Datasets:
Tasks:
Text Generation
Formats:
parquet
Sub-tasks:
language-modeling
Languages:
Danish
Size:
1M - 10M
License:
import json | |
import logging | |
from datetime import datetime | |
from enum import Enum | |
from pathlib import Path | |
from textwrap import dedent | |
from typing import Any, Literal, Self, cast | |
import yaml | |
from datasets import Dataset, load_dataset | |
from pydantic import BaseModel, field_validator | |
from dynaword.descriptive_stats import DescriptiveStatsOverview | |
from dynaword.plots import create_descriptive_statistics_plots | |
from dynaword.typings import DOMAIN, LICENSE, LICENSE_NAMES_MAPPING | |
logger = logging.getLogger(__name__) | |
LICENSE_HEADER = "## License Information" | |
class DEFAULT_SECTION_TAGS(Enum): | |
desc_stats = "DESC-STATS" | |
sample = "SAMPLE" | |
dataset_plots = "DATASET PLOTS" | |
short_description = "SHORT DESCRIPTION" | |
DATASET_PLOTS_template = """ | |
<p align="center"> | |
<img src="./images/dist_document_length.png" width="600" style="margin-right: 10px;" /> | |
</p> | |
""" | |
SAMPLE_template = """ | |
```py | |
{sample} | |
``` | |
### Data Fields | |
An entry in the dataset consists of the following fields: | |
- `id` (`str`): An unique identifier for each document. | |
- `text`(`str`): The content of the document. | |
- `source` (`str`): The source of the document (see [Source Data](#source-data)). | |
- `added` (`str`): An date for when the document was added to this collection. | |
- `created` (`str`): An date range for when the document was originally created. | |
- `token_count` (`int`): The number of tokens in the sample computed using the Llama 8B tokenizer | |
""" | |
def human_readable_large_int(value: int) -> str: | |
thresholds = [ | |
(1_000_000_000, "B"), | |
(1_000_000, "M"), | |
(1_000, "K"), | |
] | |
for threshold, label in thresholds: | |
if value > threshold: | |
return f"{value/threshold:.2f}{label}" | |
return str(value) | |
def create_sample_str(dataset: Dataset, max_str_len: int = 100): | |
sample = dataset[0] | |
for k in sample: | |
if isinstance(sample[k], str) and len(sample[k]) > max_str_len: | |
sample[k] = sample[k][:max_str_len] + "[...]" | |
if isinstance(sample[k], datetime): | |
sample[k] = str(sample[k]) | |
json_sample = json.dumps(sample, indent=2, ensure_ascii=False) | |
sample_str = SAMPLE_template.format(sample=json_sample) | |
return sample_str | |
class DataSheet(BaseModel): | |
pretty_name: str | |
license: LICENSE | |
license_name: str | None | |
language: list[Literal["da"]] | |
domains: list[DOMAIN] | None # None for main readme # TODO: make literal | |
path: Path | |
frontmatter: dict[str, Any] | |
body: str | |
# check that licence name is compatible with license | |
# type: ignore | |
def check_license_name(cls, v: str | None, values: dict[str, Any]) -> str | None: | |
if v is not None and v in LICENSE_NAMES_MAPPING: | |
if values["license"] != LICENSE_NAMES_MAPPING[v]: | |
raise ValueError( | |
f"License name '{v}' does not match license '{values['license']}'" | |
) | |
return v | |
def short_description(self) -> str: | |
short_description = self.get_tag_content(DEFAULT_SECTION_TAGS.short_description) | |
if short_description.endswith("."): | |
short_description = short_description[:-1] | |
return short_description | |
def license_information(self) -> str: | |
return self.get_section_by_header(LICENSE_HEADER) | |
def frontmatter_as_str(self) -> str: | |
return yaml.dump(self.frontmatter, indent=2, sort_keys=False) | |
def to_str(self) -> str: | |
return f"---\n{self.frontmatter_as_str.strip()}\n---\n\n{self.body.strip()}\n" | |
def get_dataset(self, **kwargs) -> Dataset: | |
ds_path = self.path.parent | |
ds = load_dataset(ds_path.as_posix(), split="train", **kwargs) | |
ds = cast(Dataset, ds) | |
return ds | |
def get_descritive_stats(self) -> DescriptiveStatsOverview: | |
path = self.path.parent / "descriptive_stats.json" | |
return DescriptiveStatsOverview.from_disk(path) | |
def get_section_indices_by_header(self, header: str) -> tuple[int, int]: | |
level = header.split(" ")[0].count("#") | |
next_is_end_section = False | |
end_header = None | |
for _header in self.get_headers(levels=list(range(1, level + 1))): | |
if header.strip() == _header.strip(): | |
next_is_end_section = True | |
continue | |
if next_is_end_section: | |
end_header = _header | |
break | |
if next_is_end_section is None: | |
raise ValueError(f"The header '{header}' is not found in the text.") | |
start_idx = self.body.find(header) | |
if end_header: | |
end_idx = self.body[start_idx:].find(end_header) + start_idx | |
else: | |
end_idx = len(self.body) | |
return start_idx, end_idx | |
def get_section_by_header(self, header: str) -> str: | |
s, e = self.get_section_indices_by_header(header) | |
return self.body[s:e] | |
def get_headers(self, levels: list[int] = [1, 2, 3, 4]) -> list[str]: | |
def __contains_level(text: str) -> bool: | |
if text.startswith("#"): | |
for level in levels: | |
if text.startswith("#" * level): | |
return True | |
return False | |
return [line for line in self.body.splitlines() if __contains_level(line)] | |
def get_tag_idx(self, tag: str | DEFAULT_SECTION_TAGS) -> tuple[int, int]: | |
if isinstance(tag, Enum): | |
tag = tag.value | |
tag_start = f"<!-- START-{tag} -->" | |
tag_end = f"<!-- END-{tag} -->" | |
start_idx = self.body.find(tag_start) | |
end_idx = self.body.find(tag_end) | |
if end_idx != -1 and start_idx != -1 and start_idx < end_idx: | |
return start_idx, end_idx | |
raise ValueError(f"tag ({tag}) not found in readme") | |
def get_tag_content(self, tag: str | DEFAULT_SECTION_TAGS) -> str: | |
if isinstance(tag, Enum): | |
tag = tag.value | |
s, e = self.get_tag_idx(tag=tag) | |
tag_start = f"<!-- START-{tag} -->" | |
return self.body[s + len(tag_start) : e].strip() | |
def add_descriptive_stats( | |
self, descriptive_stats: DescriptiveStatsOverview | None = None | |
) -> str: | |
if descriptive_stats is None: | |
d_stats = DescriptiveStatsOverview.from_dataset(self.get_dataset()) | |
else: | |
d_stats = descriptive_stats | |
if len(self.language) != 1 and self.language[0] != "da": | |
raise NotImplementedError( | |
"This script only handles the language codes 'da'" | |
) | |
languages = "dan, dansk, Danish" | |
package = dedent(f""" | |
- **Language**: {languages}\n""") | |
if self.domains: | |
domains = ", ".join(self.domains) | |
package += f"- **Domains**: {domains}\n" | |
package += ( | |
dedent(f""" | |
- **Number of samples**: {human_readable_large_int(d_stats.number_of_samples)} | |
- **Number of tokens (Llama 3)**: {human_readable_large_int(d_stats.number_of_tokens)} | |
- **Average document length (characters)**: {d_stats.average_document_length:.2f} | |
""").strip() | |
+ "\n" | |
) | |
return self.replace_tag( | |
package=package, | |
tag=DEFAULT_SECTION_TAGS.desc_stats, | |
) | |
def add_dataset_plots(self, dataset: Dataset, create_plot: bool = True) -> str: | |
if create_plot: | |
create_descriptive_statistics_plots( | |
dataset=dataset, save_dir=self.path.parent | |
) | |
return self.replace_tag( | |
package=DATASET_PLOTS_template, tag=DEFAULT_SECTION_TAGS.dataset_plots | |
) | |
def add_sample_and_description(self, dataset: Dataset) -> str: | |
return self.replace_tag( | |
package=create_sample_str(dataset), tag=DEFAULT_SECTION_TAGS.sample | |
) | |
def replace_tag(self, package: str, tag: str | DEFAULT_SECTION_TAGS) -> str: | |
"""Add replace a tag in the datasheet body. | |
Args: | |
package: What you want to replace it with | |
tag: What tag you want to replace | |
Returns: | |
The entire body text | |
""" | |
if isinstance(tag, Enum): | |
tag = tag.value | |
tag_start = f"<!-- START-{tag} -->" | |
tag_end = f"<!-- END-{tag} -->" | |
if self.body.count(tag_start) != 1 or self.body.count(tag_end) != 1: | |
raise ValueError( | |
f"The markers ({tag_start} ... {tag_end}) does not appear in the markdown. Markers should appear exactly once in the markdown." | |
) | |
start_md, _, remainder = self.body.partition(tag_start) | |
_, _, end_md = remainder.partition(tag_end) | |
return f"{start_md}{tag_start}\n{package.strip()}\n{tag_end}{end_md}" | |
def get_frontmatter_and_body(file_path: Path) -> tuple[dict[str, Any], str]: | |
with file_path.open("r") as f: | |
content = f.read() | |
if content.startswith("---"): | |
end_idx = content.find("---", 3) | |
start_idx_body = end_idx + 3 | |
if end_idx != -1: | |
frontmatter = content[3:end_idx].strip() | |
return yaml.safe_load(frontmatter), content[start_idx_body:] | |
raise ValueError(f"No frontmatter found in file: {file_path}") | |
def load_from_path(cls, readme_path: Path) -> Self: | |
frontmatter, body = cls.get_frontmatter_and_body(readme_path) | |
return cls( | |
frontmatter=frontmatter, | |
body=body, | |
license=frontmatter["license"], | |
language=frontmatter["language"], | |
pretty_name=frontmatter["pretty_name"], | |
domains=frontmatter["domains"] if "domains" in frontmatter else None, | |
license_name=frontmatter["license_name"] | |
if "license_name" in frontmatter | |
else None, | |
path=readme_path, | |
) | |
def write_to_path(self, readme_path: Path | None = None) -> None: | |
if readme_path is None: | |
readme_path = self.path | |
with readme_path.open("w") as f: | |
f.write(self.to_str()) | |
if __name__ == "__main__": | |
from dynaword.paths import repo_path | |
sheet = DataSheet.load_from_path(repo_path / "data" / "dannet" / "dannet.md") | |
ds = sheet.get_dataset() | |
sheet.body = sheet.add_descriptive_stats(descriptive_stats=None) | |
sheet.write_to_path() | |