Datasets:
Tasks:
Text Generation
Formats:
parquet
Sub-tasks:
language-modeling
Languages:
Danish
Size:
1M - 10M
License:
File size: 3,042 Bytes
08ad838 3e28a50 546c3b3 3e28a50 546c3b3 3e28a50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
# /// script
# requires-python = "==3.12"
# dependencies = [
# "datasets==3.2.0",
# "spacy==3.8.3",
# ]
# ///
from pathlib import Path
from typing import cast
import pandas as pd
import spacy
from datasets import Dataset, load_dataset
# KCE: mail from Leon
sample_to_redact = {
# Der kommer en dag
"opensub_6726481",
"opensub_6732371",
# Kollektivet
"opensub_6645818",
# Flaskepost fra P
"opensub_6666922",
"opensub_6720216",
"opensub_6958711",
# Fasandræberne
"opensub_6036947",
"opensub_6008622",
# En du elsker
"opensub_5828376",
"opensub_5828378",
# En chance til
"opensub_6177523",
# Lev stærkt
"opensub_6467655",
# Nymphomaniac
"opensub_5604391",
"opensub_5748340",
"opensub_5748494",
"opensub_5629516",
# Kvinden i buret
"opensub_5636248",
"opensub_5514603",
"opensub_5504932",
# Den skaldede frisør
"opensub_5084880",
"opensub_5031826",
# Jagten
"opensub_6929419",
"opensub_4885548",
# Melancholia
"opensub_4421330",
"opensub_4406991",
"opensub_4418817",
# Ambassadøren
"opensub_4557721",
# Antichrist
"opensub_5511502",
"opensub_3938655",
"opensub_3636940",
"opensub_3564521",
"opensub_3562215",
# En kongelig affære
"opensub_4725493",
"opensub_4725160",
"opensub_4725159",
"opensub_4916871",
"opensub_5186746",
# Brødre
"opensub_233943",
"opensub_87475",
}
column_order = [
"text",
"source",
"id",
"added",
"created",
"license",
"domain",
"metadata",
]
def convert_sample(example: dict) -> dict:
text = example["text"]
if example["doc_id"] in sample_to_redact:
nlp = spacy.blank("da")
doc = nlp(text)
text = doc[:200].text # first 200 words
new_example = dict(
text_new=text,
id=example["doc_id"],
source="opensubtitles",
domain="Conversation",
license="Creative Commons Legal Code\n\nCC0 1.0 Universal",
added="2025-01-02",
created="1920-01-01, 2018-01-01", # assuming v2018
metadata={"source-pretty": "OpenSubtitles"},
)
return new_example
def main():
ds = load_dataset("DDSC/partial-danish-gigaword-no-twitter", split="train")
ds = cast(Dataset, ds)
ds = ds.filter(lambda x: x["source"] == "opensub", num_proc=4)
ds = ds.map(convert_sample, num_proc=4)
ds = ds.select_columns(column_order[1:] + ["text_new"])
ds = ds.rename_columns({"text_new": "text"})
# ensure order
ds = ds.select_columns(column_order)
df = ds.to_pandas()
df = cast(pd.DataFrame, df)
dedup_df = df.drop_duplicates(keep="first", subset=["text"])
print("N. duplicates: ", df.shape[0] - dedup_df.shape[0]) # 2422
ds = ds.select(dedup_df.index)
assert len(set(ds["text"])) == len(ds)
save_path = Path(__file__).parent / "opensubtitles.parquet"
ds.to_parquet(save_path)
if __name__ == "__main__":
main()
|