File size: 1,309 Bytes
ed22468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# /// script
# requires-python = ">=3.12"
# dependencies = [
#     "datasets>=3.2.0",
# ]
# ///

from pathlib import Path
from typing import cast

from datasets import Dataset, load_dataset

source = "fm-udgivelser"


def convert_sample(example):
    new_example = dict(
        text_new=example["text"],
        source=source,
        domain="Legal",
        license="cc-by-sa-4.0",
        added="2025-03-24",
        created="2024-01-01, 2026-01-01",  # Scrape happen within these years - data likely written earlier
        metadata={"source-pretty": "Finansministeriets Udgivelser"},
    )

    return new_example


def main():
    data_path = Path(
        "/work/dfm-data/pre-training/fm-udgivelser/documents/finans-ministeriet.jsonl.gz"
    )
    ds = load_dataset("json", data_files=data_path.as_posix(), split="train")

    ds = cast(Dataset, ds)

    ds = ds.map(convert_sample, remove_columns=ds.column_names)
    ds = ds.rename_columns({"text_new": "text"})
    ds = ds.add_column("id", [f"{source}_{i}" for i in range(len(ds))])  # type: ignore
    ds = ds.select_columns(
        ["text", "source", "id", "added", "created", "license", "domain", "metadata"]
    )

    save_path = Path(__file__).parent / f"{source}.parquet"
    ds.to_parquet(save_path)


if __name__ == "__main__":
    main()