{}", "output_modality": "video", "operation_type": "editing"}
data/train.jsonl ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"id": "img-to-vid-no-audio", "name": "Image to Video (No Audio)", "input_primary": "image", "input_secondary": [], "output_primary": "video", "output_audio": false, "output_audio_type": "", "characteristics": "{\"processType\": \"synthesis\", \"audioGeneration\": \"none\", \"lipSync\": false, \"motionType\": \"general\"}", "metadata_maturity_level": "mature", "metadata_common_use_cases": ["Static image animation", "Product visualization", "Concept previsualization"], "metadata_platforms": ["Replicate", "FAL AI", "Stability AI"], "metadata_example_models": ["Stable Video Diffusion", "AnimateDiff"], "relationships": "{}", "output_modality": "video", "operation_type": "creation"}
2
+ {"id": "img-to-vid-ambient-audio", "name": "Image to Video (Ambient Audio)", "input_primary": "image", "input_secondary": ["text"], "output_primary": "video", "output_audio": true, "output_audio_type": "ambient", "characteristics": "{\"processType\": \"synthesis\", \"audioGeneration\": \"synthesized\", \"audioPrompting\": \"text-based\", \"lipSync\": false, \"motionType\": \"general\", \"audioCharacteristics\": [\"background\", \"environmental\", \"atmospheric\"]}", "metadata_maturity_level": "emerging", "metadata_common_use_cases": ["Scene ambiance creation", "Marketplace atmosphere", "Environmental storytelling"], "metadata_platforms": ["FAL AI", "Experimental"], "metadata_example_models": [], "relationships": "{}", "output_modality": "video", "operation_type": "creation"}
3
+ {"id": "img-to-vid-lipsync-text", "name": "Image to Video (Lip Sync from Text)", "input_primary": "image", "input_secondary": ["text"], "output_primary": "video", "output_audio": true, "output_audio_type": "speech", "characteristics": "{\"processType\": \"synthesis\", \"audioGeneration\": \"text-to-speech\", \"audioPrompting\": \"text-based\", \"lipSync\": true, \"lipSyncMethod\": \"generated-from-text\", \"motionType\": \"facial\"}", "metadata_maturity_level": "mature", "metadata_common_use_cases": ["Avatar creation", "Character animation from portrait", "Marketing personalization"], "metadata_platforms": ["Replicate", "FAL AI", "HeyGen"], "metadata_example_models": ["Wav2Lip", "SadTalker", "DreamTalk"], "relationships": "{}", "output_modality": "video", "operation_type": "creation"}
4
+ {"id": "img-to-vid-lipsync-audio", "name": "Image to Video (Lip Sync from Audio)", "input_primary": "image", "input_secondary": ["audio"], "output_primary": "video", "output_audio": true, "output_audio_type": "speech", "characteristics": "{\"processType\": \"synthesis\", \"audioGeneration\": \"reference-based\", \"audioPrompting\": \"audio-reference\", \"lipSync\": true, \"lipSyncMethod\": \"audio-driven\", \"motionType\": \"facial\"}", "metadata_maturity_level": "mature", "metadata_common_use_cases": ["Voice cloning with video", "Dubbing and localization", "Podcast video generation"], "metadata_platforms": ["Replicate", "FAL AI"], "metadata_example_models": ["Wav2Lip", "SadTalker"], "relationships": "{}", "output_modality": "video", "operation_type": "creation"}
5
+ {"id": "img-to-vid-lipsync-lora", "name": "Image to Video (Lip Sync with LoRA Character)", "input_primary": "image", "input_secondary": ["text", "lora-model"], "output_primary": "video", "output_audio": true, "output_audio_type": "speech", "characteristics": "{\"processType\": \"synthesis\", \"audioGeneration\": \"text-to-speech\", \"audioPrompting\": \"text-based\", \"lipSync\": true, \"lipSyncMethod\": \"generated-from-text\", \"characterReference\": \"lora\", \"motionType\": \"facial\"}", "metadata_maturity_level": "experimental", "metadata_common_use_cases": ["Consistent character animation", "Brand mascot videos", "Personalized avatars"], "metadata_platforms": ["Specialized services"], "metadata_example_models": [], "relationships": "{}", "output_modality": "video", "operation_type": "creation"}
6
+ {"id": "text-to-vid-no-audio", "name": "Text to Video (No Audio)", "input_primary": "text", "input_secondary": [], "output_primary": "video", "output_audio": false, "output_audio_type": "", "characteristics": "{\"processType\": \"synthesis\", \"audioGeneration\": \"none\", \"motionType\": \"general\"}", "metadata_maturity_level": "emerging", "metadata_common_use_cases": ["Concept visualization", "Storyboarding", "Creative exploration"], "metadata_platforms": ["Replicate", "FAL AI", "RunwayML"], "metadata_example_models": ["ModelScope", "ZeroScope"], "relationships": "{}", "output_modality": "video", "operation_type": "creation"}
7
+ {"id": "text-to-vid-with-audio", "name": "Text to Video (With Audio)", "input_primary": "text", "input_secondary": [], "output_primary": "video", "output_audio": true, "output_audio_type": "synchronized", "characteristics": "{\"processType\": \"synthesis\", \"audioGeneration\": \"synthesized\", \"audioPrompting\": \"text-based\", \"audioVideoSync\": true, \"motionType\": \"general\"}", "metadata_maturity_level": "experimental", "metadata_common_use_cases": ["Complete scene generation", "Multimedia storytelling"], "metadata_platforms": ["Experimental"], "metadata_example_models": [], "relationships": "{}", "output_modality": "video", "operation_type": "creation"}
8
+ {"id": "audio-to-vid", "name": "Audio to Video", "input_primary": "audio", "input_secondary": ["text"], "output_primary": "video", "output_audio": true, "output_audio_type": "original", "characteristics": "{\"processType\": \"synthesis\", \"audioVisualization\": true, \"motionType\": \"audio-reactive\"}", "metadata_maturity_level": "experimental", "metadata_common_use_cases": ["Music visualization", "Audio-reactive art", "Podcast video generation"], "metadata_platforms": ["Experimental"], "metadata_example_models": [], "relationships": "{}", "output_modality": "video", "operation_type": "creation"}
9
+ {"id": "multimodal-img-audio-to-vid", "name": "Image + Audio to Video", "input_primary": "image", "input_secondary": ["audio"], "output_primary": "video", "output_audio": true, "output_audio_type": "original", "characteristics": "{\"processType\": \"synthesis\", \"audioGeneration\": \"reference-based\", \"motionType\": \"audio-driven\", \"lipSync\": false}", "metadata_maturity_level": "experimental", "metadata_common_use_cases": ["Audio-driven animation", "Dance video generation", "Music-driven motion"], "metadata_platforms": ["Experimental"], "metadata_example_models": [], "relationships": "{}", "output_modality": "video", "operation_type": "creation"}
10
+ {"id": "multimodal-text-img-to-vid", "name": "Text + Image to Video", "input_primary": "text", "input_secondary": ["image"], "output_primary": "video", "output_audio": false, "output_audio_type": "", "characteristics": "{\"processType\": \"synthesis\", \"guidanceType\": \"text-and-visual\", \"motionType\": \"guided\"}", "metadata_maturity_level": "emerging", "metadata_common_use_cases": ["Guided video generation", "Controlled animation", "Reference-based video creation"], "metadata_platforms": ["Replicate", "FAL AI"], "metadata_example_models": ["AnimateDiff with ControlNet"], "relationships": "{}", "output_modality": "video", "operation_type": "creation"}
11
+ {"id": "3d-to-vid", "name": "3D Model to Video", "input_primary": "3d-model", "input_secondary": [], "output_primary": "video", "output_audio": false, "output_audio_type": "", "characteristics": "{\"processType\": \"rendering\", \"renderType\": \"3d-rendering\", \"motionType\": \"camera-path\"}", "metadata_maturity_level": "mature", "metadata_common_use_cases": ["3D visualization", "Product rendering", "Architectural visualization"], "metadata_platforms": ["Blender", "Unreal Engine", "Unity"], "metadata_example_models": [], "relationships": "{}", "output_modality": "video", "operation_type": "creation"}
12
+ {"id": "vid-to-vid-no-audio", "name": "Video to Video (No Audio)", "input_primary": "video", "input_secondary": ["text"], "output_primary": "video", "output_audio": false, "output_audio_type": "", "characteristics": "{\"processType\": \"transformation\", \"transformationTypes\": [\"style-transfer\", \"motion-modification\", \"object-editing\"], \"preserveAudio\": false}", "metadata_maturity_level": "emerging", "metadata_common_use_cases": ["Video style transfer", "Video editing", "Motion manipulation"], "metadata_platforms": ["Replicate", "RunwayML"], "metadata_example_models": ["Gen-2", "Video ControlNet"], "relationships": "{}", "output_modality": "video", "operation_type": "editing"}
13
+ {"id": "vid-to-vid-preserve-audio", "name": "Video to Video (Preserve Audio)", "input_primary": "video", "input_secondary": ["text"], "output_primary": "video", "output_audio": true, "output_audio_type": "original", "characteristics": "{\"processType\": \"transformation\", \"transformationTypes\": [\"style-transfer\", \"motion-modification\", \"object-editing\"], \"preserveAudio\": true, \"audioHandling\": \"passthrough\"}", "metadata_maturity_level": "emerging", "metadata_common_use_cases": ["Video style transfer with audio", "Content transformation maintaining soundtrack"], "metadata_platforms": ["Replicate", "RunwayML"], "metadata_example_models": [], "relationships": "{}", "output_modality": "video", "operation_type": "editing"}
14
+ {"id": "text-to-audio", "name": "Text to Audio", "input_primary": "text", "input_secondary": [], "output_primary": "audio", "output_audio": false, "output_audio_type": "general", "characteristics": "{\"processType\": \"synthesis\", \"audioType\": \"general\", \"audioCategories\": [\"speech\", \"sound-effects\", \"music\", \"ambient\"]}", "metadata_maturity_level": "mature", "metadata_common_use_cases": ["Sound effect generation", "Voiceover creation", "Audio asset production"], "metadata_platforms": ["Replicate", "ElevenLabs", "AudioCraft"], "metadata_example_models": ["AudioGen", "MusicGen"], "relationships": "{}", "output_modality": "audio", "operation_type": "creation"}
15
+ {"id": "text-to-speech", "name": "Text to Speech", "input_primary": "text", "input_secondary": [], "output_primary": "audio", "output_audio": false, "output_audio_type": "speech", "characteristics": "{\"processType\": \"synthesis\", \"audioType\": \"speech\", \"voiceCloning\": false}", "metadata_maturity_level": "mature", "metadata_common_use_cases": ["Narration", "Accessibility", "Voice assistants"], "metadata_platforms": ["ElevenLabs", "Google Cloud", "Azure", "AWS"], "metadata_example_models": ["ElevenLabs", "Google WaveNet", "Azure Neural TTS"], "relationships": "{}", "output_modality": "audio", "operation_type": "creation"}
16
+ {"id": "text-to-music", "name": "Text to Music", "input_primary": "text", "input_secondary": [], "output_primary": "audio", "output_audio": false, "output_audio_type": "music", "characteristics": "{\"processType\": \"synthesis\", \"audioType\": \"music\", \"melodic\": true}", "metadata_maturity_level": "emerging", "metadata_common_use_cases": ["Background music generation", "Musical composition", "Soundtrack creation"], "metadata_platforms": ["Replicate", "Stability AI"], "metadata_example_models": ["MusicGen", "Stable Audio"], "relationships": "{}", "output_modality": "audio", "operation_type": "creation"}
17
+ {"id": "audio-to-audio-inpainting", "name": "Audio to Audio (Inpainting)", "input_primary": "audio", "input_secondary": ["text"], "output_primary": "audio", "output_audio": false, "output_audio_type": "general", "characteristics": "{\"processType\": \"inpainting\", \"modification\": \"selective-editing\"}", "metadata_maturity_level": "emerging", "metadata_common_use_cases": ["Audio editing", "Sound design", "Audio restoration"], "metadata_platforms": ["Experimental"], "metadata_example_models": [], "relationships": "{}", "output_modality": "audio", "operation_type": "editing"}
18
+ {"id": "music-to-music-inpainting", "name": "Music to Music (Inpainting)", "input_primary": "audio", "input_secondary": ["text"], "output_primary": "audio", "output_audio": false, "output_audio_type": "music", "characteristics": "{\"processType\": \"inpainting\", \"modification\": \"selective-editing\", \"melodic\": true, \"audioSubtype\": \"music\"}", "metadata_maturity_level": "experimental", "metadata_common_use_cases": ["Music editing", "Compositional modifications", "Arrangement changes"], "metadata_platforms": ["Experimental"], "metadata_example_models": [], "relationships": "{\"parent\": \"audio-to-audio-inpainting\", \"note\": \"Music inpainting is a specialized subset of audio inpainting\"}", "output_modality": "audio", "operation_type": "editing"}
19
+ {"id": "text-to-img", "name": "Text to Image", "input_primary": "text", "input_secondary": [], "output_primary": "image", "output_audio": false, "output_audio_type": "", "characteristics": "{\"processType\": \"synthesis\", \"generationType\": \"synthesis\"}", "metadata_maturity_level": "mature", "metadata_common_use_cases": ["Concept art generation", "Product mockups", "Marketing assets"], "metadata_platforms": ["Replicate", "Stability AI", "Midjourney", "DALL-E"], "metadata_example_models": ["Stable Diffusion", "DALL-E 3", "Midjourney"], "relationships": "{}", "output_modality": "image", "operation_type": "creation"}
20
+ {"id": "img-to-img", "name": "Image to Image", "input_primary": "image", "input_secondary": ["text"], "output_primary": "image", "output_audio": false, "output_audio_type": "", "characteristics": "{\"processType\": \"transformation\", \"transformationTypes\": [\"style-transfer\", \"enhancement\", \"editing\", \"inpainting\"]}", "metadata_maturity_level": "mature", "metadata_common_use_cases": ["Image editing", "Style transfer", "Image enhancement", "Object removal/addition"], "metadata_platforms": ["Replicate", "Stability AI", "Midjourney"], "metadata_example_models": ["Stable Diffusion img2img", "ControlNet"], "relationships": "{}", "output_modality": "image", "operation_type": "editing"}
21
+ {"id": "text-to-3d", "name": "Text to 3D Model", "input_primary": "text", "input_secondary": [], "output_primary": "3d-model", "output_audio": false, "output_audio_type": "", "characteristics": "{\"processType\": \"synthesis\", \"generationType\": \"3d-synthesis\"}", "metadata_maturity_level": "emerging", "metadata_common_use_cases": ["3D asset generation", "Rapid prototyping", "Game asset creation"], "metadata_platforms": ["Replicate", "Meshy", "3DFY"], "metadata_example_models": ["Point-E", "Shap-E", "DreamFusion"], "relationships": "{}", "output_modality": "3d-model", "operation_type": "creation"}
22
+ {"id": "img-to-3d", "name": "Image to 3D Model", "input_primary": "image", "input_secondary": [], "output_primary": "3d-model", "output_audio": false, "output_audio_type": "", "characteristics": "{\"processType\": \"synthesis\", \"generationType\": \"3d-reconstruction\"}", "metadata_maturity_level": "emerging", "metadata_common_use_cases": ["3D reconstruction", "Object digitization", "Asset creation from photos"], "metadata_platforms": ["Replicate", "Meshy", "Luma AI"], "metadata_example_models": ["Zero-1-to-3", "Wonder3D"], "relationships": "{}", "output_modality": "3d-model", "operation_type": "creation"}
dataset_infos.json DELETED
@@ -1,96 +0,0 @@
1
- {
2
- "all": {
3
- "description": "Complete taxonomy with all modalities across all output types and operations.",
4
- "citation": "@dataset{multimodal_ai_taxonomy,\n title={Multimodal AI Taxonomy},\n author={Community Contributors},\n year={2025},\n publisher={Hugging Face},\n}",
5
- "homepage": "https://huggingface.co/datasets/YOUR_USERNAME/multimodal-ai-taxonomy",
6
- "license": "cc0-1.0",
7
- "features": {
8
- "id": {
9
- "dtype": "string",
10
- "_type": "Value"
11
- },
12
- "name": {
13
- "dtype": "string",
14
- "_type": "Value"
15
- },
16
- "input_primary": {
17
- "dtype": "string",
18
- "_type": "Value"
19
- },
20
- "input_secondary": {
21
- "feature": {
22
- "dtype": "string",
23
- "_type": "Value"
24
- },
25
- "_type": "Sequence"
26
- },
27
- "output_primary": {
28
- "dtype": "string",
29
- "_type": "Value"
30
- },
31
- "output_audio": {
32
- "dtype": "bool",
33
- "_type": "Value"
34
- },
35
- "output_audio_type": {
36
- "dtype": "string",
37
- "_type": "Value"
38
- },
39
- "characteristics": {
40
- "dtype": "string",
41
- "_type": "Value"
42
- },
43
- "metadata_maturity_level": {
44
- "dtype": "string",
45
- "_type": "Value"
46
- },
47
- "metadata_common_use_cases": {
48
- "feature": {
49
- "dtype": "string",
50
- "_type": "Value"
51
- },
52
- "_type": "Sequence"
53
- },
54
- "metadata_platforms": {
55
- "feature": {
56
- "dtype": "string",
57
- "_type": "Value"
58
- },
59
- "_type": "Sequence"
60
- },
61
- "metadata_example_models": {
62
- "feature": {
63
- "dtype": "string",
64
- "_type": "Value"
65
- },
66
- "_type": "Sequence"
67
- },
68
- "relationships": {
69
- "dtype": "string",
70
- "_type": "Value"
71
- },
72
- "file_output_modality": {
73
- "dtype": "string",
74
- "_type": "Value"
75
- },
76
- "file_operation_type": {
77
- "dtype": "string",
78
- "_type": "Value"
79
- }
80
- },
81
- "supervised_keys": null,
82
- "builder_name": "multimodal_ai_taxonomy",
83
- "config_name": "all",
84
- "version": "1.0.0",
85
- "splits": {
86
- "train": {
87
- "name": "train",
88
- "num_bytes": 0,
89
- "num_examples": 0,
90
- "dataset_name": "multimodal_ai_taxonomy"
91
- }
92
- },
93
- "download_size": 0,
94
- "dataset_size": 0
95
- }
96
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
multimodal-ai-taxonomy.py DELETED
@@ -1,217 +0,0 @@
1
- """Multimodal AI Taxonomy dataset loading script."""
2
-
3
- import json
4
- import os
5
- from pathlib import Path
6
- from typing import Dict, List
7
-
8
- import datasets
9
-
10
-
11
- _CITATION = """\
12
- @dataset{multimodal_ai_taxonomy,
13
- title={Multimodal AI Taxonomy},
14
- author={Community Contributors},
15
- year={2025},
16
- publisher={Hugging Face},
17
- }
18
- """
19
-
20
- _DESCRIPTION = """\
21
- A comprehensive, structured taxonomy for mapping multimodal AI model capabilities across input and output modalities.
22
- This dataset provides a systematic categorization of multimodal AI capabilities, enabling users to navigate the complex
23
- landscape of multimodal AI models, filter by specific input/output modality combinations, and discover models that match
24
- specific use case requirements.
25
- """
26
-
27
- _HOMEPAGE = "https://huggingface.co/datasets/YOUR_USERNAME/multimodal-ai-taxonomy"
28
-
29
- _LICENSE = "cc0-1.0"
30
-
31
- _URLS = {
32
- "schema": "taxonomy/schema.json",
33
- "video_generation_creation": "taxonomy/video-generation/creation/modalities.json",
34
- "video_generation_editing": "taxonomy/video-generation/editing/modalities.json",
35
- "audio_generation_creation": "taxonomy/audio-generation/creation/modalities.json",
36
- "audio_generation_editing": "taxonomy/audio-generation/editing/modalities.json",
37
- "image_generation_creation": "taxonomy/image-generation/creation/modalities.json",
38
- "image_generation_editing": "taxonomy/image-generation/editing/modalities.json",
39
- "text_generation_creation": "taxonomy/text-generation/creation/modalities.json",
40
- "text_generation_editing": "taxonomy/text-generation/editing/modalities.json",
41
- "3d_generation_creation": "taxonomy/3d-generation/creation/modalities.json",
42
- "3d_generation_editing": "taxonomy/3d-generation/editing/modalities.json",
43
- }
44
-
45
-
46
- class MultimodalAITaxonomy(datasets.GeneratorBasedBuilder):
47
- """Multimodal AI Taxonomy dataset."""
48
-
49
- VERSION = datasets.Version("1.0.0")
50
-
51
- BUILDER_CONFIGS = [
52
- datasets.BuilderConfig(
53
- name="all",
54
- version=VERSION,
55
- description="Complete taxonomy with all modalities",
56
- ),
57
- datasets.BuilderConfig(
58
- name="video_generation_creation",
59
- version=VERSION,
60
- description="Video generation (creation) modalities",
61
- ),
62
- datasets.BuilderConfig(
63
- name="video_generation_editing",
64
- version=VERSION,
65
- description="Video generation (editing) modalities",
66
- ),
67
- datasets.BuilderConfig(
68
- name="audio_generation_creation",
69
- version=VERSION,
70
- description="Audio generation (creation) modalities",
71
- ),
72
- datasets.BuilderConfig(
73
- name="audio_generation_editing",
74
- version=VERSION,
75
- description="Audio generation (editing) modalities",
76
- ),
77
- datasets.BuilderConfig(
78
- name="image_generation_creation",
79
- version=VERSION,
80
- description="Image generation (creation) modalities",
81
- ),
82
- datasets.BuilderConfig(
83
- name="image_generation_editing",
84
- version=VERSION,
85
- description="Image generation (editing) modalities",
86
- ),
87
- datasets.BuilderConfig(
88
- name="text_generation_creation",
89
- version=VERSION,
90
- description="Text generation (creation) modalities",
91
- ),
92
- datasets.BuilderConfig(
93
- name="text_generation_editing",
94
- version=VERSION,
95
- description="Text generation (editing) modalities",
96
- ),
97
- datasets.BuilderConfig(
98
- name="3d_generation_creation",
99
- version=VERSION,
100
- description="3D generation (creation) modalities",
101
- ),
102
- datasets.BuilderConfig(
103
- name="3d_generation_editing",
104
- version=VERSION,
105
- description="3D generation (editing) modalities",
106
- ),
107
- ]
108
-
109
- DEFAULT_CONFIG_NAME = "all"
110
-
111
- def _info(self):
112
- features = datasets.Features(
113
- {
114
- "id": datasets.Value("string"),
115
- "name": datasets.Value("string"),
116
- "input_primary": datasets.Value("string"),
117
- "input_secondary": datasets.Sequence(datasets.Value("string")),
118
- "output_primary": datasets.Value("string"),
119
- "output_audio": datasets.Value("bool"),
120
- "output_audio_type": datasets.Value("string"),
121
- "characteristics": datasets.Value("string"), # JSON string for flexibility
122
- "metadata_maturity_level": datasets.Value("string"),
123
- "metadata_common_use_cases": datasets.Sequence(datasets.Value("string")),
124
- "metadata_platforms": datasets.Sequence(datasets.Value("string")),
125
- "metadata_example_models": datasets.Sequence(datasets.Value("string")),
126
- "relationships": datasets.Value("string"), # JSON string for flexibility
127
- "file_output_modality": datasets.Value("string"),
128
- "file_operation_type": datasets.Value("string"),
129
- }
130
- )
131
-
132
- return datasets.DatasetInfo(
133
- description=_DESCRIPTION,
134
- features=features,
135
- homepage=_HOMEPAGE,
136
- license=_LICENSE,
137
- citation=_CITATION,
138
- )
139
-
140
- def _split_generators(self, dl_manager):
141
- """Returns SplitGenerators."""
142
-
143
- # Download/locate all files
144
- if self.config.name == "all":
145
- # Load all modality files
146
- config_names = [k for k in _URLS.keys() if k != "schema"]
147
- else:
148
- # Load only the specified config
149
- config_names = [self.config.name]
150
-
151
- return [
152
- datasets.SplitGenerator(
153
- name=datasets.Split.TRAIN,
154
- gen_kwargs={
155
- "config_names": config_names,
156
- "dl_manager": dl_manager,
157
- },
158
- ),
159
- ]
160
-
161
- def _generate_examples(self, config_names, dl_manager):
162
- """Yields examples from the taxonomy."""
163
-
164
- idx = 0
165
- for config_name in config_names:
166
- filepath = _URLS[config_name]
167
-
168
- # Read the JSON file
169
- with open(dl_manager.download(filepath), encoding="utf-8") as f:
170
- data = json.load(f)
171
-
172
- output_modality = data.get("outputModality", "")
173
- operation_type = data.get("operationType", "")
174
-
175
- # Process each modality in the file
176
- for modality in data.get("modalities", []):
177
- # Extract input information
178
- input_data = modality.get("input", {})
179
- input_primary = input_data.get("primary", "")
180
- input_secondary = input_data.get("secondary", [])
181
-
182
- # Extract output information
183
- output_data = modality.get("output", {})
184
- output_primary = output_data.get("primary", "")
185
- output_audio = output_data.get("audio", False)
186
- output_audio_type = output_data.get("audioType", "")
187
-
188
- # Extract metadata
189
- metadata = modality.get("metadata", {})
190
- maturity_level = metadata.get("maturityLevel", "")
191
- common_use_cases = metadata.get("commonUseCases", [])
192
- platforms = metadata.get("platforms", [])
193
- example_models = metadata.get("exampleModels", [])
194
-
195
- # Keep characteristics and relationships as JSON strings for flexibility
196
- characteristics = json.dumps(modality.get("characteristics", {}))
197
- relationships = json.dumps(modality.get("relationships", {}))
198
-
199
- yield idx, {
200
- "id": modality.get("id", ""),
201
- "name": modality.get("name", ""),
202
- "input_primary": input_primary,
203
- "input_secondary": input_secondary,
204
- "output_primary": output_primary,
205
- "output_audio": output_audio,
206
- "output_audio_type": output_audio_type,
207
- "characteristics": characteristics,
208
- "metadata_maturity_level": maturity_level,
209
- "metadata_common_use_cases": common_use_cases,
210
- "metadata_platforms": platforms,
211
- "metadata_example_models": example_models,
212
- "relationships": relationships,
213
- "file_output_modality": output_modality,
214
- "file_operation_type": operation_type,
215
- }
216
-
217
- idx += 1