Rohambarack commited on
Commit
27558c0
·
1 Parent(s): da633ea

ncc separated, create.py made more efficient, conf limit raised to 0.75

Browse files
CHANGELOG.md CHANGED
@@ -6,13 +6,14 @@ All notable changes to this project will be documented in this file.
6
  The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
7
 
8
 
9
- ## [v1.0.12] - 2025-05-05
10
 
11
  ### Added
12
 
13
  - Added new datasets
14
- - Norwegian Colossal Corpus (newspaper) (~1M tokens)
15
-
 
16
 
17
  ## [v1.0.11] - 2025-03-29
18
 
 
6
  The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
7
 
8
 
9
+ ## [v1.0.12] - 2025-05-08
10
 
11
  ### Added
12
 
13
  - Added new datasets
14
+ - Norwegian Colossal Corpus (newspapers) (~191.08K tokens)
15
+ - Norwegian Colossal Corpus (books) (~531.97M tokens)
16
+ - Norwegian Colossal Corpus (maalfrid) (~29.26M tokens)
17
 
18
  ## [v1.0.11] - 2025-03-29
19
 
README.md CHANGED
@@ -125,10 +125,18 @@ configs:
125
  data_files:
126
  - split: train
127
  path: data/nota/*.parquet
128
- - config_name: ncc_newspaper
129
  data_files:
130
  - split: train
131
- path: data/ncc_newspaper/*.parquet
 
 
 
 
 
 
 
 
132
  annotations_creators:
133
  - no-annotation
134
  language_creators:
@@ -334,7 +342,6 @@ Below follows a brief overview of the sources in the corpus along with their ind
334
  | [hest] | Samples from the Danish debate forum www.heste-nettet.dk | 389.33M | [CC-0] |
335
  | [retsinformationdk] | [retsinformation.dk](https://www.retsinformation.dk) (legal-information.dk) the official legal information system of Denmark | 516.54M | [Danish Copyright Law] |
336
  | [cellar] | The official digital repository for European Union legal documents and open data | 1.28B | [CC-BY-SA 4.0] |
337
- | [ncc_newspaper] | Danish subset of [NCC](https://huggingface.co/datasets/NbAiLab/NCC), The Norwegian Colossal Corpus (newspaper) | ? | [CC-0] |
338
  | **Total** | | 3.49B | |
339
 
340
  [ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
 
125
  data_files:
126
  - split: train
127
  path: data/nota/*.parquet
128
+ - config_name: ncc_newspapers
129
  data_files:
130
  - split: train
131
+ path: data/ncc_newspapers/*.parquet
132
+ - config_name: ncc_books
133
+ data_files:
134
+ - split: train
135
+ path: data/ncc_books/*.parquet
136
+ - config_name: ncc_maalfrid
137
+ data_files:
138
+ - split: train
139
+ path: data/ncc_maalfrid/*.parquet
140
  annotations_creators:
141
  - no-annotation
142
  language_creators:
 
342
  | [hest] | Samples from the Danish debate forum www.heste-nettet.dk | 389.33M | [CC-0] |
343
  | [retsinformationdk] | [retsinformation.dk](https://www.retsinformation.dk) (legal-information.dk) the official legal information system of Denmark | 516.54M | [Danish Copyright Law] |
344
  | [cellar] | The official digital repository for European Union legal documents and open data | 1.28B | [CC-BY-SA 4.0] |
 
345
  | **Total** | | 3.49B | |
346
 
347
  [ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
data/ncc_books/create.py ADDED
@@ -0,0 +1,319 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # /// script
2
+ # requires-python = ">=3.12"
3
+ # dependencies = [
4
+ # "datasets>=3.2.0"
5
+ # ]
6
+ # ///
7
+
8
+ import logging
9
+ import re
10
+ import inspect
11
+
12
+ from pathlib import Path
13
+ from datetime import datetime
14
+ from collections import defaultdict
15
+ from collections.abc import Callable
16
+
17
+ import pandas as pd
18
+ from datasets import Dataset, load_dataset
19
+
20
+ logger = logging.getLogger(__name__)
21
+ ########## edit manually for each source
22
+ hf_path = "NbAiLab/NCC"
23
+ source = "ncc_books"
24
+ doc_type_searchword = "book"
25
+ license = "cc0-1.0"
26
+ domain = "Wiki & Books"
27
+ num_proc = 10
28
+ ##########
29
+ today = datetime.now().strftime("%Y-%m-%d")
30
+
31
+ #stop words taken from spaCy
32
+ #https://github.com/explosion/spaCy/blob/master/spacy/lang/da/stop_words.py
33
+ # Source: Handpicked by Jens Dahl Møllerhøj.
34
+ spacy_sw = set(
35
+ """
36
+ af aldrig alene alle allerede alligevel alt altid anden andet andre at
37
+
38
+ bag begge blandt blev blive bliver burde bør
39
+
40
+ da de dem den denne dens der derefter deres derfor derfra deri dermed derpå derved det dette dig din dine disse dog du
41
+
42
+ efter egen eller ellers en end endnu ene eneste enhver ens enten er et
43
+
44
+ flere flest fleste for foran fordi forrige fra få før først
45
+
46
+ gennem gjorde gjort god gør gøre gørende
47
+
48
+ ham han hans har havde have hel heller hen hende hendes henover her herefter heri hermed herpå hun hvad hvem hver hvilke hvilken hvilkes hvis hvor hvordan hvorefter hvorfor hvorfra hvorhen hvori hvorimod hvornår hvorved
49
+
50
+ i igen igennem ikke imellem imens imod ind indtil ingen intet
51
+
52
+ jeg jer jeres jo
53
+
54
+ kan kom kommer kun kunne
55
+
56
+ lad langs lav lave lavet lidt lige ligesom lille længere
57
+
58
+ man mange med meget mellem men mens mere mest mig min mindre mindst mine mit må måske
59
+
60
+ ned nemlig nogen nogensinde noget nogle nok nu ny nyt nær næste næsten
61
+
62
+ og også om omkring op os over overalt
63
+
64
+
65
+
66
+ samme sammen selv selvom senere ses siden sig sige skal skulle som stadig synes syntes så sådan således
67
+
68
+ temmelig tidligere til tilbage tit
69
+
70
+ ud uden udover under undtagen
71
+
72
+ var ved vi via vil ville vore vores vær være været
73
+
74
+ øvrigt
75
+ """.split()
76
+ )
77
+
78
+ def word_tokenize(text: str) -> list[str]:
79
+ """
80
+ Tokenizes a string into words, splitting on whitespace and punctuation.
81
+
82
+ Example:
83
+ >>> word_tokenize("Hello, world!")
84
+ ['Hello', ',', 'world', '!']
85
+ >>> word_tokenize("This is a test.")
86
+ ['This', 'is', 'a', 'test', '.']
87
+ >>> word_tokenize("Many spaces between words.")
88
+ ['Many', 'spaces', 'between', 'words', '.']
89
+ """
90
+
91
+ punkt = [",", ".", "!", "?", ":", ";", "(", ")", "[", "]", "{", "}", '"', "'"]
92
+ for p in punkt:
93
+ text = text.replace(p, f" {p} ")
94
+ return text.split()
95
+
96
+ def alpha_ratio(text: str | list[str]) -> float:
97
+ """
98
+ If not split already to words, splits text with word_tokenize()
99
+ Calculates ratio of words with only alphabetical characters
100
+
101
+ """
102
+ if type(text) is str:
103
+ text = word_tokenize(text)
104
+ else:
105
+ pass
106
+
107
+ alpha_ratio = 1 - sum(not word.isalpha() for word in text) / len(text)
108
+
109
+ return alpha_ratio
110
+
111
+ def count_min_target(given_list: list, target_list: list, min: int) -> bool:
112
+ """
113
+ Iterates through given list, until at least min items match any items from target list
114
+
115
+ """
116
+ c_item = 0
117
+ given_list_iter = iter(given_list)
118
+ while c_item < min:
119
+ try:
120
+ current_item = next(given_list_iter)
121
+ if current_item in target_list:
122
+ c_item += 1
123
+ except StopIteration:
124
+ break
125
+
126
+ return c_item == min
127
+
128
+ def dynaword_format(
129
+ meta_document: dict[str, str | int]
130
+ ) -> dict[str, str | dict[str, str]]:
131
+ """Reformats data to fit dynaword standards"""
132
+
133
+ text = meta_document.get("text")
134
+ id = meta_document.get("id")
135
+ date = meta_document.get("publish_year")
136
+ doc_type = meta_document.get("doc_type")
137
+
138
+ newdata = {
139
+ "text": text,
140
+ "source": source,
141
+ "id": id,
142
+ "added": today,
143
+ "created": f"{date}-01-01, {date}-12-31",
144
+ "license": license,
145
+ "domain": domain,
146
+ "metadata": {
147
+ "source-pretty": f"Norwegian Colossal Corpus ({re.sub("ncc_","",source)})",
148
+ "source-type": doc_type,
149
+ },
150
+ }
151
+
152
+ return newdata
153
+
154
+ def log_pre_filter_lang_data(lang_metadata : dict[str,dict[str,int]],
155
+ filtered_ds: Dataset):
156
+ """
157
+ Function for logging changes in a large dataset,
158
+ based on the metadata pre filering and the filtered dataset,
159
+ used for language filtering
160
+ """
161
+ all_docs = sum(lang_metadata[source].values())
162
+ no_docs = lang_metadata[source].get("no")
163
+ da_docs = lang_metadata[source].get("da")
164
+ no_perc = round(no_docs/all_docs*100,4)
165
+ da_perc = round(da_docs/all_docs*100,4)
166
+
167
+ f_length = len(filtered_ds)
168
+ f_perc = round(f_length/da_docs*100,4)
169
+ f_total_perc = round(f_length/all_docs*100,4)
170
+
171
+ logger.info(f"Documents of {source}:")
172
+ logger.info(f"NO: {no_docs}, {no_perc}% ; DA: {da_docs}, {da_perc}%")
173
+ logger.info(f"After language confidence filtering:")
174
+ logger.info(f"DA: {f_length}, lost: {100-f_perc}%")
175
+ logger.info(f"Total document change:")
176
+ logger.info(f"{all_docs} -> {f_length}, loss: {100-f_total_perc}%")
177
+
178
+ def get_var_name(var):
179
+ """ outputs the variable name """
180
+ callers_local_vars = inspect.currentframe().f_back.f_back.f_back.f_locals.items()
181
+ return [var_name for var_name, var_val in callers_local_vars if var_val is var]
182
+
183
+ def filter_with_changelog(filter_func:Callable[[Dataset],Dataset],
184
+ dataset:Dataset) -> Dataset:
185
+ """
186
+ Function, which takes a filter and a dataset.
187
+ Counts text docs and tokens before and after filtering,
188
+ Saves filtering changes to log.
189
+ """
190
+
191
+ filter_name = get_var_name(filter_func)
192
+ pre_filter_docs = len(dataset)
193
+ pre_filter_tokens= sum(len(word_tokenize(i["text"])) for i in dataset)
194
+
195
+ dataset = dataset.filter(filter_func,num_proc=num_proc)
196
+
197
+ post_filter_docs = len(dataset)
198
+ post_filter_tokens= sum(len(word_tokenize(i["text"])) for i in dataset)
199
+ tokens_removed = round((1-(post_filter_tokens/pre_filter_tokens))*100,2)
200
+ docs_removed = round((1-(post_filter_docs/pre_filter_docs))*100,2)
201
+
202
+ logger.info(f"FILTER: {filter_name}")
203
+ logger.info(f"TOKENS: pre: {pre_filter_tokens}, post: {post_filter_tokens}, loss: {tokens_removed}%")
204
+ logger.info(f"DOCUMENTS: pre: {pre_filter_docs}, post: {post_filter_docs}, loss: {docs_removed}%")
205
+
206
+ return dataset
207
+
208
+
209
+ source_filter = lambda ds : doc_type_searchword in ds["doc_type"]
210
+ length_filter = lambda ds: len(word_tokenize(ds["text"])) >= 10
211
+ too_long_filter = lambda ds: len(word_tokenize(ds["text"])) > 1e5
212
+ alpha_filter = lambda ds: alpha_ratio(ds["text"]) >= 0.7
213
+ stop_word_filter = lambda ds: count_min_target(word_tokenize(ds["text"]),spacy_sw,2)
214
+
215
+ samples_pr_source: dict = defaultdict(lambda: defaultdict(int))
216
+ def language_filter_with_desc_stats(ds:Dataset) -> bool:
217
+ """
218
+ Language filtering in a streamed dataset while logging all languages
219
+ """
220
+ s = source
221
+ language = ds["lang_fasttext"]
222
+ samples_pr_source[s][language] += 1
223
+
224
+ language_filter = ds["lang_fasttext"] == "da" and float(ds["lang_fasttext_conf"]) >= 0.75
225
+
226
+ return language_filter
227
+
228
+ def quality_checks(ds:Dataset) -> Dataset:
229
+ """
230
+ Quality checks for:
231
+ - no duplicate ids
232
+ - no duplicate texts
233
+ - logs texts > 1e5 tokens
234
+ """
235
+ #convert to pandas for the drop_duplicates()
236
+ df = pd.DataFrame(ds)
237
+ # remove duplicate ids
238
+ len_df = len(df)
239
+ df = df.drop_duplicates(subset=["id"])
240
+ logger.info(f"Removed {len_df - len(df)} duplicate ids")
241
+ # remove rows with duplicate text
242
+ len_df = len(df)
243
+ df = df.drop_duplicates(subset=["text"])
244
+ logger.info(f"Removed {len_df - len(df)} rows with duplicate text")
245
+ #reconvert and remove index
246
+ ds_f = Dataset.from_pandas(df,preserve_index=False)
247
+ try:
248
+ ds_f["__index_level_0__"]
249
+ ds_f = ds_f.remove_columns("__index_level_0__")
250
+ except KeyError:
251
+ pass
252
+
253
+ assert len(set(ds_f["id"])) == len(ds_f), "IDs are not unique"
254
+ assert len(set(ds_f["text"])) == len(ds_f), "Texts are not unique"
255
+
256
+ long_texts = ds_f.filter(too_long_filter,num_proc=None)
257
+ if len(long_texts["id"]) > 0:
258
+ logger.info(f"{len(long_texts["id"])} Long texts (>~1e5 tokens) found")
259
+ for id in long_texts["id"]:
260
+ logger.info(f"id: {id}")
261
+ else:
262
+ logger.info("No long texts (>~1e5 tokens) found")
263
+
264
+ return ds_f
265
+
266
+ def main():
267
+ #load all splits
268
+ logger.info(f"Loading data from: {hf_path}")
269
+ danish_data = load_dataset(hf_path, streaming=False, split="train+validation", num_proc=num_proc)
270
+ danish_data.cleanup_cache_files()
271
+
272
+
273
+ #filter by metadata
274
+ logger.info(f"Processing source: {source}")
275
+ danish_data=danish_data.filter(source_filter,num_proc=num_proc)
276
+
277
+
278
+ logger.info(f"Processing language")
279
+ danish_data=danish_data.filter(language_filter_with_desc_stats, num_proc=None)
280
+
281
+ #log language changes
282
+ log_pre_filter_lang_data(samples_pr_source,danish_data)
283
+
284
+ #convert to dynaword format
285
+ danish_data = danish_data.map(dynaword_format)
286
+ danish_data = danish_data.select_columns(["text",
287
+ "source",
288
+ "id",
289
+ "added",
290
+ "created",
291
+ "license",
292
+ "domain",
293
+ "metadata"])
294
+
295
+ #filter and log changes
296
+ danish_data = filter_with_changelog(length_filter,danish_data)
297
+ danish_data = filter_with_changelog(alpha_filter,danish_data)
298
+ danish_data = filter_with_changelog(stop_word_filter,danish_data)
299
+
300
+ #Quality checks
301
+ danish_data = quality_checks(danish_data)
302
+
303
+ ### saving
304
+ save_path = Path(__file__).parent / f"{source}.parquet"
305
+ danish_data.to_parquet(save_path)
306
+
307
+
308
+
309
+ if __name__ == "__main__":
310
+ log_path = Path(__file__).parent / f"{source}.log"
311
+ logging.basicConfig(
312
+ level=logging.INFO,
313
+ format="%(asctime)s - %(levelname)s - %(message)s",
314
+ handlers=[
315
+ logging.StreamHandler(),
316
+ logging.FileHandler(log_path),
317
+ ],
318
+ )
319
+ main()
data/ncc_books/descriptive_stats.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "number_of_samples": 4902,
3
+ "average_document_length": 314064.2513259894,
4
+ "number_of_tokens": 531969285,
5
+ "language": "dan, dansk, Danish",
6
+ "revision": "da633eaca923cc25686bda59a41369694597baac"
7
+ }
data/ncc_books/images/dist_document_length.png ADDED

Git LFS Details

  • SHA256: 78520bb2a63460a02ba2e114bdc705abd6016b39dca6c2c14de66f26048acc1f
  • Pointer size: 131 Bytes
  • Size of remote file: 182 kB
data/ncc_books/ncc_books.log ADDED
@@ -0,0 +1,1081 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-05-08 08:54:49,165 - INFO - Loading data from: NbAiLab/NCC
2
+ 2025-05-08 08:54:58,162 - INFO - Processing source: ncc_books
3
+ 2025-05-08 08:56:46,434 - INFO - Processing language
4
+ 2025-05-08 08:57:22,861 - INFO - Documents of ncc_books:
5
+ 2025-05-08 08:57:22,867 - INFO - NO: 12496, 51.5235% ; DA: 8443, 34.8122%
6
+ 2025-05-08 08:57:22,867 - INFO - After language confidence filtering:
7
+ 2025-05-08 08:57:22,867 - INFO - DA: 5125, lost: 39.2988%
8
+ 2025-05-08 08:57:22,867 - INFO - Total document change:
9
+ 2025-05-08 08:57:22,867 - INFO - 24253 -> 5125, loss: 78.8686%
10
+ 2025-05-08 09:01:43,677 - INFO - FILTER: ['length_filter']
11
+ 2025-05-08 09:01:43,688 - INFO - TOKENS: pre: 322682794, post: 322682794, loss: 0.0%
12
+ 2025-05-08 09:01:43,688 - INFO - DOCUMENTS: pre: 5125, post: 5125, loss: 0.0%
13
+ 2025-05-08 09:05:38,723 - INFO - FILTER: ['alpha_filter']
14
+ 2025-05-08 09:05:38,724 - INFO - TOKENS: pre: 322682794, post: 307341040, loss: 4.75%
15
+ 2025-05-08 09:05:38,726 - INFO - DOCUMENTS: pre: 5125, post: 4902, loss: 4.35%
16
+ 2025-05-08 09:09:44,812 - INFO - FILTER: ['stop_word_filter']
17
+ 2025-05-08 09:09:44,812 - INFO - TOKENS: pre: 307341040, post: 307341040, loss: 0.0%
18
+ 2025-05-08 09:09:44,812 - INFO - DOCUMENTS: pre: 4902, post: 4902, loss: 0.0%
19
+ 2025-05-08 09:09:50,536 - INFO - Removed 0 duplicate ids
20
+ 2025-05-08 09:09:52,320 - INFO - Removed 0 rows with duplicate text
21
+ 2025-05-08 09:11:29,706 - INFO - 1060 Long texts (>~1e5 tokens) found
22
+ 2025-05-08 09:11:29,719 - INFO - id: digibok_2009033103031
23
+ 2025-05-08 09:11:29,720 - INFO - id: digibok_2009100812001_part0
24
+ 2025-05-08 09:11:29,720 - INFO - id: digibok_2006120501011
25
+ 2025-05-08 09:11:29,720 - INFO - id: digibok_2020022148516
26
+ 2025-05-08 09:11:29,720 - INFO - id: digibok_2013121108171
27
+ 2025-05-08 09:11:29,720 - INFO - id: digibok_2009022603010
28
+ 2025-05-08 09:11:29,720 - INFO - id: digibok_2006081100026
29
+ 2025-05-08 09:11:29,720 - INFO - id: digibok_2006111500023
30
+ 2025-05-08 09:11:29,720 - INFO - id: digibok_2006112900002_part2
31
+ 2025-05-08 09:11:29,720 - INFO - id: digibok_2010062803022_part0
32
+ 2025-05-08 09:11:29,720 - INFO - id: digibok_2009030603018
33
+ 2025-05-08 09:11:29,720 - INFO - id: digibok_2009021803022
34
+ 2025-05-08 09:11:29,720 - INFO - id: digibok_2006081600023
35
+ 2025-05-08 09:11:29,727 - INFO - id: digibok_2006120100046
36
+ 2025-05-08 09:11:29,727 - INFO - id: digibok_2006113000002_part0
37
+ 2025-05-08 09:11:29,727 - INFO - id: digibok_2008010713001_part0
38
+ 2025-05-08 09:11:29,727 - INFO - id: digibok_2006081700017
39
+ 2025-05-08 09:11:29,727 - INFO - id: digibok_2011051004069
40
+ 2025-05-08 09:11:29,729 - INFO - id: digibok_2006082200056
41
+ 2025-05-08 09:11:29,729 - INFO - id: digibok_2010072823001_part0
42
+ 2025-05-08 09:11:29,729 - INFO - id: digibok_2006120101041_part1
43
+ 2025-05-08 09:11:29,729 - INFO - id: digibok_2010021603029
44
+ 2025-05-08 09:11:29,729 - INFO - id: digibok_2013040507003
45
+ 2025-05-08 09:11:29,729 - INFO - id: digibok_2008052002001
46
+ 2025-05-08 09:11:29,729 - INFO - id: digibok_2011052004053
47
+ 2025-05-08 09:11:29,729 - INFO - id: digibok_2008033104063_part0
48
+ 2025-05-08 09:11:29,729 - INFO - id: digibok_2008031710002
49
+ 2025-05-08 09:11:29,729 - INFO - id: digibok_2007042604025
50
+ 2025-05-08 09:11:29,729 - INFO - id: digibok_2008042110002_part0
51
+ 2025-05-08 09:11:29,729 - INFO - id: digibok_2008040200063
52
+ 2025-05-08 09:11:29,732 - INFO - id: digibok_2008040204088_part1
53
+ 2025-05-08 09:11:29,732 - INFO - id: digibok_2009021204070
54
+ 2025-05-08 09:11:29,732 - INFO - id: digibok_2010060906021
55
+ 2025-05-08 09:11:29,733 - INFO - id: digibok_2008012303001_part0
56
+ 2025-05-08 09:11:29,733 - INFO - id: digibok_2009070601009_part0
57
+ 2025-05-08 09:11:29,733 - INFO - id: digibok_2009091403018
58
+ 2025-05-08 09:11:29,733 - INFO - id: digibok_2006082200020
59
+ 2025-05-08 09:11:29,735 - INFO - id: digibok_2006113000046_part0
60
+ 2025-05-08 09:11:29,736 - INFO - id: digibok_2007042712001_part0
61
+ 2025-05-08 09:11:29,736 - INFO - id: digibok_2011050604113_part0
62
+ 2025-05-08 09:11:29,737 - INFO - id: digibok_2010070705001
63
+ 2025-05-08 09:11:29,737 - INFO - id: digibok_2007070403001_part0
64
+ 2025-05-08 09:11:29,737 - INFO - id: digibok_2007072312003
65
+ 2025-05-08 09:11:29,739 - INFO - id: digibok_2006083000067_part0
66
+ 2025-05-08 09:11:29,740 - INFO - id: digibok_2014071606003
67
+ 2025-05-08 09:11:29,740 - INFO - id: digibok_2009022603020_part0
68
+ 2025-05-08 09:11:29,740 - INFO - id: digibok_2009050503004
69
+ 2025-05-08 09:11:29,740 - INFO - id: digibok_2010042106089
70
+ 2025-05-08 09:11:29,740 - INFO - id: digibok_2006112300012
71
+ 2025-05-08 09:11:29,740 - INFO - id: digibok_2008050800076
72
+ 2025-05-08 09:11:29,742 - INFO - id: digibok_2006082800058
73
+ 2025-05-08 09:11:29,743 - INFO - id: digibok_2007072702001
74
+ 2025-05-08 09:11:29,743 - INFO - id: digibok_2006112900015
75
+ 2025-05-08 09:11:29,743 - INFO - id: digibok_2008111700103
76
+ 2025-05-08 09:11:29,743 - INFO - id: digibok_2017100548132
77
+ 2025-05-08 09:11:29,743 - INFO - id: digibok_2010021513001
78
+ 2025-05-08 09:11:29,743 - INFO - id: digibok_2008022710007_part1
79
+ 2025-05-08 09:11:29,743 - INFO - id: digibok_2010022203001
80
+ 2025-05-08 09:11:29,743 - INFO - id: digibok_2006113001027
81
+ 2025-05-08 09:11:29,743 - INFO - id: digibok_2006111701031
82
+ 2025-05-08 09:11:29,743 - INFO - id: digibok_2008090503002_part1
83
+ 2025-05-08 09:11:29,743 - INFO - id: digibok_2006112300023
84
+ 2025-05-08 09:11:29,747 - INFO - id: digibok_2010111208080_part0
85
+ 2025-05-08 09:11:29,747 - INFO - id: digibok_2008040104074
86
+ 2025-05-08 09:11:29,747 - INFO - id: digibok_2006081000022
87
+ 2025-05-08 09:11:29,748 - INFO - id: digibok_2010053106087_part0
88
+ 2025-05-08 09:11:29,748 - INFO - id: digibok_2006120101074_part0
89
+ 2025-05-08 09:11:29,748 - INFO - id: digibok_2008040400005_part1
90
+ 2025-05-08 09:11:29,748 - INFO - id: digibok_2008040204058
91
+ 2025-05-08 09:11:29,748 - INFO - id: digibok_2007060410002
92
+ 2025-05-08 09:11:29,748 - INFO - id: digibok_2009071703006
93
+ 2025-05-08 09:11:29,748 - INFO - id: digibok_2006120800065_part0
94
+ 2025-05-08 09:11:29,748 - INFO - id: digibok_2010052806029_part2
95
+ 2025-05-08 09:11:29,748 - INFO - id: digibok_2008040300055
96
+ 2025-05-08 09:11:29,748 - INFO - id: digibok_2009061503004_part0
97
+ 2025-05-08 09:11:29,751 - INFO - id: digibok_2006120100001
98
+ 2025-05-08 09:11:29,752 - INFO - id: digibok_2019121748008
99
+ 2025-05-08 09:11:29,753 - INFO - id: digibok_2006120500027
100
+ 2025-05-08 09:11:29,753 - INFO - id: digibok_2008031812001_part0
101
+ 2025-05-08 09:11:29,754 - INFO - id: digibok_2008040200088
102
+ 2025-05-08 09:11:29,754 - INFO - id: digibok_2006112300061
103
+ 2025-05-08 09:11:29,754 - INFO - id: digibok_2006080900029_part0
104
+ 2025-05-08 09:11:29,754 - INFO - id: digibok_2009021603006_part0
105
+ 2025-05-08 09:11:29,755 - INFO - id: digibok_2010070205080
106
+ 2025-05-08 09:11:29,756 - INFO - id: digibok_2009092303053_part2
107
+ 2025-05-08 09:11:29,756 - INFO - id: digibok_2009091503033_part0
108
+ 2025-05-08 09:11:29,756 - INFO - id: digibok_2006111501033
109
+ 2025-05-08 09:11:29,756 - INFO - id: digibok_2008012410001
110
+ 2025-05-08 09:11:29,756 - INFO - id: digibok_2006120801017
111
+ 2025-05-08 09:11:29,756 - INFO - id: digibok_2006112900013_part0
112
+ 2025-05-08 09:11:29,759 - INFO - id: digibok_2006111401047_part0
113
+ 2025-05-08 09:11:29,759 - INFO - id: digibok_2006111500058_part0
114
+ 2025-05-08 09:11:29,760 - INFO - id: digibok_2006112401006
115
+ 2025-05-08 09:11:29,760 - INFO - id: digibok_2008102300057
116
+ 2025-05-08 09:11:29,760 - INFO - id: digibok_2010021812002
117
+ 2025-05-08 09:11:29,760 - INFO - id: digibok_2007073103001_part0
118
+ 2025-05-08 09:11:29,760 - INFO - id: digibok_2006082200023_part0
119
+ 2025-05-08 09:11:29,760 - INFO - id: digibok_2009080404032
120
+ 2025-05-08 09:11:29,760 - INFO - id: digibok_2008020110006_part0
121
+ 2025-05-08 09:11:29,760 - INFO - id: digibok_2010061506028_part0
122
+ 2025-05-08 09:11:29,760 - INFO - id: digibok_2006120600082
123
+ 2025-05-08 09:11:29,763 - INFO - id: digibok_2008040912002_part0
124
+ 2025-05-08 09:11:29,763 - INFO - id: digibok_2007081002003
125
+ 2025-05-08 09:11:29,763 - INFO - id: digibok_2016010408004
126
+ 2025-05-08 09:11:29,763 - INFO - id: digibok_2009091403016_part0
127
+ 2025-05-08 09:11:29,763 - INFO - id: digibok_2010052706047_part0
128
+ 2025-05-08 09:11:29,763 - INFO - id: digibok_2009041412001
129
+ 2025-05-08 09:11:29,763 - INFO - id: digibok_2014120108068
130
+ 2025-05-08 09:11:29,763 - INFO - id: digibok_2009082503028
131
+ 2025-05-08 09:11:29,763 - INFO - id: digibok_2014042338013
132
+ 2025-05-08 09:11:29,763 - INFO - id: digibok_2009061903026_part0
133
+ 2025-05-08 09:11:29,763 - INFO - id: digibok_2009022603020_part1
134
+ 2025-05-08 09:11:29,763 - INFO - id: digibok_2008040300053
135
+ 2025-05-08 09:11:29,763 - INFO - id: digibok_2006112300047_part0
136
+ 2025-05-08 09:11:29,763 - INFO - id: digibok_2007011101055_part0
137
+ 2025-05-08 09:11:29,769 - INFO - id: digibok_2010092803020
138
+ 2025-05-08 09:11:29,770 - INFO - id: digibok_2011050604039
139
+ 2025-05-08 09:11:29,770 - INFO - id: digibok_2006111500013
140
+ 2025-05-08 09:11:29,770 - INFO - id: digibok_2007050200026_part0
141
+ 2025-05-08 09:11:29,770 - INFO - id: digibok_2008040204013
142
+ 2025-05-08 09:11:29,770 - INFO - id: digibok_2010010703003_part0
143
+ 2025-05-08 09:11:29,770 - INFO - id: digibok_2009042810003
144
+ 2025-05-08 09:11:29,773 - INFO - id: digibok_2010052806029_part1
145
+ 2025-05-08 09:11:29,773 - INFO - id: digibok_2009071000007
146
+ 2025-05-08 09:11:29,774 - INFO - id: digibok_2009010503023
147
+ 2025-05-08 09:11:29,774 - INFO - id: digibok_2010052706011
148
+ 2025-05-08 09:11:29,774 - INFO - id: digibok_2009081303007
149
+ 2025-05-08 09:11:29,775 - INFO - id: digibok_2008040104022_part0
150
+ 2025-05-08 09:11:29,776 - INFO - id: digibok_2008042204068
151
+ 2025-05-08 09:11:29,776 - INFO - id: digibok_2009092303065
152
+ 2025-05-08 09:11:29,776 - INFO - id: digibok_2006120401124
153
+ 2025-05-08 09:11:29,777 - INFO - id: digibok_2006120100027
154
+ 2025-05-08 09:11:29,777 - INFO - id: digibok_2006112101043
155
+ 2025-05-08 09:11:29,778 - INFO - id: digibok_2009060800069_part0
156
+ 2025-05-08 09:11:29,778 - INFO - id: digibok_2008110503008
157
+ 2025-05-08 09:11:29,779 - INFO - id: digibok_2006111501005_part0
158
+ 2025-05-08 09:11:29,779 - INFO - id: digibok_2008111103034
159
+ 2025-05-08 09:11:29,779 - INFO - id: digibok_2009061503007_part0
160
+ 2025-05-08 09:11:29,779 - INFO - id: digibok_2010052606064_part0
161
+ 2025-05-08 09:11:29,779 - INFO - id: digibok_2009103000014_part0
162
+ 2025-05-08 09:11:29,779 - INFO - id: digibok_2014020328037
163
+ 2025-05-08 09:11:29,779 - INFO - id: digibok_2006112000072
164
+ 2025-05-08 09:11:29,779 - INFO - id: digibok_2008091603024
165
+ 2025-05-08 09:11:29,779 - INFO - id: digibok_2015013008098
166
+ 2025-05-08 09:11:29,779 - INFO - id: digibok_2006083000030
167
+ 2025-05-08 09:11:29,779 - INFO - id: digibok_2011020906004_part0
168
+ 2025-05-08 09:11:29,779 - INFO - id: digibok_2008033104065_part0
169
+ 2025-05-08 09:11:29,779 - INFO - id: digibok_2008092603006
170
+ 2025-05-08 09:11:29,783 - INFO - id: digibok_2008121603015
171
+ 2025-05-08 09:11:29,783 - INFO - id: digibok_2010110806018
172
+ 2025-05-08 09:11:29,783 - INFO - id: digibok_2006111501012_part0
173
+ 2025-05-08 09:11:29,784 - INFO - id: digibok_2006120101036
174
+ 2025-05-08 09:11:29,784 - INFO - id: digibok_2019121648011
175
+ 2025-05-08 09:11:29,785 - INFO - id: digibok_2010070205140
176
+ 2025-05-08 09:11:29,785 - INFO - id: digibok_2006113000046_part1
177
+ 2025-05-08 09:11:29,785 - INFO - id: digibok_2008011113001_part1
178
+ 2025-05-08 09:11:29,786 - INFO - id: digibok_2006112300039_part0
179
+ 2025-05-08 09:11:29,786 - INFO - id: digibok_2006111400027
180
+ 2025-05-08 09:11:29,787 - INFO - id: digibok_2008050610001_part0
181
+ 2025-05-08 09:11:29,787 - INFO - id: digibok_2006112101014
182
+ 2025-05-08 09:11:29,788 - INFO - id: digibok_2011011906049_part1
183
+ 2025-05-08 09:11:29,788 - INFO - id: digibok_2006112300038_part1
184
+ 2025-05-08 09:11:29,788 - INFO - id: digibok_2010052706050
185
+ 2025-05-08 09:11:29,788 - INFO - id: digibok_2008100603016_part0
186
+ 2025-05-08 09:11:29,788 - INFO - id: digibok_2008010212002
187
+ 2025-05-08 09:11:29,788 - INFO - id: digibok_2008091003001
188
+ 2025-05-08 09:11:29,788 - INFO - id: digibok_2009062204053
189
+ 2025-05-08 09:11:29,788 - INFO - id: digibok_2010071323005
190
+ 2025-05-08 09:11:29,788 - INFO - id: digibok_2010051906059
191
+ 2025-05-08 09:11:29,788 - INFO - id: digibok_2008042110001
192
+ 2025-05-08 09:11:29,788 - INFO - id: digibok_2007102902001
193
+ 2025-05-08 09:11:29,788 - INFO - id: digibok_2006120400057_part0
194
+ 2025-05-08 09:11:29,788 - INFO - id: digibok_2010020503005_part0
195
+ 2025-05-08 09:11:29,788 - INFO - id: digibok_2009081903024
196
+ 2025-05-08 09:11:29,788 - INFO - id: digibok_2009051203032
197
+ 2025-05-08 09:11:29,788 - INFO - id: digibok_2006082800125_part0
198
+ 2025-05-08 09:11:29,795 - INFO - id: digibok_2007073104014
199
+ 2025-05-08 09:11:29,795 - INFO - id: digibok_2011051320022
200
+ 2025-05-08 09:11:29,795 - INFO - id: digibok_2006082200032
201
+ 2025-05-08 09:11:29,795 - INFO - id: digibok_2006120101041_part0
202
+ 2025-05-08 09:11:29,795 - INFO - id: digibok_2010061706084
203
+ 2025-05-08 09:11:29,795 - INFO - id: digibok_2009020203028_part0
204
+ 2025-05-08 09:11:29,795 - INFO - id: digibok_2006111501023
205
+ 2025-05-08 09:11:29,795 - INFO - id: digibok_2007070203001
206
+ 2025-05-08 09:11:29,795 - INFO - id: digibok_2009030403001
207
+ 2025-05-08 09:11:29,795 - INFO - id: digibok_2008042112004
208
+ 2025-05-08 09:11:29,795 - INFO - id: digibok_2008042800013
209
+ 2025-05-08 09:11:29,795 - INFO - id: digibok_2006112101041
210
+ 2025-05-08 09:11:29,795 - INFO - id: digibok_2008040200060
211
+ 2025-05-08 09:11:29,795 - INFO - id: digibok_2007041802003
212
+ 2025-05-08 09:11:29,799 - INFO - id: digibok_2011011905046_part0
213
+ 2025-05-08 09:11:29,799 - INFO - id: digibok_2010021700056_part0
214
+ 2025-05-08 09:11:29,799 - INFO - id: digibok_2006120400056_part0
215
+ 2025-05-08 09:11:29,799 - INFO - id: digibok_2009061503010
216
+ 2025-05-08 09:11:29,799 - INFO - id: digibok_2006111601025
217
+ 2025-05-08 09:11:29,799 - INFO - id: digibok_2006112000014
218
+ 2025-05-08 09:11:29,799 - INFO - id: digibok_2006112300038_part0
219
+ 2025-05-08 09:11:29,799 - INFO - id: digibok_2009020200052_part0
220
+ 2025-05-08 09:11:29,799 - INFO - id: digibok_2008090303002
221
+ 2025-05-08 09:11:29,802 - INFO - id: digibok_2006112901014_part1
222
+ 2025-05-08 09:11:29,803 - INFO - id: digibok_2008040201013
223
+ 2025-05-08 09:11:29,803 - INFO - id: digibok_2009092303064
224
+ 2025-05-08 09:11:29,803 - INFO - id: digibok_2008010713001_part2
225
+ 2025-05-08 09:11:29,803 - INFO - id: digibok_2006112000030
226
+ 2025-05-08 09:11:29,803 - INFO - id: digibok_2010052706013
227
+ 2025-05-08 09:11:29,803 - INFO - id: digibok_2011011905059
228
+ 2025-05-08 09:11:29,805 - INFO - id: digibok_2006112200023_part1
229
+ 2025-05-08 09:11:29,805 - INFO - id: digibok_2008020103003_part0
230
+ 2025-05-08 09:11:29,806 - INFO - id: digibok_2013061024001_part0
231
+ 2025-05-08 09:11:29,806 - INFO - id: digibok_2009042203002
232
+ 2025-05-08 09:11:29,806 - INFO - id: digibok_2006112201009_part0
233
+ 2025-05-08 09:11:29,808 - INFO - id: digibok_2006112300027
234
+ 2025-05-08 09:11:29,808 - INFO - id: digibok_2009071303008
235
+ 2025-05-08 09:11:29,809 - INFO - id: digibok_2008012813001_part1
236
+ 2025-05-08 09:11:29,809 - INFO - id: digibok_2008111303022
237
+ 2025-05-08 09:11:29,810 - INFO - id: digibok_2006112101013
238
+ 2025-05-08 09:11:29,810 - INFO - id: digibok_2008012312001_part1
239
+ 2025-05-08 09:11:29,810 - INFO - id: digibok_2008121603019
240
+ 2025-05-08 09:11:29,811 - INFO - id: digibok_2008040104091
241
+ 2025-05-08 09:11:29,811 - INFO - id: digibok_2008040904002
242
+ 2025-05-08 09:11:29,811 - INFO - id: digibok_2007082712002
243
+ 2025-05-08 09:11:29,811 - INFO - id: digibok_2010011903026_part0
244
+ 2025-05-08 09:11:29,811 - INFO - id: digibok_2011051320019
245
+ 2025-05-08 09:11:29,811 - INFO - id: digibok_2006111700069
246
+ 2025-05-08 09:11:29,811 - INFO - id: digibok_2011051310001
247
+ 2025-05-08 09:11:29,811 - INFO - id: digibok_2008061904128
248
+ 2025-05-08 09:11:29,811 - INFO - id: digibok_2006121400088
249
+ 2025-05-08 09:11:29,811 - INFO - id: digibok_2006120500047
250
+ 2025-05-08 09:11:29,814 - INFO - id: digibok_2011011320011_part0
251
+ 2025-05-08 09:11:29,814 - INFO - id: digibok_2006121300075
252
+ 2025-05-08 09:11:29,814 - INFO - id: digibok_2008040904008_part0
253
+ 2025-05-08 09:11:29,815 - INFO - id: digibok_2011050604033_part0
254
+ 2025-05-08 09:11:29,816 - INFO - id: digibok_2010053106091
255
+ 2025-05-08 09:11:29,816 - INFO - id: digibok_2006112801000_part1
256
+ 2025-05-08 09:11:29,816 - INFO - id: digibok_2009043012001
257
+ 2025-05-08 09:11:29,816 - INFO - id: digibok_2006111500058_part2
258
+ 2025-05-08 09:11:29,816 - INFO - id: digibok_2014072908110
259
+ 2025-05-08 09:11:29,816 - INFO - id: digibok_2006081000032
260
+ 2025-05-08 09:11:29,816 - INFO - id: digibok_2012092108074_part0
261
+ 2025-05-08 09:11:29,816 - INFO - id: digibok_2008010203002
262
+ 2025-05-08 09:11:29,816 - INFO - id: digibok_2010021803034
263
+ 2025-05-08 09:11:29,819 - INFO - id: digibok_2008100803016_part0
264
+ 2025-05-08 09:11:29,819 - INFO - id: digibok_2011032520038
265
+ 2025-05-08 09:11:29,819 - INFO - id: digibok_2008040804081
266
+ 2025-05-08 09:11:29,819 - INFO - id: digibok_2007052510001_part0
267
+ 2025-05-08 09:11:29,819 - INFO - id: digibok_2010110206064
268
+ 2025-05-08 09:11:29,819 - INFO - id: digibok_2006111400055
269
+ 2025-05-08 09:11:29,819 - INFO - id: digibok_2006083100093
270
+ 2025-05-08 09:11:29,819 - INFO - id: digibok_2006112300030
271
+ 2025-05-08 09:11:29,819 - INFO - id: digibok_2009092303053_part0
272
+ 2025-05-08 09:11:29,819 - INFO - id: digibok_2006081700019
273
+ 2025-05-08 09:11:29,819 - INFO - id: digibok_2011052320006
274
+ 2025-05-08 09:11:29,819 - INFO - id: digibok_2013110508169
275
+ 2025-05-08 09:11:29,819 - INFO - id: digibok_2006112901003
276
+ 2025-05-08 09:11:29,819 - INFO - id: digibok_2008040104016
277
+ 2025-05-08 09:11:29,819 - INFO - id: digibok_2006111400038_part0
278
+ 2025-05-08 09:11:29,826 - INFO - id: digibok_2009020203018
279
+ 2025-05-08 09:11:29,826 - INFO - id: digibok_2006112000063
280
+ 2025-05-08 09:11:29,827 - INFO - id: digibok_2008010302001_part0
281
+ 2025-05-08 09:11:29,827 - INFO - id: digibok_2010012603006
282
+ 2025-05-08 09:11:29,827 - INFO - id: digibok_2007031201003_part0
283
+ 2025-05-08 09:11:29,827 - INFO - id: digibok_2006112901014_part0
284
+ 2025-05-08 09:11:29,829 - INFO - id: digibok_2006112101016_part0
285
+ 2025-05-08 09:11:29,829 - INFO - id: digibok_2006111400032
286
+ 2025-05-08 09:11:29,829 - INFO - id: digibok_2006081800011
287
+ 2025-05-08 09:11:29,829 - INFO - id: digibok_2006112201011
288
+ 2025-05-08 09:11:29,829 - INFO - id: digibok_2008121603002
289
+ 2025-05-08 09:11:29,829 - INFO - id: digibok_2009101503004_part0
290
+ 2025-05-08 09:11:29,831 - INFO - id: digibok_2006112101036
291
+ 2025-05-08 09:11:29,831 - INFO - id: digibok_2009030403030_part0
292
+ 2025-05-08 09:11:29,831 - INFO - id: digibok_2006112101017_part0
293
+ 2025-05-08 09:11:29,832 - INFO - id: digibok_2010062303033_part0
294
+ 2025-05-08 09:11:29,832 - INFO - id: digibok_2014071506052
295
+ 2025-05-08 09:11:29,832 - INFO - id: digibok_2006083100027
296
+ 2025-05-08 09:11:29,832 - INFO - id: digibok_2006111501021_part0
297
+ 2025-05-08 09:11:29,832 - INFO - id: digibok_2010062420005
298
+ 2025-05-08 09:11:29,832 - INFO - id: digibok_2006112000036
299
+ 2025-05-08 09:11:29,832 - INFO - id: digibok_2008091103001
300
+ 2025-05-08 09:11:29,834 - INFO - id: digibok_2006112300038_part2
301
+ 2025-05-08 09:11:29,835 - INFO - id: digibok_2009081804070
302
+ 2025-05-08 09:11:29,836 - INFO - id: digibok_2008040200081
303
+ 2025-05-08 09:11:29,836 - INFO - id: digibok_2009110600019
304
+ 2025-05-08 09:11:29,837 - INFO - id: digibok_2008082012002
305
+ 2025-05-08 09:11:29,837 - INFO - id: digibok_2007020101113
306
+ 2025-05-08 09:11:29,838 - INFO - id: digibok_2009080603007_part0
307
+ 2025-05-08 09:11:29,839 - INFO - id: digibok_2009031103016_part0
308
+ 2025-05-08 09:11:29,839 - INFO - id: digibok_2008090503002_part0
309
+ 2025-05-08 09:11:29,839 - INFO - id: digibok_2006111701001
310
+ 2025-05-08 09:11:29,839 - INFO - id: digibok_2010061706083
311
+ 2025-05-08 09:11:29,840 - INFO - id: digibok_2009092203020
312
+ 2025-05-08 09:11:29,840 - INFO - id: digibok_2006113000039_part0
313
+ 2025-05-08 09:11:29,841 - INFO - id: digibok_2009012903041
314
+ 2025-05-08 09:11:29,841 - INFO - id: digibok_2008101310004_part0
315
+ 2025-05-08 09:11:29,842 - INFO - id: digibok_2009052603029
316
+ 2025-05-08 09:11:29,842 - INFO - id: digibok_2006082800055
317
+ 2025-05-08 09:11:29,842 - INFO - id: digibok_2011051220009
318
+ 2025-05-08 09:11:29,842 - INFO - id: digibok_2010111008053
319
+ 2025-05-08 09:11:29,842 - INFO - id: digibok_2020060328011
320
+ 2025-05-08 09:11:29,842 - INFO - id: digibok_2006081700053
321
+ 2025-05-08 09:11:29,842 - INFO - id: digibok_2008040204088_part0
322
+ 2025-05-08 09:11:29,842 - INFO - id: digibok_2008040204002
323
+ 2025-05-08 09:11:29,842 - INFO - id: digibok_2006081500063
324
+ 2025-05-08 09:11:29,842 - INFO - id: digibok_2006112000068_part0
325
+ 2025-05-08 09:11:29,842 - INFO - id: digibok_2006111500058_part3
326
+ 2025-05-08 09:11:29,847 - INFO - id: digibok_2008033104055
327
+ 2025-05-08 09:11:29,847 - INFO - id: digibok_2015110407016_part0
328
+ 2025-05-08 09:11:29,848 - INFO - id: digibok_2006112101027
329
+ 2025-05-08 09:11:29,849 - INFO - id: digibok_2020022048004
330
+ 2025-05-08 09:11:29,849 - INFO - id: digibok_2009030403020
331
+ 2025-05-08 09:11:29,849 - INFO - id: digibok_2006112301023
332
+ 2025-05-08 09:11:29,849 - INFO - id: digibok_2015021006027
333
+ 2025-05-08 09:11:29,849 - INFO - id: digibok_2009082403014
334
+ 2025-05-08 09:11:29,849 - INFO - id: digibok_2010070205095
335
+ 2025-05-08 09:11:29,849 - INFO - id: digibok_2006082800057
336
+ 2025-05-08 09:11:29,850 - INFO - id: digibok_2010052606052_part0
337
+ 2025-05-08 09:11:29,850 - INFO - id: digibok_2006111501024
338
+ 2025-05-08 09:11:29,850 - INFO - id: digibok_2006112001065
339
+ 2025-05-08 09:11:29,850 - INFO - id: digibok_2011011712001_part0
340
+ 2025-05-08 09:11:29,851 - INFO - id: digibok_2009031003041_part0
341
+ 2025-05-08 09:11:29,851 - INFO - id: digibok_2008111103007
342
+ 2025-05-08 09:11:29,852 - INFO - id: digibok_2006081800017
343
+ 2025-05-08 09:11:29,853 - INFO - id: digibok_2006113001002_part1
344
+ 2025-05-08 09:11:29,853 - INFO - id: digibok_2012110805019
345
+ 2025-05-08 09:11:29,853 - INFO - id: digibok_2007010400102
346
+ 2025-05-08 09:11:29,853 - INFO - id: digibok_2007021301050
347
+ 2025-05-08 09:11:29,854 - INFO - id: digibok_2006082800059
348
+ 2025-05-08 09:11:29,854 - INFO - id: digibok_2006112101026
349
+ 2025-05-08 09:11:29,855 - INFO - id: digibok_2006111700004
350
+ 2025-05-08 09:11:29,855 - INFO - id: digibok_2006112200037
351
+ 2025-05-08 09:11:29,855 - INFO - id: digibok_2008111912002
352
+ 2025-05-08 09:11:29,855 - INFO - id: digibok_2008102300078
353
+ 2025-05-08 09:11:29,855 - INFO - id: digibok_2008040200082
354
+ 2025-05-08 09:11:29,855 - INFO - id: digibok_2009011203010_part0
355
+ 2025-05-08 09:11:29,855 - INFO - id: digibok_2014020328038
356
+ 2025-05-08 09:11:29,855 - INFO - id: digibok_2010021700061
357
+ 2025-05-08 09:11:29,855 - INFO - id: digibok_2006112201001
358
+ 2025-05-08 09:11:29,855 - INFO - id: digibok_2006111700064_part0
359
+ 2025-05-08 09:11:29,858 - INFO - id: digibok_2011050604089
360
+ 2025-05-08 09:11:29,858 - INFO - id: digibok_2010052706005
361
+ 2025-05-08 09:11:29,858 - INFO - id: digibok_2010052806010
362
+ 2025-05-08 09:11:29,858 - INFO - id: digibok_2006112001036
363
+ 2025-05-08 09:11:29,858 - INFO - id: digibok_2015012208070_part0
364
+ 2025-05-08 09:11:29,858 - INFO - id: digibok_2006111500059_part0
365
+ 2025-05-08 09:11:29,858 - INFO - id: digibok_2014021807176
366
+ 2025-05-08 09:11:29,858 - INFO - id: digibok_2010110906051
367
+ 2025-05-08 09:11:29,858 - INFO - id: digibok_2006111400053_part0
368
+ 2025-05-08 09:11:29,858 - INFO - id: digibok_2018050848076
369
+ 2025-05-08 09:11:29,858 - INFO - id: digibok_2007080103001
370
+ 2025-05-08 09:11:29,858 - INFO - id: digibok_2008111903032_part0
371
+ 2025-05-08 09:11:29,862 - INFO - id: digibok_2015010648113_part2
372
+ 2025-05-08 09:11:29,862 - INFO - id: digibok_2008111103037
373
+ 2025-05-08 09:11:29,862 - INFO - id: digibok_2009082103011_part0
374
+ 2025-05-08 09:11:29,862 - INFO - id: digibok_2006113000048_part0
375
+ 2025-05-08 09:11:29,862 - INFO - id: digibok_2014020328039
376
+ 2025-05-08 09:11:29,862 - INFO - id: digibok_2008040904008_part1
377
+ 2025-05-08 09:11:29,862 - INFO - id: digibok_2009050503023_part0
378
+ 2025-05-08 09:11:29,862 - INFO - id: digibok_2006082800018
379
+ 2025-05-08 09:11:29,862 - INFO - id: digibok_2010021803049_part0
380
+ 2025-05-08 09:11:29,862 - INFO - id: digibok_2006112001000
381
+ 2025-05-08 09:11:29,862 - INFO - id: digibok_2006112000017
382
+ 2025-05-08 09:11:29,874 - INFO - id: digibok_2006121101033
383
+ 2025-05-08 09:11:29,874 - INFO - id: digibok_2006111500057
384
+ 2025-05-08 09:11:29,874 - INFO - id: digibok_2013040824075
385
+ 2025-05-08 09:11:29,874 - INFO - id: digibok_2009050403004_part0
386
+ 2025-05-08 09:11:29,874 - INFO - id: digibok_2008101704022_part0
387
+ 2025-05-08 09:11:29,874 - INFO - id: digibok_2006112000075_part0
388
+ 2025-05-08 09:11:29,874 - INFO - id: digibok_2007101812001
389
+ 2025-05-08 09:11:29,874 - INFO - id: digibok_2009011203024
390
+ 2025-05-08 09:11:29,874 - INFO - id: digibok_2009080600068
391
+ 2025-05-08 09:11:29,874 - INFO - id: digibok_2006112000061
392
+ 2025-05-08 09:11:29,874 - INFO - id: digibok_2006120101038
393
+ 2025-05-08 09:11:29,874 - INFO - id: digibok_2010011113001
394
+ 2025-05-08 09:11:29,874 - INFO - id: digibok_2015081948162
395
+ 2025-05-08 09:11:29,874 - INFO - id: digibok_2010070206111
396
+ 2025-05-08 09:11:29,874 - INFO - id: digibok_2009071303016
397
+ 2025-05-08 09:11:29,874 - INFO - id: digibok_2010021803053
398
+ 2025-05-08 09:11:29,885 - INFO - id: digibok_2006083000050
399
+ 2025-05-08 09:11:29,886 - INFO - id: digibok_2008040200119
400
+ 2025-05-08 09:11:29,887 - INFO - id: digibok_2011020906004_part1
401
+ 2025-05-08 09:11:29,887 - INFO - id: digibok_2007073104012
402
+ 2025-05-08 09:11:29,887 - INFO - id: digibok_2006112201043
403
+ 2025-05-08 09:11:29,887 - INFO - id: digibok_2006112000002
404
+ 2025-05-08 09:11:29,887 - INFO - id: digibok_2008040801018
405
+ 2025-05-08 09:11:29,890 - INFO - id: digibok_2010011103018_part0
406
+ 2025-05-08 09:11:29,890 - INFO - id: digibok_2010062306101_part0
407
+ 2025-05-08 09:11:29,890 - INFO - id: digibok_2014021807002_part0
408
+ 2025-05-08 09:11:29,890 - INFO - id: digibok_2006083100016
409
+ 2025-05-08 09:11:29,890 - INFO - id: digibok_2008092300050_part0
410
+ 2025-05-08 09:11:29,890 - INFO - id: digibok_2018050848074
411
+ 2025-05-08 09:11:29,890 - INFO - id: digibok_2010071323006
412
+ 2025-05-08 09:11:29,890 - INFO - id: digibok_2008111103043
413
+ 2025-05-08 09:11:29,890 - INFO - id: digibok_2006112300040
414
+ 2025-05-08 09:11:29,890 - INFO - id: digibok_2007073002002
415
+ 2025-05-08 09:11:29,890 - INFO - id: digibok_2009011203010_part1
416
+ 2025-05-08 09:11:29,890 - INFO - id: digibok_2008050713001_part0
417
+ 2025-05-08 09:11:29,890 - INFO - id: digibok_2008100803011
418
+ 2025-05-08 09:11:29,890 - INFO - id: digibok_2010021603003
419
+ 2025-05-08 09:11:29,890 - INFO - id: digibok_2008050604038_part1
420
+ 2025-05-08 09:11:29,890 - INFO - id: digibok_2008120412002
421
+ 2025-05-08 09:11:29,890 - INFO - id: digibok_2008092203007_part0
422
+ 2025-05-08 09:11:29,890 - INFO - id: digibok_2011011905057_part0
423
+ 2025-05-08 09:11:29,890 - INFO - id: digibok_2016090948172
424
+ 2025-05-08 09:11:29,900 - INFO - id: digibok_2006112301025_part0
425
+ 2025-05-08 09:11:29,900 - INFO - id: digibok_2010053106089
426
+ 2025-05-08 09:11:29,902 - INFO - id: digibok_2010042106109
427
+ 2025-05-08 09:11:29,902 - INFO - id: digibok_2006111701033
428
+ 2025-05-08 09:11:29,902 - INFO - id: digibok_2009082403016_part0
429
+ 2025-05-08 09:11:29,904 - INFO - id: digibok_2009061104016
430
+ 2025-05-08 09:11:29,904 - INFO - id: digibok_2008063010001_part1
431
+ 2025-05-08 09:11:29,904 - INFO - id: digibok_2008103110002
432
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2006122000014
433
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2006112201034
434
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2011011906049_part2
435
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2008040200109
436
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2010011113002
437
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2006112301029
438
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2010110805011
439
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2008040200086_part0
440
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2009021603006_part2
441
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2006111500044_part0
442
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2018030148057
443
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2020060328001
444
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2006111400039_part0
445
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2014040348010
446
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2010021803021
447
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2010011512001
448
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2008090802001
449
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2006112401023_part0
450
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2008100910001_part0
451
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2006111500051_part0
452
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2006112000023
453
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2010021700053
454
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2009020203020_part0
455
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2010082710001
456
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2006081500058
457
+ 2025-05-08 09:11:29,906 - INFO - id: digibok_2010110806028
458
+ 2025-05-08 09:11:29,916 - INFO - id: digibok_2010120606054
459
+ 2025-05-08 09:11:29,916 - INFO - id: digibok_2014021807010_part0
460
+ 2025-05-08 09:11:29,916 - INFO - id: digibok_2009050403003_part0
461
+ 2025-05-08 09:11:29,916 - INFO - id: digibok_2009072703024
462
+ 2025-05-08 09:11:29,919 - INFO - id: digibok_2010042706049
463
+ 2025-05-08 09:11:29,919 - INFO - id: digibok_2009101310001_part1
464
+ 2025-05-08 09:11:29,919 - INFO - id: digibok_2008100603002
465
+ 2025-05-08 09:11:29,919 - INFO - id: digibok_2010071323003
466
+ 2025-05-08 09:11:29,921 - INFO - id: digibok_2010020203007
467
+ 2025-05-08 09:11:29,921 - INFO - id: digibok_2006112300056_part0
468
+ 2025-05-08 09:11:29,921 - INFO - id: digibok_2007011501002_part1
469
+ 2025-05-08 09:11:29,924 - INFO - id: digibok_2010011313001
470
+ 2025-05-08 09:11:29,924 - INFO - id: digibok_2011011906043_part0
471
+ 2025-05-08 09:11:29,924 - INFO - id: digibok_2009051310002
472
+ 2025-05-08 09:11:29,924 - INFO - id: digibok_2010063006065
473
+ 2025-05-08 09:11:29,924 - INFO - id: digibok_2008040204061
474
+ 2025-05-08 09:11:29,924 - INFO - id: digibok_2009031803004
475
+ 2025-05-08 09:11:29,924 - INFO - id: digibok_2010041903028
476
+ 2025-05-08 09:11:29,924 - INFO - id: digibok_2009011903008_part0
477
+ 2025-05-08 09:11:29,924 - INFO - id: digibok_2011021808101_part2
478
+ 2025-05-08 09:11:29,924 - INFO - id: digibok_2008090303004
479
+ 2025-05-08 09:11:29,924 - INFO - id: digibok_2009021603006_part1
480
+ 2025-05-08 09:11:29,924 - INFO - id: digibok_2010052706008_part0
481
+ 2025-05-08 09:11:29,924 - INFO - id: digibok_2006112001051_part0
482
+ 2025-05-08 09:11:29,924 - INFO - id: digibok_2009072003009_part0
483
+ 2025-05-08 09:11:29,924 - INFO - id: digibok_2010021803048
484
+ 2025-05-08 09:11:29,924 - INFO - id: digibok_2008040201032
485
+ 2025-05-08 09:11:29,924 - INFO - id: digibok_2008040304028
486
+ 2025-05-08 09:11:29,924 - INFO - id: digibok_2006111700064_part1
487
+ 2025-05-08 09:11:29,932 - INFO - id: digibok_2006111701032
488
+ 2025-05-08 09:11:29,932 - INFO - id: digibok_2006083000039_part0
489
+ 2025-05-08 09:11:29,932 - INFO - id: digibok_2011021808101_part5
490
+ 2025-05-08 09:11:29,932 - INFO - id: digibok_2006112201000
491
+ 2025-05-08 09:11:29,932 - INFO - id: digibok_2011021808101_part0
492
+ 2025-05-08 09:11:29,932 - INFO - id: digibok_2008070110002_part0
493
+ 2025-05-08 09:11:29,936 - INFO - id: digibok_2006082100022
494
+ 2025-05-08 09:11:29,936 - INFO - id: digibok_2008042204115
495
+ 2025-05-08 09:11:29,936 - INFO - id: digibok_2008092912003
496
+ 2025-05-08 09:11:29,936 - INFO - id: digibok_2006081800029
497
+ 2025-05-08 09:11:29,936 - INFO - id: digibok_2009080603009_part1
498
+ 2025-05-08 09:11:29,936 - INFO - id: digibok_2008041412001_part0
499
+ 2025-05-08 09:11:29,940 - INFO - id: digibok_2008040300005
500
+ 2025-05-08 09:11:29,940 - INFO - id: digibok_2011051604029
501
+ 2025-05-08 09:11:29,940 - INFO - id: digibok_2006120500028
502
+ 2025-05-08 09:11:29,940 - INFO - id: digibok_2006111601017
503
+ 2025-05-08 09:11:29,940 - INFO - id: digibok_2010112306065
504
+ 2025-05-08 09:11:29,940 - INFO - id: digibok_2010070606112_part0
505
+ 2025-05-08 09:11:29,940 - INFO - id: digibok_2006113000058_part0
506
+ 2025-05-08 09:11:29,940 - INFO - id: digibok_2007122712001_part2
507
+ 2025-05-08 09:11:29,940 - INFO - id: digibok_2009091403001_part1
508
+ 2025-05-08 09:11:29,940 - INFO - id: digibok_2010052706021
509
+ 2025-05-08 09:11:29,940 - INFO - id: digibok_2009011603019_part0
510
+ 2025-05-08 09:11:29,940 - INFO - id: digibok_2008040904008_part4
511
+ 2025-05-08 09:11:29,940 - INFO - id: digibok_2009082700002_part0
512
+ 2025-05-08 09:11:29,940 - INFO - id: digibok_2009051212001_part0
513
+ 2025-05-08 09:11:29,940 - INFO - id: digibok_2006081100017
514
+ 2025-05-08 09:11:29,940 - INFO - id: digibok_2006111401049
515
+ 2025-05-08 09:11:29,940 - INFO - id: digibok_2006081700005_part0
516
+ 2025-05-08 09:11:29,949 - INFO - id: digibok_2008040904008_part5
517
+ 2025-05-08 09:11:29,949 - INFO - id: digibok_2009072703031_part0
518
+ 2025-05-08 09:11:29,949 - INFO - id: digibok_2009092203019_part0
519
+ 2025-05-08 09:11:29,949 - INFO - id: digibok_2006081600029_part0
520
+ 2025-05-08 09:11:29,949 - INFO - id: digibok_2020042948011
521
+ 2025-05-08 09:11:29,949 - INFO - id: digibok_2006121201065_part0
522
+ 2025-05-08 09:11:29,949 - INFO - id: digibok_2008042900015
523
+ 2025-05-08 09:11:29,949 - INFO - id: digibok_2008090303001
524
+ 2025-05-08 09:11:29,952 - INFO - id: digibok_2011011320012_part0
525
+ 2025-05-08 09:11:29,952 - INFO - id: digibok_2010053106075
526
+ 2025-05-08 09:11:29,952 - INFO - id: digibok_2008040904008_part2
527
+ 2025-05-08 09:11:29,952 - INFO - id: digibok_2010020903020
528
+ 2025-05-08 09:11:29,952 - INFO - id: digibok_2006111501020
529
+ 2025-05-08 09:11:29,952 - INFO - id: digibok_2009012803023
530
+ 2025-05-08 09:11:29,952 - INFO - id: digibok_2014090108096
531
+ 2025-05-08 09:11:29,952 - INFO - id: digibok_2008041112001
532
+ 2025-05-08 09:11:29,952 - INFO - id: digibok_2006112001040_part0
533
+ 2025-05-08 09:11:29,952 - INFO - id: digibok_2010032303038
534
+ 2025-05-08 09:11:29,952 - INFO - id: digibok_2008110503004
535
+ 2025-05-08 09:11:29,952 - INFO - id: digibok_2008011113001_part0
536
+ 2025-05-08 09:11:29,957 - INFO - id: digibok_2010060806057_part0
537
+ 2025-05-08 09:11:29,957 - INFO - id: digibok_2010061506031_part0
538
+ 2025-05-08 09:11:29,957 - INFO - id: digibok_2009070601033
539
+ 2025-05-08 09:11:29,957 - INFO - id: digibok_2008120212001
540
+ 2025-05-08 09:11:29,957 - INFO - id: digibok_2010020503006_part0
541
+ 2025-05-08 09:11:29,957 - INFO - id: digibok_2009091503026
542
+ 2025-05-08 09:11:29,957 - INFO - id: digibok_2011040706085
543
+ 2025-05-08 09:11:29,957 - INFO - id: digibok_2006081100027_part0
544
+ 2025-05-08 09:11:29,957 - INFO - id: digibok_2006112801000_part2
545
+ 2025-05-08 09:11:29,957 - INFO - id: digibok_2009091503028_part0
546
+ 2025-05-08 09:11:29,957 - INFO - id: digibok_2013061108130
547
+ 2025-05-08 09:11:29,957 - INFO - id: digibok_2006083000019
548
+ 2025-05-08 09:11:29,957 - INFO - id: digibok_2010052806031_part1
549
+ 2025-05-08 09:11:29,957 - INFO - id: digibok_2006083000051
550
+ 2025-05-08 09:11:29,957 - INFO - id: digibok_2008110603003
551
+ 2025-05-08 09:11:29,957 - INFO - id: digibok_2006090100031
552
+ 2025-05-08 09:11:29,957 - INFO - id: digibok_2008121603001
553
+ 2025-05-08 09:11:29,957 - INFO - id: digibok_2009022603027
554
+ 2025-05-08 09:11:29,957 - INFO - id: digibok_2006081400005_part0
555
+ 2025-05-08 09:11:29,957 - INFO - id: digibok_2010052606045
556
+ 2025-05-08 09:11:29,957 - INFO - id: digibok_2006112001051_part1
557
+ 2025-05-08 09:11:29,957 - INFO - id: digibok_2010062306056_part1
558
+ 2025-05-08 09:11:29,957 - INFO - id: digibok_2010070605049
559
+ 2025-05-08 09:11:29,965 - INFO - id: digibok_2007073002001
560
+ 2025-05-08 09:11:29,965 - INFO - id: digibok_2006112301011
561
+ 2025-05-08 09:11:29,965 - INFO - id: digibok_2006112901038_part0
562
+ 2025-05-08 09:11:29,965 - INFO - id: digibok_2009081303019_part0
563
+ 2025-05-08 09:11:29,965 - INFO - id: digibok_2007062210011
564
+ 2025-05-08 09:11:29,965 - INFO - id: digibok_2009030603015_part0
565
+ 2025-05-08 09:11:29,965 - INFO - id: digibok_2007062212001
566
+ 2025-05-08 09:11:29,965 - INFO - id: digibok_2014070708077
567
+ 2025-05-08 09:11:29,965 - INFO - id: digibok_2010053106083_part0
568
+ 2025-05-08 09:11:29,965 - INFO - id: digibok_2008102912003
569
+ 2025-05-08 09:11:29,965 - INFO - id: digibok_2010052706060
570
+ 2025-05-08 09:11:29,969 - INFO - id: digibok_2020070748506
571
+ 2025-05-08 09:11:29,969 - INFO - id: digibok_2006111701012
572
+ 2025-05-08 09:11:29,969 - INFO - id: digibok_2008112403032
573
+ 2025-05-08 09:11:29,969 - INFO - id: digibok_2014081405094_part0
574
+ 2025-05-08 09:11:29,969 - INFO - id: digibok_2009061903033
575
+ 2025-05-08 09:11:29,969 - INFO - id: digibok_2010052706010
576
+ 2025-05-08 09:11:29,969 - INFO - id: digibok_2009072703033
577
+ 2025-05-08 09:11:29,969 - INFO - id: digibok_2008070202001_part0
578
+ 2025-05-08 09:11:29,969 - INFO - id: digibok_2008112003013_part0
579
+ 2025-05-08 09:11:29,969 - INFO - id: digibok_2008041503001
580
+ 2025-05-08 09:11:29,969 - INFO - id: digibok_2009051403015
581
+ 2025-05-08 09:11:29,969 - INFO - id: digibok_2008100603016_part1
582
+ 2025-05-08 09:11:29,973 - INFO - id: digibok_2006111500058_part1
583
+ 2025-05-08 09:11:29,973 - INFO - id: digibok_2009042303022
584
+ 2025-05-08 09:11:29,973 - INFO - id: digibok_2013101806018_part0
585
+ 2025-05-08 09:11:29,973 - INFO - id: digibok_2006111701055_part0
586
+ 2025-05-08 09:11:29,973 - INFO - id: digibok_2013042307039
587
+ 2025-05-08 09:11:29,973 - INFO - id: digibok_2008111103061_part0
588
+ 2025-05-08 09:11:29,973 - INFO - id: digibok_2010052806020_part0
589
+ 2025-05-08 09:11:29,973 - INFO - id: digibok_2007073110001
590
+ 2025-05-08 09:11:29,973 - INFO - id: digibok_2010083010001
591
+ 2025-05-08 09:11:29,973 - INFO - id: digibok_2011011906049_part0
592
+ 2025-05-08 09:11:29,973 - INFO - id: digibok_2010081203019_part0
593
+ 2025-05-08 09:11:29,973 - INFO - id: digibok_2006112101040
594
+ 2025-05-08 09:11:29,973 - INFO - id: digibok_2014102306003_part0
595
+ 2025-05-08 09:11:29,973 - INFO - id: digibok_2009082503016
596
+ 2025-05-08 09:11:29,973 - INFO - id: digibok_2011051604014
597
+ 2025-05-08 09:11:29,973 - INFO - id: digibok_2008031112003
598
+ 2025-05-08 09:11:29,973 - INFO - id: digibok_2018020148087
599
+ 2025-05-08 09:11:29,973 - INFO - id: digibok_2006083000064
600
+ 2025-05-08 09:11:29,973 - INFO - id: digibok_2006112900002_part3
601
+ 2025-05-08 09:11:29,981 - INFO - id: digibok_2009101310001_part0
602
+ 2025-05-08 09:11:29,981 - INFO - id: digibok_2010011413001
603
+ 2025-05-08 09:11:29,981 - INFO - id: digibok_2011041820028
604
+ 2025-05-08 09:11:29,981 - INFO - id: digibok_2007042604002_part0
605
+ 2025-05-08 09:11:29,981 - INFO - id: digibok_2009021603006_part3
606
+ 2025-05-08 09:11:29,981 - INFO - id: digibok_2006081800007
607
+ 2025-05-08 09:11:29,981 - INFO - id: digibok_2008011113001_part2
608
+ 2025-05-08 09:11:29,981 - INFO - id: digibok_2008033104042
609
+ 2025-05-08 09:11:29,981 - INFO - id: digibok_2008112403029
610
+ 2025-05-08 09:11:29,981 - INFO - id: digibok_2006112401022
611
+ 2025-05-08 09:11:29,985 - INFO - id: digibok_2011021808101_part1
612
+ 2025-05-08 09:11:29,985 - INFO - id: digibok_2006083100015_part0
613
+ 2025-05-08 09:11:29,985 - INFO - id: digibok_2006120700077
614
+ 2025-05-08 09:11:29,985 - INFO - id: digibok_2006112201036
615
+ 2025-05-08 09:11:29,985 - INFO - id: digibok_2008112403015_part0
616
+ 2025-05-08 09:11:29,987 - INFO - id: digibok_2007020500004_part0
617
+ 2025-05-08 09:11:29,987 - INFO - id: digibok_2006112900002_part1
618
+ 2025-05-08 09:11:29,988 - INFO - id: digibok_2010070205132
619
+ 2025-05-08 09:11:29,989 - INFO - id: digibok_2008082010006
620
+ 2025-05-08 09:11:29,989 - INFO - id: digibok_2006111601036
621
+ 2025-05-08 09:11:29,990 - INFO - id: digibok_2006113001047_part0
622
+ 2025-05-08 09:11:29,990 - INFO - id: digibok_2006083100052
623
+ 2025-05-08 09:11:29,990 - INFO - id: digibok_2008092203001
624
+ 2025-05-08 09:11:29,990 - INFO - id: digibok_2006112301028_part0
625
+ 2025-05-08 09:11:29,990 - INFO - id: digibok_2010021603015_part0
626
+ 2025-05-08 09:11:29,990 - INFO - id: digibok_2007072603004
627
+ 2025-05-08 09:11:29,990 - INFO - id: digibok_2020070748508
628
+ 2025-05-08 09:11:29,990 - INFO - id: digibok_2010110806068
629
+ 2025-05-08 09:11:29,990 - INFO - id: digibok_2011050604073
630
+ 2025-05-08 09:11:29,990 - INFO - id: digibok_2006120501023
631
+ 2025-05-08 09:11:29,990 - INFO - id: digibok_2009011903018
632
+ 2025-05-08 09:11:29,990 - INFO - id: digibok_2020020548503
633
+ 2025-05-08 09:11:29,990 - INFO - id: digibok_2010062306053
634
+ 2025-05-08 09:11:29,990 - INFO - id: digibok_2008091603035
635
+ 2025-05-08 09:11:29,990 - INFO - id: digibok_2007083110001
636
+ 2025-05-08 09:11:29,990 - INFO - id: digibok_2010062420006
637
+ 2025-05-08 09:11:29,990 - INFO - id: digibok_2009072703030_part0
638
+ 2025-05-08 09:11:29,990 - INFO - id: digibok_2006121201009
639
+ 2025-05-08 09:11:29,990 - INFO - id: digibok_2008092412001
640
+ 2025-05-08 09:11:29,990 - INFO - id: digibok_2010071423006
641
+ 2025-05-08 09:11:29,998 - INFO - id: digibok_2006111700066
642
+ 2025-05-08 09:11:29,998 - INFO - id: digibok_2009022603031
643
+ 2025-05-08 09:11:29,998 - INFO - id: digibok_2008012803001_part0
644
+ 2025-05-08 09:11:29,998 - INFO - id: digibok_2010111008043_part0
645
+ 2025-05-08 09:11:29,998 - INFO - id: digibok_2006120600032
646
+ 2025-05-08 09:11:29,998 - INFO - id: digibok_2006083100049
647
+ 2025-05-08 09:11:29,998 - INFO - id: digibok_2010051906056
648
+ 2025-05-08 09:11:29,998 - INFO - id: digibok_2007082112001_part0
649
+ 2025-05-08 09:11:29,998 - INFO - id: digibok_2006082400075_part0
650
+ 2025-05-08 09:11:29,998 - INFO - id: digibok_2008102812001
651
+ 2025-05-08 09:11:30,002 - INFO - id: digibok_2008090903026
652
+ 2025-05-08 09:11:30,002 - INFO - id: digibok_2006111500035
653
+ 2025-05-08 09:11:30,002 - INFO - id: digibok_2007082010001_part0
654
+ 2025-05-08 09:11:30,002 - INFO - id: digibok_2006120400050_part0
655
+ 2025-05-08 09:11:30,002 - INFO - id: digibok_2007073104013_part0
656
+ 2025-05-08 09:11:30,002 - INFO - id: digibok_2008040200080_part0
657
+ 2025-05-08 09:11:30,002 - INFO - id: digibok_2009091503019_part0
658
+ 2025-05-08 09:11:30,002 - INFO - id: digibok_2006111701034_part0
659
+ 2025-05-08 09:11:30,002 - INFO - id: digibok_2006120400062_part0
660
+ 2025-05-08 09:11:30,002 - INFO - id: digibok_2007061810001_part0
661
+ 2025-05-08 09:11:30,006 - INFO - id: digibok_2006112101037
662
+ 2025-05-08 09:11:30,006 - INFO - id: digibok_2011042720004
663
+ 2025-05-08 09:11:30,006 - INFO - id: digibok_2020070748507_part0
664
+ 2025-05-08 09:11:30,006 - INFO - id: digibok_2008111003004
665
+ 2025-05-08 09:11:30,006 - INFO - id: digibok_2007020500039
666
+ 2025-05-08 09:11:30,006 - INFO - id: digibok_2007091102001_part0
667
+ 2025-05-08 09:11:30,010 - INFO - id: digibok_2008100803008
668
+ 2025-05-08 09:11:30,010 - INFO - id: digibok_2007073110000
669
+ 2025-05-08 09:11:30,011 - INFO - id: digibok_2011011912001
670
+ 2025-05-08 09:11:30,011 - INFO - id: digibok_2009072703031_part1
671
+ 2025-05-08 09:11:30,011 - INFO - id: digibok_2010021903007
672
+ 2025-05-08 09:11:30,011 - INFO - id: digibok_2009042303032_part0
673
+ 2025-05-08 09:11:30,011 - INFO - id: digibok_2008051403001
674
+ 2025-05-08 09:11:30,011 - INFO - id: digibok_2009011203010_part2
675
+ 2025-05-08 09:11:30,011 - INFO - id: digibok_2008111303007
676
+ 2025-05-08 09:11:30,011 - INFO - id: digibok_2008040104022_part1
677
+ 2025-05-08 09:11:30,011 - INFO - id: digibok_2009050403002_part0
678
+ 2025-05-08 09:11:30,011 - INFO - id: digibok_2007010401072
679
+ 2025-05-08 09:11:30,011 - INFO - id: digibok_2010070706035
680
+ 2025-05-08 09:11:30,011 - INFO - id: digibok_2010070605062_part0
681
+ 2025-05-08 09:11:30,011 - INFO - id: digibok_2007042600049
682
+ 2025-05-08 09:11:30,011 - INFO - id: digibok_2006081600040
683
+ 2025-05-08 09:11:30,011 - INFO - id: digibok_2006120400033
684
+ 2025-05-08 09:11:30,011 - INFO - id: digibok_2008040804011
685
+ 2025-05-08 09:11:30,011 - INFO - id: digibok_2006111601024
686
+ 2025-05-08 09:11:30,018 - INFO - id: digibok_2009011203018_part0
687
+ 2025-05-08 09:11:30,018 - INFO - id: digibok_2010042703045
688
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2007082212002_part0
689
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2009010503030
690
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2007082910002
691
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2006120101037_part0
692
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2006112201033
693
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2020060929001_part0
694
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2008040204057_part0
695
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2007122712001_part0
696
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2006083000009
697
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2009020900097
698
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2009072003035_part0
699
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2009092203006
700
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2010070606083_part0
701
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2015010648113_part1
702
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2019082748016
703
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2007042712003_part0
704
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2009080603006
705
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2009020900017
706
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2009030603017
707
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2010081010001
708
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2006111700010
709
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2006111701053_part0
710
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2009102100002
711
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2008040904005
712
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2006083100007_part0
713
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2007011501002_part0
714
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2006111501000
715
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2009060912007_part0
716
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2009081403021
717
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2006112101021_part0
718
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2006111600062
719
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2009081810001_part0
720
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2009020900018
721
+ 2025-05-08 09:11:30,019 - INFO - id: digibok_2006111400045
722
+ 2025-05-08 09:11:30,033 - INFO - id: digibok_2014120206059
723
+ 2025-05-08 09:11:30,033 - INFO - id: digibok_2010061506023
724
+ 2025-05-08 09:11:30,033 - INFO - id: digibok_2009013000007_part0
725
+ 2025-05-08 09:11:30,033 - INFO - id: digibok_2008100603013
726
+ 2025-05-08 09:11:30,033 - INFO - id: digibok_2011012406002_part0
727
+ 2025-05-08 09:11:30,034 - INFO - id: digibok_2008040904058
728
+ 2025-05-08 09:11:30,034 - INFO - id: digibok_2008110603002
729
+ 2025-05-08 09:11:30,035 - INFO - id: digibok_2010052606038_part0
730
+ 2025-05-08 09:11:30,035 - INFO - id: digibok_2015120108001
731
+ 2025-05-08 09:11:30,035 - INFO - id: digibok_2007062210022
732
+ 2025-05-08 09:11:30,035 - INFO - id: digibok_2006112301014
733
+ 2025-05-08 09:11:30,035 - INFO - id: digibok_2010081920010
734
+ 2025-05-08 09:11:30,035 - INFO - id: digibok_2006113000046_part2
735
+ 2025-05-08 09:11:30,035 - INFO - id: digibok_2006111401060_part0
736
+ 2025-05-08 09:11:30,035 - INFO - id: digibok_2015110407026
737
+ 2025-05-08 09:11:30,035 - INFO - id: digibok_2007080102001
738
+ 2025-05-08 09:11:30,035 - INFO - id: digibok_2008111903042_part0
739
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2006111501006
740
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2008040904060
741
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2010070606060
742
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2006111700064_part2
743
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2006120501139
744
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2006112901029
745
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2007073104009
746
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2008040300052
747
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2008012312001_part0
748
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2008042112001
749
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2006120400046_part0
750
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2006121201039
751
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2007121810001_part0
752
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2008010312002
753
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2009090403027
754
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2008112003011
755
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2006111500016
756
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2009101310001_part2
757
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2006120601021
758
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2009020203049
759
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2008022710007_part0
760
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2008092303003
761
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2008101010001_part0
762
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2010061506028_part1
763
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2007082312001
764
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2007082012001_part1
765
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2007021301007
766
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2009042803007
767
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2007020500031
768
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2009072801119
769
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2006120801020
770
+ 2025-05-08 09:11:30,039 - INFO - id: digibok_2008101004041
771
+ 2025-05-08 09:11:30,050 - INFO - id: digibok_2008110503003
772
+ 2025-05-08 09:11:30,050 - INFO - id: digibok_2006120101035
773
+ 2025-05-08 09:11:30,050 - INFO - id: digibok_2010021700062_part0
774
+ 2025-05-08 09:11:30,050 - INFO - id: digibok_2009011903022_part0
775
+ 2025-05-08 09:11:30,050 - INFO - id: digibok_2010053106084_part0
776
+ 2025-05-08 09:11:30,052 - INFO - id: digibok_2006111400039_part1
777
+ 2025-05-08 09:11:30,052 - INFO - id: digibok_2008012813001_part2
778
+ 2025-05-08 09:11:30,052 - INFO - id: digibok_2009011300092
779
+ 2025-05-08 09:11:30,052 - INFO - id: digibok_2006083100007_part1
780
+ 2025-05-08 09:11:30,052 - INFO - id: digibok_2009020203036
781
+ 2025-05-08 09:11:30,052 - INFO - id: digibok_2006082800104
782
+ 2025-05-08 09:11:30,052 - INFO - id: digibok_2010061403049
783
+ 2025-05-08 09:11:30,052 - INFO - id: digibok_2008040804106
784
+ 2025-05-08 09:11:30,052 - INFO - id: digibok_2006112000060
785
+ 2025-05-08 09:11:30,052 - INFO - id: digibok_2006112200023_part0
786
+ 2025-05-08 09:11:30,052 - INFO - id: digibok_2009031803022
787
+ 2025-05-08 09:11:30,052 - INFO - id: digibok_2008090104090
788
+ 2025-05-08 09:11:30,052 - INFO - id: digibok_2009071401050
789
+ 2025-05-08 09:11:30,052 - INFO - id: digibok_2006120400009
790
+ 2025-05-08 09:11:30,052 - INFO - id: digibok_2006111501026
791
+ 2025-05-08 09:11:30,052 - INFO - id: digibok_2007122712001_part1
792
+ 2025-05-08 09:11:30,052 - INFO - id: digibok_2013060508014
793
+ 2025-05-08 09:11:30,052 - INFO - id: digibok_2008100803022
794
+ 2025-05-08 09:11:30,052 - INFO - id: digibok_2008050510001_part0
795
+ 2025-05-08 09:11:30,052 - INFO - id: digibok_2009012800066_part0
796
+ 2025-05-08 09:11:30,052 - INFO - id: digibok_2007073104011
797
+ 2025-05-08 09:11:30,058 - INFO - id: digibok_2010070606078
798
+ 2025-05-08 09:11:30,058 - INFO - id: digibok_2011041820008
799
+ 2025-05-08 09:11:30,058 - INFO - id: digibok_2006111601035_part0
800
+ 2025-05-08 09:11:30,058 - INFO - id: digibok_2008070112008_part0
801
+ 2025-05-08 09:11:30,058 - INFO - id: digibok_2013120906156_part0
802
+ 2025-05-08 09:11:30,058 - INFO - id: digibok_2007083012004
803
+ 2025-05-08 09:11:30,058 - INFO - id: digibok_2006111601042
804
+ 2025-05-08 09:11:30,058 - INFO - id: digibok_2006111500049_part0
805
+ 2025-05-08 09:11:30,058 - INFO - id: digibok_2008072504072
806
+ 2025-05-08 09:11:30,058 - INFO - id: digibok_2013100308058
807
+ 2025-05-08 09:11:30,058 - INFO - id: digibok_2010062106082
808
+ 2025-05-08 09:11:30,058 - INFO - id: digibok_2008012813001_part0
809
+ 2025-05-08 09:11:30,058 - INFO - id: digibok_2016091248029
810
+ 2025-05-08 09:11:30,058 - INFO - id: digibok_2011011906043_part1
811
+ 2025-05-08 09:11:30,058 - INFO - id: digibok_2009072801115
812
+ 2025-05-08 09:11:30,058 - INFO - id: digibok_2007073104005
813
+ 2025-05-08 09:11:30,058 - INFO - id: digibok_2006112100025
814
+ 2025-05-08 09:11:30,058 - INFO - id: digibok_2008040913001_part0
815
+ 2025-05-08 09:11:30,058 - INFO - id: digibok_2009021603012
816
+ 2025-05-08 09:11:30,058 - INFO - id: digibok_2009092303053_part1
817
+ 2025-05-08 09:11:30,058 - INFO - id: digibok_2008041401010
818
+ 2025-05-08 09:11:30,058 - INFO - id: digibok_2008100603023
819
+ 2025-05-08 09:11:30,065 - INFO - id: digibok_2010020412003
820
+ 2025-05-08 09:11:30,065 - INFO - id: digibok_2008092303015_part0
821
+ 2025-05-08 09:11:30,065 - INFO - id: digibok_2011011905056
822
+ 2025-05-08 09:11:30,065 - INFO - id: digibok_2013021224002
823
+ 2025-05-08 09:11:30,065 - INFO - id: digibok_2006120401096_part1
824
+ 2025-05-08 09:11:30,065 - INFO - id: digibok_2009081801031
825
+ 2025-05-08 09:11:30,065 - INFO - id: digibok_2010052806029_part0
826
+ 2025-05-08 09:11:30,065 - INFO - id: digibok_2014032408188
827
+ 2025-05-08 09:11:30,068 - INFO - id: digibok_2010052806031_part0
828
+ 2025-05-08 09:11:30,068 - INFO - id: digibok_2006112101034
829
+ 2025-05-08 09:11:30,068 - INFO - id: digibok_2009030313009_part0
830
+ 2025-05-08 09:11:30,068 - INFO - id: digibok_2011022306029
831
+ 2025-05-08 09:11:30,068 - INFO - id: digibok_2008110603004
832
+ 2025-05-08 09:11:30,068 - INFO - id: digibok_2006120401096_part0
833
+ 2025-05-08 09:11:30,068 - INFO - id: digibok_2008072410001
834
+ 2025-05-08 09:11:30,068 - INFO - id: digibok_2010060106052
835
+ 2025-05-08 09:11:30,068 - INFO - id: digibok_2008121100032_part0
836
+ 2025-05-08 09:11:30,068 - INFO - id: digibok_2006111701046
837
+ 2025-05-08 09:11:30,068 - INFO - id: digibok_2008040300031
838
+ 2025-05-08 09:11:30,068 - INFO - id: digibok_2006082900070_part0
839
+ 2025-05-08 09:11:30,068 - INFO - id: digibok_2006112300024_part0
840
+ 2025-05-08 09:11:30,068 - INFO - id: digibok_2007072403002_part1
841
+ 2025-05-08 09:11:30,068 - INFO - id: digibok_2006111600071_part0
842
+ 2025-05-08 09:11:30,068 - INFO - id: digibok_2017091107016
843
+ 2025-05-08 09:11:30,068 - INFO - id: digibok_2006112301005_part0
844
+ 2025-05-08 09:11:30,068 - INFO - id: digibok_2010020503015
845
+ 2025-05-08 09:11:30,068 - INFO - id: digibok_2009030403008
846
+ 2025-05-08 09:11:30,068 - INFO - id: digibok_2009091403001_part0
847
+ 2025-05-08 09:11:30,068 - INFO - id: digibok_2014100807573
848
+ 2025-05-08 09:11:30,068 - INFO - id: digibok_2009080603019
849
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2006112300049_part0
850
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2010021812001
851
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2008100603008
852
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2009011503003
853
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2010120906080
854
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2011011012002_part0
855
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2006112101054
856
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2006082400037
857
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2008040400005_part0
858
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2009082503010
859
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2009080603013
860
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2006082500045
861
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2014081908201
862
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2011011212001_part0
863
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2006112000027
864
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2006112300024_part1
865
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2006082400017
866
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2008110503005
867
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2010052806030_part1
868
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2006120701023
869
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2018022807066
870
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2014010838002
871
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2008051912002_part0
872
+ 2025-05-08 09:11:30,077 - INFO - id: digibok_2008072810004
873
+ 2025-05-08 09:11:30,085 - INFO - id: digibok_2008121001030
874
+ 2025-05-08 09:11:30,085 - INFO - id: digibok_2008040304017
875
+ 2025-05-08 09:11:30,086 - INFO - id: digibok_2008042800052
876
+ 2025-05-08 09:11:30,086 - INFO - id: digibok_2016010807521_part0
877
+ 2025-05-08 09:11:30,086 - INFO - id: digibok_2010070205069
878
+ 2025-05-08 09:11:30,086 - INFO - id: digibok_2009060912002
879
+ 2025-05-08 09:11:30,086 - INFO - id: digibok_2009021803049_part0
880
+ 2025-05-08 09:11:30,086 - INFO - id: digibok_2008121603004
881
+ 2025-05-08 09:11:30,086 - INFO - id: digibok_2008111903006
882
+ 2025-05-08 09:11:30,086 - INFO - id: digibok_2012082309565_part0
883
+ 2025-05-08 09:11:30,086 - INFO - id: digibok_2006081600019
884
+ 2025-05-08 09:11:30,086 - INFO - id: digibok_2014011606038
885
+ 2025-05-08 09:11:30,086 - INFO - id: digibok_2008111112002
886
+ 2025-05-08 09:11:30,086 - INFO - id: digibok_2008111103057_part0
887
+ 2025-05-08 09:11:30,086 - INFO - id: digibok_2009080603009_part0
888
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2010061706067
889
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2010111208080_part2
890
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2006111500018_part0
891
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2009092203019_part1
892
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2011021808101_part3
893
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2009061903028_part0
894
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2006120500002
895
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2008040200023
896
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2014040724003
897
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2009030403033
898
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2006082200012
899
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2006111601005_part0
900
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2010070706062
901
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2009021204071
902
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2009042303023_part0
903
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2006112000022
904
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2009060204076
905
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2008041410001_part0
906
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2007011600032
907
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2008100603014_part0
908
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2008111103039
909
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2008030310001_part0
910
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2006112000032
911
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2010011903026_part1
912
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2010111006094
913
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2006083000041
914
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2009020600075
915
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2006081000049_part0
916
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2009052803028_part0
917
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2006111401057
918
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2006111601038
919
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2010062306056_part0
920
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2009021204062
921
+ 2025-05-08 09:11:30,090 - INFO - id: digibok_2006111500002
922
+ 2025-05-08 09:11:30,101 - INFO - id: digibok_2006112001011_part0
923
+ 2025-05-08 09:11:30,101 - INFO - id: digibok_2006111400044
924
+ 2025-05-08 09:11:30,101 - INFO - id: digibok_2007062212013_part0
925
+ 2025-05-08 09:11:30,101 - INFO - id: digibok_2009072003007
926
+ 2025-05-08 09:11:30,102 - INFO - id: digibok_2007083013001
927
+ 2025-05-08 09:11:30,102 - INFO - id: digibok_2010052006001_part0
928
+ 2025-05-08 09:11:30,102 - INFO - id: digibok_2010070208011
929
+ 2025-05-08 09:11:30,102 - INFO - id: digibok_2006113000048_part1
930
+ 2025-05-08 09:11:30,102 - INFO - id: digibok_2009072703023
931
+ 2025-05-08 09:11:30,102 - INFO - id: digibok_2011021808101_part4
932
+ 2025-05-08 09:11:30,102 - INFO - id: digibok_2007062504025
933
+ 2025-05-08 09:11:30,103 - INFO - id: digibok_2008031312001_part0
934
+ 2025-05-08 09:11:30,103 - INFO - id: digibok_2009021803009_part0
935
+ 2025-05-08 09:11:30,103 - INFO - id: digibok_2009033103003
936
+ 2025-05-08 09:11:30,103 - INFO - id: digibok_2011033004013
937
+ 2025-05-08 09:11:30,103 - INFO - id: digibok_2007052510001_part1
938
+ 2025-05-08 09:11:30,103 - INFO - id: digibok_2006111500061_part0
939
+ 2025-05-08 09:11:30,103 - INFO - id: digibok_2008072412004
940
+ 2025-05-08 09:11:30,103 - INFO - id: digibok_2009082503026
941
+ 2025-05-08 09:11:30,103 - INFO - id: digibok_2009073000057
942
+ 2025-05-08 09:11:30,103 - INFO - id: digibok_2006082900030_part0
943
+ 2025-05-08 09:11:30,103 - INFO - id: digibok_2006081600050
944
+ 2025-05-08 09:11:30,103 - INFO - id: digibok_2006120101034
945
+ 2025-05-08 09:11:30,103 - INFO - id: digibok_2006112100014
946
+ 2025-05-08 09:11:30,103 - INFO - id: digibok_2007073104010
947
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2010052806030_part2
948
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2010061506028_part2
949
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2008090503001
950
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2010021003016_part1
951
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2006120700035
952
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2006120700099
953
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2006120600017
954
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2009082503004
955
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2006112900002_part0
956
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2009033103036
957
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2007091703001
958
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2006081800052
959
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2007121812003_part0
960
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2009092303061
961
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2010071323001
962
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2010121306078
963
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2008050604038_part0
964
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2006111600001
965
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2010063020008
966
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2008112003014_part0
967
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2008040300027
968
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2009082403016_part1
969
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2006083100056_part0
970
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2008033104029
971
+ 2025-05-08 09:11:30,108 - INFO - id: digibok_2009021204068
972
+ 2025-05-08 09:11:30,116 - INFO - id: digibok_2011033004001
973
+ 2025-05-08 09:11:30,116 - INFO - id: digibok_2010051906055
974
+ 2025-05-08 09:11:30,116 - INFO - id: digibok_2015010648113_part0
975
+ 2025-05-08 09:11:30,116 - INFO - id: digibok_2010052806030_part0
976
+ 2025-05-08 09:11:30,116 - INFO - id: digibok_2006081100006
977
+ 2025-05-08 09:11:30,118 - INFO - id: digibok_2010051906058
978
+ 2025-05-08 09:11:30,118 - INFO - id: digibok_2008040204003_part0
979
+ 2025-05-08 09:11:30,118 - INFO - id: digibok_2015021308020_part0
980
+ 2025-05-08 09:11:30,118 - INFO - id: digibok_2009070601030
981
+ 2025-05-08 09:11:30,118 - INFO - id: digibok_2008040200070
982
+ 2025-05-08 09:11:30,118 - INFO - id: digibok_2020022728001_part0
983
+ 2025-05-08 09:11:30,118 - INFO - id: digibok_2010010803003
984
+ 2025-05-08 09:11:30,118 - INFO - id: digibok_2011022205178
985
+ 2025-05-08 09:11:30,118 - INFO - id: digibok_2006112300022_part0
986
+ 2025-05-08 09:11:30,118 - INFO - id: digibok_2006082400012
987
+ 2025-05-08 09:11:30,118 - INFO - id: digibok_2009042304001
988
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2008111903023
989
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2006112000075_part1
990
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2006113001019
991
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2009011903024
992
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2009103000097
993
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2010012603026
994
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2009081903038_part0
995
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2007020801041
996
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2008060612003_part0
997
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2006120401096_part2
998
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2007072403002_part0
999
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2010052606056_part0
1000
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2017010348104
1001
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2006111701016
1002
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2016072948051
1003
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2006113001013_part0
1004
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2007042600033
1005
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2009041403025_part0
1006
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2011042720001
1007
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2008050712001_part1
1008
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2007082712001
1009
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2010011213001
1010
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2006120501021
1011
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2008050512009
1012
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2009020903017
1013
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2006120400050_part1
1014
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2006082900080
1015
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2010070813002
1016
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2006082300009
1017
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2010020203008_part0
1018
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2008040904008_part3
1019
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2010052606033
1020
+ 2025-05-08 09:11:30,123 - INFO - id: digibok_2006112301007_part0
1021
+ 2025-05-08 09:11:30,133 - INFO - id: digibok_2008051912002_part1
1022
+ 2025-05-08 09:11:30,133 - INFO - id: digibok_2008010713001_part1
1023
+ 2025-05-08 09:11:30,133 - INFO - id: digibok_2014021724010
1024
+ 2025-05-08 09:11:30,133 - INFO - id: digibok_2006112001022_part0
1025
+ 2025-05-08 09:11:30,133 - INFO - id: digibok_2009052703017
1026
+ 2025-05-08 09:11:30,135 - INFO - id: digibok_2006112401015
1027
+ 2025-05-08 09:11:30,135 - INFO - id: digibok_2010061506031_part1
1028
+ 2025-05-08 09:11:30,135 - INFO - id: digibok_2008111103038_part0
1029
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2010070806077_part0
1030
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2008030612001
1031
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2007082012001_part0
1032
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2009020900028
1033
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2009033103022
1034
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2009071312001_part0
1035
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2006081800048
1036
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2008092303013
1037
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2015102348018_part0
1038
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2011040708023
1039
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2010071323002
1040
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2010021700058
1041
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2009081810003_part0
1042
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2010062306007
1043
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2011011320013_part0
1044
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2009020203002
1045
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2010070208002_part0
1046
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2006113000023_part0
1047
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2006113001045
1048
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2010111208080_part1
1049
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2008012203003
1050
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2006082300015
1051
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2011051004139
1052
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2009100912003_part0
1053
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2006112000048_part0
1054
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2010061706080_part0
1055
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2020031228006
1056
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2011052004002
1057
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2006120401046
1058
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2006111701053_part1
1059
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2006081000020
1060
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2007062210018
1061
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2009012803001
1062
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2008111903041
1063
+ 2025-05-08 09:11:30,136 - INFO - id: digibok_2008100803009
1064
+ 2025-05-08 09:11:30,149 - INFO - id: digibok_2012092106165
1065
+ 2025-05-08 09:11:30,149 - INFO - id: digibok_2006120701122
1066
+ 2025-05-08 09:11:30,149 - INFO - id: digibok_2008090903038
1067
+ 2025-05-08 09:11:30,149 - INFO - id: digibok_2008050712001_part0
1068
+ 2025-05-08 09:11:30,149 - INFO - id: digibok_2009061903024
1069
+ 2025-05-08 09:11:30,149 - INFO - id: digibok_2006120501036
1070
+ 2025-05-08 09:11:30,149 - INFO - id: digibok_2007010501035
1071
+ 2025-05-08 09:11:30,149 - INFO - id: digibok_2010061506007
1072
+ 2025-05-08 09:11:30,149 - INFO - id: digibok_2006120801014
1073
+ 2025-05-08 09:11:30,152 - INFO - id: digibok_2008120812001
1074
+ 2025-05-08 09:11:30,152 - INFO - id: digibok_2008040201008
1075
+ 2025-05-08 09:11:30,153 - INFO - id: digibok_2009080603011
1076
+ 2025-05-08 09:11:30,153 - INFO - id: digibok_2009110200015
1077
+ 2025-05-08 09:11:30,153 - INFO - id: digibok_2011011312002_part0
1078
+ 2025-05-08 09:11:30,153 - INFO - id: digibok_2006112901001
1079
+ 2025-05-08 09:11:30,153 - INFO - id: digibok_2007073104003
1080
+ 2025-05-08 09:11:30,153 - INFO - id: digibok_2008040912002_part1
1081
+ 2025-05-08 09:11:30,153 - INFO - id: digibok_2008063010001_part0
data/ncc_books/ncc_books.md ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pretty_name: Norwegian Colossal Corpus (books)
3
+ language:
4
+ - da
5
+ license: cc0-1.0
6
+ license_name: CC0 1.0
7
+ task_categories:
8
+ - text-generation
9
+ - fill-mask
10
+ task_ids:
11
+ - language-modeling
12
+ ---
13
+
14
+ # Dataset Card for Norwegian Colossal Corpus (books)
15
+
16
+ <!-- START-SHORT DESCRIPTION -->
17
+ Danish books extracted from the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC) derived from OCR.
18
+ <!-- END-SHORT DESCRIPTION -->
19
+
20
+ The Norwegian Colossal Corpus is a collection of multiple smaller Norwegian corpuses suitable for training large language models.
21
+ (desc. taken from [NCC](https://huggingface.co/datasets/NbAiLab/NCC))
22
+
23
+ This subset is the result of the following filtering from all available data splits:
24
+ - Document comes from books
25
+ - Document is classified as Danish with a threshold of 0.75
26
+ - Document has at least 10 words (whitespace separated strings + punctuation)
27
+ - The ratio of all words / words with only alphabetical characters is at least 0.7
28
+ - The document contains at least 2 Danish stop words
29
+
30
+
31
+
32
+ ## Dataset Description
33
+
34
+ <!-- START-DESC-STATS -->
35
+ - **Language**: dan, dansk, Danish
36
+ - **Number of samples**: 4.90K
37
+ - **Number of tokens (Llama 3)**: 531.97M
38
+ - **Average document length (characters)**: 314064.25
39
+ <!-- END-DESC-STATS -->
40
+
41
+
42
+ ## Dataset Structure
43
+ An example from the dataset looks as follows.
44
+ <!-- START-SAMPLE -->
45
+ ```py
46
+ {
47
+ "text": "P. FR. RIST. OLAF RYES SAGA. OPTEGNELSER, DAGB�GER OG BREVE. DET NORDISKE FORLAG. Denne Bog s�ger at[...]",
48
+ "source": "ncc_books",
49
+ "id": "digibok_2009033103031",
50
+ "added": "2025-05-08",
51
+ "created": "1899-01-01, 1899-12-31",
52
+ "license": "cc0-1.0",
53
+ "domain": "Wiki & Books",
54
+ "metadata": {
55
+ "source-pretty": "Norwegian Colossal Corpus (books)",
56
+ "source-type": "books"
57
+ }
58
+ }
59
+ ```
60
+
61
+ ### Data Fields
62
+
63
+ An entry in the dataset consists of the following fields:
64
+
65
+ - `text`(`str`): The content of the document.
66
+ - `source` (`str`): The source of the document (see [Source Data](#source-data)).
67
+ - `id` (`str`): An unique identifier for each document.
68
+ - `added` (`str`): An date for when the document was added to this collection.
69
+ - `created` (`str`): An date range for when the document was originally created.
70
+ - `license` (`str`): The license of the document. The licenses vary according to the source.
71
+ - `domain` (`str`): The domain of the source
72
+ - `metadata/source-pretty` (`str`): The long form version of the short-form source name
73
+ - `metadata/*`: Potentially additional metadata
74
+ <!-- END-SAMPLE -->
75
+
76
+
77
+
78
+ ### Dataset Statistics
79
+
80
+ <!-- START-DATASET PLOTS -->
81
+ <img src="./images/dist_document_length.png" width="600" style="margin-right: 10px;" />
82
+ <img>
83
+ <!-- END-DATASET PLOTS -->
84
+
85
+
86
+
87
+ ## Additional Information
88
+
89
+ ## License Information
90
+ [CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/)
91
+
92
+ ## Filtering
93
+ ### Pre filtering
94
+ Documents, which are tagged as "book*" in the "doc_type" column of the NCC
95
+
96
+ Norwegian documents: 12496
97
+ ~ 51.5% of data
98
+ Danish documents: 8443
99
+ ~ 34.8% of data
100
+
101
+ ### Classification confidence
102
+ Removing documents, where the "lang_fasttext_conf" column of the NCC is less than 0.75
103
+
104
+ Documents: 5125
105
+ Loss: ~ 39.29%
106
+
107
+ ### Length
108
+ Removing documents based on the "text" column of the NCC. Text is tokenized by splitting on whitespace. Common punctuation marks are counted as separate tokens.
109
+
110
+ Texts with less than 10 tokens are removed.
111
+
112
+ No changes are made by this filtering step.
113
+
114
+ ### Alpha Ratio
115
+ Texts, in which the ratio of words and words with only alphabetic characters is less than 0.7, are removed.
116
+
117
+ TOKENS: pre: 322682794, post: 307341040, loss: 4.75%
118
+ DOCUMENTS: pre: 5125, post: 4902, loss: 4.35%
119
+
120
+ ### Stop Words
121
+ Texts which contain less then 2 stop words are removed.
122
+
123
+ No changes are made by this filtering step.
124
+
125
+ ### Quality
126
+ 1060 long texts (>~1e5 tokens) were found.
127
+
128
+ It is important to note, that recurring ocr mistakes and archaic expressions in older texts hinder the legibility of some of the documents and make differentiating between Norwegian and Danish difficult.
129
+ <details>
130
+ <summary>Examples</summary>
131
+ <br>
132
+
133
+ - De nartotifte Stoffer, vi benytte. ae Tobat...
134
+
135
+ - Sqmfruer hav. baaret lige faadan mpffe og Prydelfe...
136
+
137
+ </details>
138
+
139
+ ### Citation Information
140
+ ```
141
+ @inproceedings{kummervold-etal-2022-norwegian-colossal,
142
+ title = {The {N}orwegian colossal corpus: A text corpus for training large {N}orwegian language models},
143
+ author = {Kummervold, Per E and
144
+ Wetjen, Freddy and
145
+ De la Rosa, Javier},
146
+ booktitle = {Proceedings of the Thirteenth Language Resources and Evaluation Conference (LREC)},
147
+ year = {2022},
148
+ address = {Marseille, France},
149
+ publisher = {European Language Resources Association},
150
+ url = {https://aclanthology.org/2022.lrec-1.410},
151
+ pages = {3852--3860},
152
+ abstract = {Norwegian has been one of many languages lacking sufficient available text to train quality language models. In an attempt to bridge this gap, we introduce the Norwegian Colossal Corpus (NCC), which comprises 49GB of clean Norwegian textual data containing over 7B words. The NCC is composed of different and varied sources, ranging from books and newspapers to government documents and public reports, showcasing the various uses of the Norwegian language in society. The corpus contains mainly Norwegian Bokmål and Norwegian Nynorsk. Each document in the corpus is tagged with metadata that enables the creation of sub-corpora for specific needs. Its structure makes it easy to combine with large web archives that for licensing reasons could not be distributed together with the NCC. By releasing this corpus openly to the public, we hope to foster the creation of both better Norwegian language models and multilingual language models with support for Norwegian.},
153
+ }
154
+
155
+ @inproceedings{kummervold-etal-2021-operationalizing,
156
+ title = {Operationalizing a National Digital Library: The Case for a {N}orwegian Transformer Model},
157
+ author = {Kummervold, Per E and
158
+ De la Rosa, Javier and
159
+ Wetjen, Freddy and
160
+ Brygfjeld, Svein Arne},
161
+ booktitle = {Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)},
162
+ year = {2021},
163
+ address = {Reykjavik, Iceland (Online)},
164
+ publisher = {Linköping University Electronic Press, Sweden},
165
+ url = {https://aclanthology.org/2021.nodalida-main.3},
166
+ pages = {20--29},
167
+ abstract = {In this work, we show the process of building a large-scale training set from digital and digitized collections at a national library.
168
+ The resulting Bidirectional Encoder Representations from Transformers (BERT)-based language model for Norwegian outperforms multilingual BERT (mBERT) models
169
+ in several token and sequence classification tasks for both Norwegian Bokmål and Norwegian Nynorsk. Our model also improves the mBERT performance for other
170
+ languages present in the corpus such as English, Swedish, and Danish. For languages not included in the corpus, the weights degrade moderately while keeping strong multilingual properties. Therefore,
171
+ we show that building high-quality models within a memory institution using somewhat noisy optical character recognition (OCR) content is feasible, and we hope to pave the way for other memory institutions to follow.},
172
+ }
173
+
174
+ ```
data/ncc_books/ncc_books.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:573d5383e77c46433c8d311dc82decad28171ca5a93fbc794c746d5c19622ee1
3
+ size 978600075
data/ncc_maalfrid/create.py ADDED
@@ -0,0 +1,318 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # /// script
2
+ # requires-python = ">=3.12"
3
+ # dependencies = [
4
+ # "datasets>=3.2.0"
5
+ # ]
6
+ # ///
7
+
8
+ import logging
9
+ import re
10
+ import inspect
11
+
12
+ from pathlib import Path
13
+ from datetime import datetime
14
+ from collections import defaultdict
15
+ from collections.abc import Callable
16
+
17
+ import pandas as pd
18
+ from datasets import Dataset, load_dataset
19
+
20
+ logger = logging.getLogger(__name__)
21
+ ########## edit manually for each source
22
+ hf_path = "NbAiLab/NCC"
23
+ source = "ncc_maalfrid"
24
+ doc_type_searchword = "maalfrid"
25
+ license = "other"
26
+ domain = "Legal"
27
+ num_proc = 10
28
+ ##########
29
+ today = datetime.now().strftime("%Y-%m-%d")
30
+
31
+ #stop words taken from spaCy
32
+ #https://github.com/explosion/spaCy/blob/master/spacy/lang/da/stop_words.py
33
+ # Source: Handpicked by Jens Dahl Møllerhøj.
34
+ spacy_sw = set(
35
+ """
36
+ af aldrig alene alle allerede alligevel alt altid anden andet andre at
37
+
38
+ bag begge blandt blev blive bliver burde bør
39
+
40
+ da de dem den denne dens der derefter deres derfor derfra deri dermed derpå derved det dette dig din dine disse dog du
41
+
42
+ efter egen eller ellers en end endnu ene eneste enhver ens enten er et
43
+
44
+ flere flest fleste for foran fordi forrige fra få før først
45
+
46
+ gennem gjorde gjort god gør gøre gørende
47
+
48
+ ham han hans har havde have hel heller hen hende hendes henover her herefter heri hermed herpå hun hvad hvem hver hvilke hvilken hvilkes hvis hvor hvordan hvorefter hvorfor hvorfra hvorhen hvori hvorimod hvornår hvorved
49
+
50
+ i igen igennem ikke imellem imens imod ind indtil ingen intet
51
+
52
+ jeg jer jeres jo
53
+
54
+ kan kom kommer kun kunne
55
+
56
+ lad langs lav lave lavet lidt lige ligesom lille længere
57
+
58
+ man mange med meget mellem men mens mere mest mig min mindre mindst mine mit må måske
59
+
60
+ ned nemlig nogen nogensinde noget nogle nok nu ny nyt nær næste næsten
61
+
62
+ og også om omkring op os over overalt
63
+
64
+
65
+
66
+ samme sammen selv selvom senere ses siden sig sige skal skulle som stadig synes syntes så sådan således
67
+
68
+ temmelig tidligere til tilbage tit
69
+
70
+ ud uden udover under undtagen
71
+
72
+ var ved vi via vil ville vore vores vær være været
73
+
74
+ øvrigt
75
+ """.split()
76
+ )
77
+
78
+ def word_tokenize(text: str) -> list[str]:
79
+ """
80
+ Tokenizes a string into words, splitting on whitespace and punctuation.
81
+
82
+ Example:
83
+ >>> word_tokenize("Hello, world!")
84
+ ['Hello', ',', 'world', '!']
85
+ >>> word_tokenize("This is a test.")
86
+ ['This', 'is', 'a', 'test', '.']
87
+ >>> word_tokenize("Many spaces between words.")
88
+ ['Many', 'spaces', 'between', 'words', '.']
89
+ """
90
+
91
+ punkt = [",", ".", "!", "?", ":", ";", "(", ")", "[", "]", "{", "}", '"', "'"]
92
+ for p in punkt:
93
+ text = text.replace(p, f" {p} ")
94
+ return text.split()
95
+
96
+ def alpha_ratio(text: str | list[str]) -> float:
97
+ """
98
+ If not split already to words, splits text with word_tokenize()
99
+ Calculates ratio of words with only alphabetical characters
100
+
101
+ """
102
+ if type(text) is str:
103
+ text = word_tokenize(text)
104
+ else:
105
+ pass
106
+
107
+ alpha_ratio = 1 - sum(not word.isalpha() for word in text) / len(text)
108
+
109
+ return alpha_ratio
110
+
111
+ def count_min_target(given_list: list, target_list: list, min: int) -> bool:
112
+ """
113
+ Iterates through given list, until at least min items match any items from target list
114
+
115
+ """
116
+ c_item = 0
117
+ given_list_iter = iter(given_list)
118
+ while c_item < min:
119
+ try:
120
+ current_item = next(given_list_iter)
121
+ if current_item in target_list:
122
+ c_item += 1
123
+ except StopIteration:
124
+ break
125
+
126
+ return c_item == min
127
+
128
+ def dynaword_format(
129
+ meta_document: dict[str, str | int]
130
+ ) -> dict[str, str | dict[str, str]]:
131
+ """Reformats data to fit dynaword standards"""
132
+
133
+ text = meta_document.get("text")
134
+ id = meta_document.get("id")
135
+ date = meta_document.get("publish_year")
136
+ doc_type = meta_document.get("doc_type")
137
+
138
+ newdata = {
139
+ "text": text,
140
+ "source": source,
141
+ "id": id,
142
+ "added": today,
143
+ "created": f"{date}-01-01, {date}-12-31",
144
+ "license": license,
145
+ "domain": domain,
146
+ "metadata": {
147
+ "source-pretty": f"Norwegian Colossal Corpus ({re.sub("ncc_","",source)})",
148
+ "source-type": doc_type,
149
+ },
150
+ }
151
+
152
+ return newdata
153
+
154
+ def log_pre_filter_lang_data(lang_metadata : dict[str,dict[str,int]],
155
+ filtered_ds: Dataset):
156
+ """
157
+ Function for logging changes in a large dataset,
158
+ based on the metadata pre filering and the filtered dataset,
159
+ used for language filtering
160
+ """
161
+ all_docs = sum(lang_metadata[source].values())
162
+ no_docs = lang_metadata[source].get("no")
163
+ da_docs = lang_metadata[source].get("da")
164
+ no_perc = round(no_docs/all_docs*100,4)
165
+ da_perc = round(da_docs/all_docs*100,4)
166
+
167
+ f_length = len(filtered_ds)
168
+ f_perc = round(f_length/da_docs*100,4)
169
+ f_total_perc = round(f_length/all_docs*100,4)
170
+
171
+ logger.info(f"Documents of {source}:")
172
+ logger.info(f"NO: {no_docs}, {no_perc}% ; DA: {da_docs}, {da_perc}%")
173
+ logger.info(f"After language confidence filtering:")
174
+ logger.info(f"DA: {f_length}, lost: {100-f_perc}%")
175
+ logger.info(f"Total document change:")
176
+ logger.info(f"{all_docs} -> {f_length}, loss: {100-f_total_perc}%")
177
+
178
+ def get_var_name(var):
179
+ """ outputs the variable name """
180
+ callers_local_vars = inspect.currentframe().f_back.f_back.f_back.f_locals.items()
181
+ return [var_name for var_name, var_val in callers_local_vars if var_val is var]
182
+
183
+ def filter_with_changelog(filter_func:Callable[[Dataset],Dataset],
184
+ dataset:Dataset) -> Dataset:
185
+ """
186
+ Function, which takes a filter and a dataset.
187
+ Counts text docs and tokens before and after filtering,
188
+ Saves filtering changes to log.
189
+ """
190
+
191
+ filter_name = get_var_name(filter_func)
192
+ pre_filter_docs = len(dataset)
193
+ pre_filter_tokens= sum(len(word_tokenize(i["text"])) for i in dataset)
194
+
195
+ dataset = dataset.filter(filter_func,num_proc=num_proc)
196
+
197
+ post_filter_docs = len(dataset)
198
+ post_filter_tokens= sum(len(word_tokenize(i["text"])) for i in dataset)
199
+ tokens_removed = round((1-(post_filter_tokens/pre_filter_tokens))*100,2)
200
+ docs_removed = round((1-(post_filter_docs/pre_filter_docs))*100,2)
201
+
202
+ logger.info(f"FILTER: {filter_name}")
203
+ logger.info(f"TOKENS: pre: {pre_filter_tokens}, post: {post_filter_tokens}, loss: {tokens_removed}%")
204
+ logger.info(f"DOCUMENTS: pre: {pre_filter_docs}, post: {post_filter_docs}, loss: {docs_removed}%")
205
+
206
+ return dataset
207
+
208
+
209
+ source_filter = lambda ds : doc_type_searchword in ds["doc_type"]
210
+ length_filter = lambda ds: len(word_tokenize(ds["text"])) >= 10
211
+ too_long_filter = lambda ds: len(word_tokenize(ds["text"])) > 1e5
212
+ alpha_filter = lambda ds: alpha_ratio(ds["text"]) >= 0.7
213
+ stop_word_filter = lambda ds: count_min_target(word_tokenize(ds["text"]),spacy_sw,2)
214
+
215
+ samples_pr_source: dict = defaultdict(lambda: defaultdict(int))
216
+ def language_filter_with_desc_stats(ds:Dataset) -> bool:
217
+ """
218
+ Language filtering in a streamed dataset while logging all languages
219
+ """
220
+ s = source
221
+ language = ds["lang_fasttext"]
222
+ samples_pr_source[s][language] += 1
223
+
224
+ language_filter = ds["lang_fasttext"] == "da" and float(ds["lang_fasttext_conf"]) >= 0.75
225
+
226
+ return language_filter
227
+
228
+ def quality_checks(ds:Dataset) -> Dataset:
229
+ """
230
+ Quality checks for:
231
+ - no duplicate ids
232
+ - no duplicate texts
233
+ - logs texts > 1e5 tokens
234
+ """
235
+ #convert to pandas for the drop_duplicates()
236
+ df = pd.DataFrame(ds)
237
+ # remove duplicate ids
238
+ len_df = len(df)
239
+ df = df.drop_duplicates(subset=["id"])
240
+ logger.info(f"Removed {len_df - len(df)} duplicate ids")
241
+ # remove rows with duplicate text
242
+ len_df = len(df)
243
+ df = df.drop_duplicates(subset=["text"])
244
+ logger.info(f"Removed {len_df - len(df)} rows with duplicate text")
245
+ #reconvert and remove index
246
+ ds_f = Dataset.from_pandas(df,preserve_index=False)
247
+ try:
248
+ ds_f["__index_level_0__"]
249
+ ds_f = ds_f.remove_columns("__index_level_0__")
250
+ except KeyError:
251
+ pass
252
+
253
+ assert len(set(ds_f["id"])) == len(ds_f), "IDs are not unique"
254
+ assert len(set(ds_f["text"])) == len(ds_f), "Texts are not unique"
255
+
256
+ long_texts = ds_f.filter(too_long_filter,num_proc=num_proc)
257
+ if len(long_texts["id"]) > 0:
258
+ logger.info(f"{len(long_texts["id"])} Long texts (>~1e5 tokens) found")
259
+ for id in long_texts["id"]:
260
+ logger.info(f"id: {id}")
261
+ else:
262
+ logger.info("No long texts (>~1e5 tokens) found")
263
+
264
+ return ds_f
265
+
266
+ def main():
267
+ #load all splits
268
+ logger.info(f"Loading data from: {hf_path}")
269
+ danish_data = load_dataset(hf_path, streaming=False, split="train+validation", num_proc=num_proc)
270
+
271
+
272
+ #filter by metadata
273
+ logger.info(f"Processing source: {source}")
274
+ danish_data=danish_data.filter(source_filter,num_proc=num_proc)
275
+
276
+
277
+ logger.info(f"Processing language")
278
+ danish_data=danish_data.filter(language_filter_with_desc_stats, num_proc=None)
279
+
280
+ #log language changes
281
+ log_pre_filter_lang_data(samples_pr_source,danish_data)
282
+
283
+ #convert to dynaword format
284
+ danish_data = danish_data.map(dynaword_format)
285
+ danish_data = danish_data.select_columns(["text",
286
+ "source",
287
+ "id",
288
+ "added",
289
+ "created",
290
+ "license",
291
+ "domain",
292
+ "metadata"])
293
+
294
+ #filter and log changes
295
+ danish_data = filter_with_changelog(length_filter,danish_data)
296
+ danish_data = filter_with_changelog(alpha_filter,danish_data)
297
+ danish_data = filter_with_changelog(stop_word_filter,danish_data)
298
+
299
+ #Quality checks
300
+ danish_data = quality_checks(danish_data)
301
+
302
+ ### saving
303
+ save_path = Path(__file__).parent / f"{source}.parquet"
304
+ danish_data.to_parquet(save_path)
305
+
306
+
307
+
308
+ if __name__ == "__main__":
309
+ log_path = Path(__file__).parent / f"{source}.log"
310
+ logging.basicConfig(
311
+ level=logging.INFO,
312
+ format="%(asctime)s - %(levelname)s - %(message)s",
313
+ handlers=[
314
+ logging.StreamHandler(),
315
+ logging.FileHandler(log_path),
316
+ ],
317
+ )
318
+ main()
data/ncc_maalfrid/descriptive_stats.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "number_of_samples": 33336,
3
+ "average_document_length": 2538.4334953203743,
4
+ "number_of_tokens": 29260357,
5
+ "language": "dan, dansk, Danish",
6
+ "revision": "da633eaca923cc25686bda59a41369694597baac"
7
+ }
data/ncc_maalfrid/images/dist_document_length.png ADDED

Git LFS Details

  • SHA256: 84d1462dc19be4b65c5968b0b5f27fe2956b09d9d2b74377186872a7a8aff758
  • Pointer size: 131 Bytes
  • Size of remote file: 184 kB
data/ncc_maalfrid/ncc_maalfrid.log ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-05-08 09:18:42,463 - INFO - Loading data from: NbAiLab/NCC
2
+ 2025-05-08 09:18:54,476 - INFO - Processing source: ncc_maalfrid
3
+ 2025-05-08 09:20:23,697 - INFO - Processing language
4
+ 2025-05-08 09:36:04,572 - INFO - Documents of ncc_maalfrid:
5
+ 2025-05-08 09:36:04,572 - INFO - NO: 4462910, 66.2608% ; DA: 256659, 3.8106%
6
+ 2025-05-08 09:36:04,572 - INFO - After language confidence filtering:
7
+ 2025-05-08 09:36:04,572 - INFO - DA: 51523, lost: 79.9255%
8
+ 2025-05-08 09:36:04,572 - INFO - Total document change:
9
+ 2025-05-08 09:36:04,572 - INFO - 6735368 -> 51523, loss: 99.235%
10
+ 2025-05-08 09:36:53,427 - INFO - FILTER: ['length_filter']
11
+ 2025-05-08 09:36:53,427 - INFO - TOKENS: pre: 21315653, post: 21305735, loss: 0.05%
12
+ 2025-05-08 09:36:53,427 - INFO - DOCUMENTS: pre: 51523, post: 49948, loss: 3.06%
13
+ 2025-05-08 09:37:37,970 - INFO - FILTER: ['alpha_filter']
14
+ 2025-05-08 09:37:37,970 - INFO - TOKENS: pre: 21305735, post: 15216676, loss: 28.58%
15
+ 2025-05-08 09:37:37,970 - INFO - DOCUMENTS: pre: 49948, post: 33390, loss: 33.15%
16
+ 2025-05-08 09:38:10,796 - INFO - FILTER: ['stop_word_filter']
17
+ 2025-05-08 09:38:10,797 - INFO - TOKENS: pre: 15216676, post: 15215917, loss: 0.0%
18
+ 2025-05-08 09:38:10,797 - INFO - DOCUMENTS: pre: 33390, post: 33340, loss: 0.15%
19
+ 2025-05-08 09:38:20,194 - INFO - Removed 0 duplicate ids
20
+ 2025-05-08 09:38:20,297 - INFO - Removed 4 rows with duplicate text
21
+ 2025-05-08 09:38:47,894 - INFO - No long texts (>~1e5 tokens) found
data/ncc_maalfrid/ncc_maalfrid.md ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pretty_name: Norwegian Colossal Corpus (maalfrid)
3
+ language:
4
+ - da
5
+ license: other
6
+ license_name: NLOD 2.0
7
+ task_categories:
8
+ - text-generation
9
+ - fill-mask
10
+ task_ids:
11
+ - language-modeling
12
+ ---
13
+
14
+ # Dataset Card for Norwegian Colossal Corpus (maalfrid)
15
+
16
+ <!-- START-SHORT DESCRIPTION -->
17
+ Danish documents from the [Målfrid collection](https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-69/) (scraped from websites run by Norwegian state institutions). Extracted from the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC).
18
+ <!-- END-SHORT DESCRIPTION -->
19
+
20
+ The Norwegian Colossal Corpus is a collection of multiple smaller Norwegian corpuses suitable for training large language models.
21
+ (desc. taken from [NCC](https://huggingface.co/datasets/NbAiLab/NCC))
22
+
23
+ This subset is the result of the following filtering from all available data splits:
24
+ - Document comes from the Målfrid collection
25
+ - Document is classified as Danish with a threshold of 0.75
26
+ - Document has at least 10 words (whitespace separated strings + punctuation)
27
+ - The ratio of all words / words with only alphabetical characters is at least 0.7
28
+ - The document contains at least 2 Danish stop words
29
+
30
+
31
+
32
+ ## Dataset Description
33
+
34
+ <!-- START-DESC-STATS -->
35
+ - **Language**: dan, dansk, Danish
36
+ - **Number of samples**: 33.34K
37
+ - **Number of tokens (Llama 3)**: 29.26M
38
+ - **Average document length (characters)**: 2538.43
39
+ <!-- END-DESC-STATS -->
40
+
41
+
42
+ ## Dataset Structure
43
+ An example from the dataset looks as follows.
44
+ <!-- START-SAMPLE -->
45
+ ```py
46
+ {
47
+ "text": "Anno 1815, Torsdagen den 5te Octbr. blev i Sagen Fuldm�gtig Engebrethsen contra Snedkermester Hansen[...]",
48
+ "source": "ncc_maalfrid",
49
+ "id": "maalfrid_56267641f4d6de44ab69875a31634e31e68db1a8_166",
50
+ "added": "2025-05-08",
51
+ "created": "2021-01-01, 2021-12-31",
52
+ "license": "other",
53
+ "domain": "Legal",
54
+ "metadata": {
55
+ "source-pretty": "Norwegian Colossal Corpus (maalfrid)",
56
+ "source-type": "maalfrid_arkivverket"
57
+ }
58
+ }
59
+ ```
60
+
61
+ ### Data Fields
62
+
63
+ An entry in the dataset consists of the following fields:
64
+
65
+ - `text`(`str`): The content of the document.
66
+ - `source` (`str`): The source of the document (see [Source Data](#source-data)).
67
+ - `id` (`str`): An unique identifier for each document.
68
+ - `added` (`str`): An date for when the document was added to this collection.
69
+ - `created` (`str`): An date range for when the document was originally created.
70
+ - `license` (`str`): The license of the document. The licenses vary according to the source.
71
+ - `domain` (`str`): The domain of the source
72
+ - `metadata/source-pretty` (`str`): The long form version of the short-form source name
73
+ - `metadata/*`: Potentially additional metadata
74
+ <!-- END-SAMPLE -->
75
+
76
+
77
+
78
+ ### Dataset Statistics
79
+
80
+ <!-- START-DATASET PLOTS -->
81
+ <img src="./images/dist_document_length.png" width="600" style="margin-right: 10px;" />
82
+ <img>
83
+ <!-- END-DATASET PLOTS -->
84
+
85
+ ## Additional Information
86
+
87
+ ## License Information
88
+ [NLOD 2.0](https://data.norge.no/nlod/en/2.0)
89
+
90
+ ## Filtering
91
+ ### Pre filtering
92
+ Documents, which are tagged as "maalfrid*" in the "doc_type" column of the NCC
93
+
94
+ Norwegian documents: 4462910
95
+ ~ 66.2% of data
96
+ Danish documents: 256659
97
+ ~ 3.8% of data
98
+
99
+ ### Classification confidence
100
+ Removing documents, where the "lang_fasttext_conf" column of the NCC is less than 0.75
101
+
102
+ Documents: 51523
103
+ Loss: ~ 79.9%
104
+
105
+ ### Length
106
+ Removing documents based on the "text" column of the NCC. Text is tokenized by splitting on whitespace. Common punctuation marks are counted as separate tokens.
107
+
108
+ Texts with less than 10 tokens are removed.
109
+ TOKENS: pre: 21315653, post: 21305735, loss: 0.05%
110
+ DOCUMENTS: pre: 51523, post: 49948, loss: 3.06%
111
+
112
+ ### Alpha Ratio
113
+ Texts, in which the ratio of words and words with only alphabetic characters is less than 0.7, are removed.
114
+
115
+ TOKENS: pre: 21305735, post: 15216676, loss: 28.58%
116
+ DOCUMENTS: pre: 49948, post: 33390, loss: 33.15%
117
+
118
+ ### Stop Words
119
+ Texts which contain less then 2 stop words are removed.
120
+ TOKENS: pre: 15216676, post: 15215917, loss: 0.0%
121
+ DOCUMENTS: pre: 33390, post: 33340, loss: 0.15%
122
+ ### Quality
123
+ 4 duplicate texts were removed
124
+
125
+
126
+ ### Citation Information
127
+ ```
128
+ @inproceedings{kummervold-etal-2022-norwegian-colossal,
129
+ title = {The {N}orwegian colossal corpus: A text corpus for training large {N}orwegian language models},
130
+ author = {Kummervold, Per E and
131
+ Wetjen, Freddy and
132
+ De la Rosa, Javier},
133
+ booktitle = {Proceedings of the Thirteenth Language Resources and Evaluation Conference (LREC)},
134
+ year = {2022},
135
+ address = {Marseille, France},
136
+ publisher = {European Language Resources Association},
137
+ url = {https://aclanthology.org/2022.lrec-1.410},
138
+ pages = {3852--3860},
139
+ abstract = {Norwegian has been one of many languages lacking sufficient available text to train quality language models. In an attempt to bridge this gap, we introduce the Norwegian Colossal Corpus (NCC), which comprises 49GB of clean Norwegian textual data containing over 7B words. The NCC is composed of different and varied sources, ranging from books and newspapers to government documents and public reports, showcasing the various uses of the Norwegian language in society. The corpus contains mainly Norwegian Bokmål and Norwegian Nynorsk. Each document in the corpus is tagged with metadata that enables the creation of sub-corpora for specific needs. Its structure makes it easy to combine with large web archives that for licensing reasons could not be distributed together with the NCC. By releasing this corpus openly to the public, we hope to foster the creation of both better Norwegian language models and multilingual language models with support for Norwegian.},
140
+ }
141
+
142
+ @inproceedings{kummervold-etal-2021-operationalizing,
143
+ title = {Operationalizing a National Digital Library: The Case for a {N}orwegian Transformer Model},
144
+ author = {Kummervold, Per E and
145
+ De la Rosa, Javier and
146
+ Wetjen, Freddy and
147
+ Brygfjeld, Svein Arne},
148
+ booktitle = {Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)},
149
+ year = {2021},
150
+ address = {Reykjavik, Iceland (Online)},
151
+ publisher = {Linköping University Electronic Press, Sweden},
152
+ url = {https://aclanthology.org/2021.nodalida-main.3},
153
+ pages = {20--29},
154
+ abstract = {In this work, we show the process of building a large-scale training set from digital and digitized collections at a national library.
155
+ The resulting Bidirectional Encoder Representations from Transformers (BERT)-based language model for Norwegian outperforms multilingual BERT (mBERT) models
156
+ in several token and sequence classification tasks for both Norwegian Bokmål and Norwegian Nynorsk. Our model also improves the mBERT performance for other
157
+ languages present in the corpus such as English, Swedish, and Danish. For languages not included in the corpus, the weights degrade moderately while keeping strong multilingual properties. Therefore,
158
+ we show that building high-quality models within a memory institution using somewhat noisy optical character recognition (OCR) content is feasible, and we hope to pave the way for other memory institutions to follow.},
159
+ }
160
+
161
+ ```
data/ncc_maalfrid/ncc_maalfrid.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbd78231ab0d8bf217d43e74fff25f6746f1667219002242ab9fe93e8f660ae2
3
+ size 54719348
data/ncc_newspapers/create.py ADDED
@@ -0,0 +1,318 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # /// script
2
+ # requires-python = ">=3.12"
3
+ # dependencies = [
4
+ # "datasets>=3.2.0"
5
+ # ]
6
+ # ///
7
+
8
+ import logging
9
+ import re
10
+ import inspect
11
+
12
+ from pathlib import Path
13
+ from datetime import datetime
14
+ from collections import defaultdict
15
+ from collections.abc import Callable
16
+
17
+ import pandas as pd
18
+ from datasets import Dataset, load_dataset
19
+
20
+ logger = logging.getLogger(__name__)
21
+ ########## edit manually for each source
22
+ hf_path = "NbAiLab/NCC"
23
+ source = "ncc_newspapers"
24
+ doc_type_searchword = "newspaper"
25
+ license = "cc0-1.0"
26
+ domain = "News"
27
+ num_proc = 10
28
+ ##########
29
+ today = datetime.now().strftime("%Y-%m-%d")
30
+
31
+ #stop words taken from spaCy
32
+ #https://github.com/explosion/spaCy/blob/master/spacy/lang/da/stop_words.py
33
+ # Source: Handpicked by Jens Dahl Møllerhøj.
34
+ spacy_sw = set(
35
+ """
36
+ af aldrig alene alle allerede alligevel alt altid anden andet andre at
37
+
38
+ bag begge blandt blev blive bliver burde bør
39
+
40
+ da de dem den denne dens der derefter deres derfor derfra deri dermed derpå derved det dette dig din dine disse dog du
41
+
42
+ efter egen eller ellers en end endnu ene eneste enhver ens enten er et
43
+
44
+ flere flest fleste for foran fordi forrige fra få før først
45
+
46
+ gennem gjorde gjort god gør gøre gørende
47
+
48
+ ham han hans har havde have hel heller hen hende hendes henover her herefter heri hermed herpå hun hvad hvem hver hvilke hvilken hvilkes hvis hvor hvordan hvorefter hvorfor hvorfra hvorhen hvori hvorimod hvornår hvorved
49
+
50
+ i igen igennem ikke imellem imens imod ind indtil ingen intet
51
+
52
+ jeg jer jeres jo
53
+
54
+ kan kom kommer kun kunne
55
+
56
+ lad langs lav lave lavet lidt lige ligesom lille længere
57
+
58
+ man mange med meget mellem men mens mere mest mig min mindre mindst mine mit må måske
59
+
60
+ ned nemlig nogen nogensinde noget nogle nok nu ny nyt nær næste næsten
61
+
62
+ og også om omkring op os over overalt
63
+
64
+
65
+
66
+ samme sammen selv selvom senere ses siden sig sige skal skulle som stadig synes syntes så sådan således
67
+
68
+ temmelig tidligere til tilbage tit
69
+
70
+ ud uden udover under undtagen
71
+
72
+ var ved vi via vil ville vore vores vær være været
73
+
74
+ øvrigt
75
+ """.split()
76
+ )
77
+
78
+ def word_tokenize(text: str) -> list[str]:
79
+ """
80
+ Tokenizes a string into words, splitting on whitespace and punctuation.
81
+
82
+ Example:
83
+ >>> word_tokenize("Hello, world!")
84
+ ['Hello', ',', 'world', '!']
85
+ >>> word_tokenize("This is a test.")
86
+ ['This', 'is', 'a', 'test', '.']
87
+ >>> word_tokenize("Many spaces between words.")
88
+ ['Many', 'spaces', 'between', 'words', '.']
89
+ """
90
+
91
+ punkt = [",", ".", "!", "?", ":", ";", "(", ")", "[", "]", "{", "}", '"', "'"]
92
+ for p in punkt:
93
+ text = text.replace(p, f" {p} ")
94
+ return text.split()
95
+
96
+ def alpha_ratio(text: str | list[str]) -> float:
97
+ """
98
+ If not split already to words, splits text with word_tokenize()
99
+ Calculates ratio of words with only alphabetical characters
100
+
101
+ """
102
+ if type(text) is str:
103
+ text = word_tokenize(text)
104
+ else:
105
+ pass
106
+
107
+ alpha_ratio = 1 - sum(not word.isalpha() for word in text) / len(text)
108
+
109
+ return alpha_ratio
110
+
111
+ def count_min_target(given_list: list, target_list: list, min: int) -> bool:
112
+ """
113
+ Iterates through given list, until at least min items match any items from target list
114
+
115
+ """
116
+ c_item = 0
117
+ given_list_iter = iter(given_list)
118
+ while c_item < min:
119
+ try:
120
+ current_item = next(given_list_iter)
121
+ if current_item in target_list:
122
+ c_item += 1
123
+ except StopIteration:
124
+ break
125
+
126
+ return c_item == min
127
+
128
+ def dynaword_format(
129
+ meta_document: dict[str, str | int]
130
+ ) -> dict[str, str | dict[str, str]]:
131
+ """Reformats data to fit dynaword standards"""
132
+
133
+ text = meta_document.get("text")
134
+ id = meta_document.get("id")
135
+ date = meta_document.get("publish_year")
136
+ doc_type = meta_document.get("doc_type")
137
+
138
+ newdata = {
139
+ "text": text,
140
+ "source": source,
141
+ "id": id,
142
+ "added": today,
143
+ "created": f"{date}-01-01, {date}-12-31",
144
+ "license": license,
145
+ "domain": domain,
146
+ "metadata": {
147
+ "source-pretty": f"Norwegian Colossal Corpus ({re.sub("ncc_","",source)})",
148
+ "source-type": doc_type,
149
+ },
150
+ }
151
+
152
+ return newdata
153
+
154
+ def log_pre_filter_lang_data(lang_metadata : dict[str,dict[str,int]],
155
+ filtered_ds: Dataset):
156
+ """
157
+ Function for logging changes in a large dataset,
158
+ based on the metadata pre filering and the filtered dataset,
159
+ used for language filtering
160
+ """
161
+ all_docs = sum(lang_metadata[source].values())
162
+ no_docs = lang_metadata[source].get("no")
163
+ da_docs = lang_metadata[source].get("da")
164
+ no_perc = round(no_docs/all_docs*100,4)
165
+ da_perc = round(da_docs/all_docs*100,4)
166
+
167
+ f_length = len(filtered_ds)
168
+ f_perc = round(f_length/da_docs*100,4)
169
+ f_total_perc = round(f_length/all_docs*100,4)
170
+
171
+ logger.info(f"Documents of {source}:")
172
+ logger.info(f"NO: {no_docs}, {no_perc}% ; DA: {da_docs}, {da_perc}%")
173
+ logger.info(f"After language confidence filtering:")
174
+ logger.info(f"DA: {f_length}, lost: {100-f_perc}%")
175
+ logger.info(f"Total document change:")
176
+ logger.info(f"{all_docs} -> {f_length}, loss: {100-f_total_perc}%")
177
+
178
+ def get_var_name(var):
179
+ """ outputs the variable name """
180
+ callers_local_vars = inspect.currentframe().f_back.f_back.f_back.f_locals.items()
181
+ return [var_name for var_name, var_val in callers_local_vars if var_val is var]
182
+
183
+ def filter_with_changelog(filter_func:Callable[[Dataset],Dataset],
184
+ dataset:Dataset) -> Dataset:
185
+ """
186
+ Function, which takes a filter and a dataset.
187
+ Counts text docs and tokens before and after filtering,
188
+ Saves filtering changes to log.
189
+ """
190
+
191
+ filter_name = get_var_name(filter_func)
192
+ pre_filter_docs = len(dataset)
193
+ pre_filter_tokens= sum(len(word_tokenize(i["text"])) for i in dataset)
194
+
195
+ dataset = dataset.filter(filter_func,num_proc=num_proc)
196
+
197
+ post_filter_docs = len(dataset)
198
+ post_filter_tokens= sum(len(word_tokenize(i["text"])) for i in dataset)
199
+ tokens_removed = round((1-(post_filter_tokens/pre_filter_tokens))*100,2)
200
+ docs_removed = round((1-(post_filter_docs/pre_filter_docs))*100,2)
201
+
202
+ logger.info(f"FILTER: {filter_name}")
203
+ logger.info(f"TOKENS: pre: {pre_filter_tokens}, post: {post_filter_tokens}, loss: {tokens_removed}%")
204
+ logger.info(f"DOCUMENTS: pre: {pre_filter_docs}, post: {post_filter_docs}, loss: {docs_removed}%")
205
+
206
+ return dataset
207
+
208
+
209
+ source_filter = lambda ds : doc_type_searchword in ds["doc_type"]
210
+ length_filter = lambda ds: len(word_tokenize(ds["text"])) >= 10
211
+ too_long_filter = lambda ds: len(word_tokenize(ds["text"])) > 1e5
212
+ alpha_filter = lambda ds: alpha_ratio(ds["text"]) >= 0.7
213
+ stop_word_filter = lambda ds: count_min_target(word_tokenize(ds["text"]),spacy_sw,2)
214
+
215
+ samples_pr_source: dict = defaultdict(lambda: defaultdict(int))
216
+ def language_filter_with_desc_stats(ds:Dataset) -> bool:
217
+ """
218
+ Language filtering in a streamed dataset while logging all languages
219
+ """
220
+ s = source
221
+ language = ds["lang_fasttext"]
222
+ samples_pr_source[s][language] += 1
223
+
224
+ language_filter = ds["lang_fasttext"] == "da" and float(ds["lang_fasttext_conf"]) >= 0.75
225
+
226
+ return language_filter
227
+
228
+ def quality_checks(ds:Dataset) -> Dataset:
229
+ """
230
+ Quality checks for:
231
+ - no duplicate ids
232
+ - no duplicate texts
233
+ - logs texts > 1e5 tokens
234
+ """
235
+ #convert to pandas for the drop_duplicates()
236
+ df = pd.DataFrame(ds)
237
+ # remove duplicate ids
238
+ len_df = len(df)
239
+ df = df.drop_duplicates(subset=["id"])
240
+ logger.info(f"Removed {len_df - len(df)} duplicate ids")
241
+ # remove rows with duplicate text
242
+ len_df = len(df)
243
+ df = df.drop_duplicates(subset=["text"])
244
+ logger.info(f"Removed {len_df - len(df)} rows with duplicate text")
245
+ #reconvert and remove index
246
+ ds_f = Dataset.from_pandas(df,preserve_index=False)
247
+ try:
248
+ ds_f["__index_level_0__"]
249
+ ds_f = ds_f.remove_columns("__index_level_0__")
250
+ except KeyError:
251
+ pass
252
+
253
+ assert len(set(ds_f["id"])) == len(ds_f), "IDs are not unique"
254
+ assert len(set(ds_f["text"])) == len(ds_f), "Texts are not unique"
255
+
256
+ long_texts = ds_f.filter(too_long_filter,num_proc=None)
257
+ if len(long_texts["id"]) > 0:
258
+ logger.info(f"{len(long_texts["id"])} Long texts (>~1e5 tokens) found")
259
+ for id in long_texts["id"]:
260
+ logger.info(f"id: {id}")
261
+ else:
262
+ logger.info("No long texts (>~1e5 tokens) found")
263
+
264
+ return ds_f
265
+
266
+ def main():
267
+ #load all splits
268
+ logger.info(f"Loading data from: {hf_path}")
269
+ danish_data = load_dataset(hf_path, streaming=False, split="train+validation", num_proc=num_proc)
270
+
271
+
272
+ #filter by metadata
273
+ logger.info(f"Processing source: {source}")
274
+ danish_data=danish_data.filter(source_filter,num_proc=num_proc)
275
+
276
+
277
+ logger.info(f"Processing language")
278
+ danish_data=danish_data.filter(language_filter_with_desc_stats, num_proc=None)
279
+
280
+ #log language changes
281
+ log_pre_filter_lang_data(samples_pr_source,danish_data)
282
+
283
+ #convert to dynaword format
284
+ danish_data = danish_data.map(dynaword_format)
285
+ danish_data = danish_data.select_columns(["text",
286
+ "source",
287
+ "id",
288
+ "added",
289
+ "created",
290
+ "license",
291
+ "domain",
292
+ "metadata"])
293
+
294
+ #filter and log changes
295
+ danish_data = filter_with_changelog(length_filter,danish_data)
296
+ danish_data = filter_with_changelog(alpha_filter,danish_data)
297
+ danish_data = filter_with_changelog(stop_word_filter,danish_data)
298
+
299
+ #Quality checks
300
+ danish_data = quality_checks(danish_data)
301
+
302
+ ### saving
303
+ save_path = Path(__file__).parent / f"{source}.parquet"
304
+ danish_data.to_parquet(save_path)
305
+
306
+
307
+
308
+ if __name__ == "__main__":
309
+ log_path = Path(__file__).parent / f"{source}.log"
310
+ logging.basicConfig(
311
+ level=logging.INFO,
312
+ format="%(asctime)s - %(levelname)s - %(message)s",
313
+ handlers=[
314
+ logging.StreamHandler(),
315
+ logging.FileHandler(log_path),
316
+ ],
317
+ )
318
+ main()
data/ncc_newspapers/descriptive_stats.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "number_of_samples": 707,
3
+ "average_document_length": 793.6053748231966,
4
+ "number_of_tokens": 191082,
5
+ "language": "dan, dansk, Danish",
6
+ "revision": "da633eaca923cc25686bda59a41369694597baac"
7
+ }
data/ncc_newspapers/images/dist_document_length.png ADDED

Git LFS Details

  • SHA256: 66b7ae662c94c3497b5d8326eb92f39c5e029599481fd96b4f484e85f5edc71d
  • Pointer size: 131 Bytes
  • Size of remote file: 186 kB
data/ncc_newspapers/ncc_newspapers.log ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-05-08 08:44:51,942 - INFO - Loading data from: NbAiLab/NCC
2
+ 2025-05-08 08:45:05,442 - INFO - Processing source: ncc_newspapers
3
+ 2025-05-08 08:46:51,180 - INFO - Processing language
4
+ 2025-05-08 08:48:03,192 - INFO - Documents of ncc_newspapers:
5
+ 2025-05-08 08:48:03,192 - INFO - NO: 487086, 73.2081% ; DA: 17516, 2.6326%
6
+ 2025-05-08 08:48:03,192 - INFO - After language confidence filtering:
7
+ 2025-05-08 08:48:03,192 - INFO - DA: 1162, lost: 93.3661%
8
+ 2025-05-08 08:48:03,192 - INFO - Total document change:
9
+ 2025-05-08 08:48:03,192 - INFO - 665344 -> 1162, loss: 99.8254%
10
+ 2025-05-08 08:48:17,499 - INFO - FILTER: ['length_filter']
11
+ 2025-05-08 08:48:17,499 - INFO - TOKENS: pre: 119536, post: 117538, loss: 1.67%
12
+ 2025-05-08 08:48:17,499 - INFO - DOCUMENTS: pre: 1162, post: 843, loss: 27.45%
13
+ 2025-05-08 08:48:28,912 - INFO - FILTER: ['alpha_filter']
14
+ 2025-05-08 08:48:28,912 - INFO - TOKENS: pre: 117538, post: 111512, loss: 5.13%
15
+ 2025-05-08 08:48:28,912 - INFO - DOCUMENTS: pre: 843, post: 722, loss: 14.35%
16
+ 2025-05-08 08:48:42,727 - INFO - FILTER: ['stop_word_filter']
17
+ 2025-05-08 08:48:42,727 - INFO - TOKENS: pre: 111512, post: 111341, loss: 0.15%
18
+ 2025-05-08 08:48:42,727 - INFO - DOCUMENTS: pre: 722, post: 707, loss: 2.08%
19
+ 2025-05-08 08:48:42,928 - INFO - Removed 0 duplicate ids
20
+ 2025-05-08 08:48:42,938 - INFO - Removed 0 rows with duplicate text
21
+ 2025-05-08 08:48:43,036 - INFO - No long texts (>~1e5 tokens) found
data/ncc_newspapers/ncc_newspapers.md ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pretty_name: Norwegian Colossal Corpus (newspapers)
3
+ language:
4
+ - da
5
+ license: cc0-1.0
6
+ license_name: CC0 1.0
7
+ task_categories:
8
+ - text-generation
9
+ - fill-mask
10
+ task_ids:
11
+ - language-modeling
12
+ ---
13
+
14
+ # Dataset Card for Norwegian Colossal Corpus (newspapers)
15
+
16
+ <!-- START-SHORT DESCRIPTION -->
17
+ Danish Newspapers extracted from the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC) derived from OCR.
18
+ <!-- END-SHORT DESCRIPTION -->
19
+
20
+ The Norwegian Colossal Corpus is a collection of multiple smaller Norwegian corpuses suitable for training large language models.
21
+ (desc. taken from [NCC](https://huggingface.co/datasets/NbAiLab/NCC))
22
+
23
+ This subset is the result of the following filtering from all available data splits:
24
+ - Document comes from newspaper articles
25
+ - Document is classified as Danish with a threshold of 0.75
26
+ - Document has at least 10 words (whitespace separated strings + punctuation)
27
+ - The ratio of all words / words with only alphabetical characters is at least 0.7
28
+ - The document contains at least 2 Danish stop words
29
+
30
+
31
+
32
+ ## Dataset Description
33
+
34
+ <!-- START-DESC-STATS -->
35
+ - **Language**: dan, dansk, Danish
36
+ - **Number of samples**: 707
37
+ - **Number of tokens (Llama 3)**: 191.08K
38
+ - **Average document length (characters)**: 793.61
39
+ <!-- END-DESC-STATS -->
40
+
41
+
42
+ ## Dataset Structure
43
+ An example from the dataset looks as follows.
44
+ <!-- START-SAMPLE -->
45
+ ```py
46
+ {
47
+ "text": "Det blir ikke Kipparifestival i �r. Dette har arrang�rene meddelt. De er slitne.",
48
+ "source": "ncc_newspapers",
49
+ "id": "ruijankaiku_null_null_20120130_18_1_1_MODSMD_ARTICLE35",
50
+ "added": "2025-05-08",
51
+ "created": "2012-01-01, 2012-12-31",
52
+ "license": "cc0-1.0",
53
+ "domain": "News",
54
+ "metadata": {
55
+ "source-pretty": "Norwegian Colossal Corpus (newspapers)",
56
+ "source-type": "newspaper_ocr"
57
+ }
58
+ }
59
+ ```
60
+
61
+ ### Data Fields
62
+
63
+ An entry in the dataset consists of the following fields:
64
+
65
+ - `text`(`str`): The content of the document.
66
+ - `source` (`str`): The source of the document (see [Source Data](#source-data)).
67
+ - `id` (`str`): An unique identifier for each document.
68
+ - `added` (`str`): An date for when the document was added to this collection.
69
+ - `created` (`str`): An date range for when the document was originally created.
70
+ - `license` (`str`): The license of the document. The licenses vary according to the source.
71
+ - `domain` (`str`): The domain of the source
72
+ - `metadata/source-pretty` (`str`): The long form version of the short-form source name
73
+ - `metadata/*`: Potentially additional metadata
74
+ <!-- END-SAMPLE -->
75
+
76
+
77
+
78
+ ### Dataset Statistics
79
+
80
+ <!-- START-DATASET PLOTS -->
81
+ <img src="./images/dist_document_length.png" width="600" style="margin-right: 10px;" />
82
+ <img>
83
+ <!-- END-DATASET PLOTS -->
84
+
85
+ ## Additional Information
86
+
87
+ ## License Information
88
+ [CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/)
89
+
90
+ ## Filtering
91
+ ### Pre filtering
92
+ Documents, which are tagged as "newspaper*" in the "doc_type" column of the NCC
93
+
94
+ Norwegian documents: 487086
95
+ ~73.2% of data
96
+ Danish documents: 17516
97
+ ~2.6% of data
98
+
99
+ ### Classification confidence
100
+ Removing documents, where the "lang_fasttext_conf" column of the NCC is less than 0.75
101
+
102
+ Documents: 1162
103
+ Loss: ~93.42%
104
+
105
+ ### Length
106
+ Removing documents based on the "text" column of the NCC. Text is tokenized by splitting on whitespace. Common punctuation marks are counted as separate tokens.
107
+
108
+ Texts with less than 10 tokens are removed.
109
+ TOKENS: pre: 119536, post: 117538, loss: 1.67%
110
+ DOCUMENTS: pre: 1162, post: 843, loss: 27.45%
111
+
112
+ ### Alpha Ratio
113
+ Texts, in which the ratio of words and words with only alphabetic characters is less than 0.7, are removed.
114
+
115
+ TOKENS: pre: 117538, post: 111512, loss: 5.13%
116
+ DOCUMENTS: pre: 843, post: 722, loss: 14.35%
117
+
118
+ ### Stop Words
119
+ Texts which contain less then 2 stop words are removed.
120
+ TOKENS: pre: 111512, post: 111341, loss: 0.15%
121
+ DOCUMENTS: pre: 722, post: 707, loss: 2.08%
122
+ ### Quality
123
+
124
+ It is important to note, that recurring ocr mistakes and archaic expressions in older texts might hinder the legibility of some of the documents and make differentiating between Norwegian and Danish difficult.
125
+ <details>
126
+ <summary>Examples</summary>
127
+ <br>
128
+
129
+ - De nartotifte Stoffer, vi benytte. ae Tobat...
130
+
131
+ - Sqmfruer hav. baaret lige faadan mpffe og Prydelfe...
132
+
133
+ </details>
134
+
135
+
136
+ ### Citation Information
137
+ ```
138
+ @inproceedings{kummervold-etal-2022-norwegian-colossal,
139
+ title = {The {N}orwegian colossal corpus: A text corpus for training large {N}orwegian language models},
140
+ author = {Kummervold, Per E and
141
+ Wetjen, Freddy and
142
+ De la Rosa, Javier},
143
+ booktitle = {Proceedings of the Thirteenth Language Resources and Evaluation Conference (LREC)},
144
+ year = {2022},
145
+ address = {Marseille, France},
146
+ publisher = {European Language Resources Association},
147
+ url = {https://aclanthology.org/2022.lrec-1.410},
148
+ pages = {3852--3860},
149
+ abstract = {Norwegian has been one of many languages lacking sufficient available text to train quality language models. In an attempt to bridge this gap, we introduce the Norwegian Colossal Corpus (NCC), which comprises 49GB of clean Norwegian textual data containing over 7B words. The NCC is composed of different and varied sources, ranging from books and newspapers to government documents and public reports, showcasing the various uses of the Norwegian language in society. The corpus contains mainly Norwegian Bokmål and Norwegian Nynorsk. Each document in the corpus is tagged with metadata that enables the creation of sub-corpora for specific needs. Its structure makes it easy to combine with large web archives that for licensing reasons could not be distributed together with the NCC. By releasing this corpus openly to the public, we hope to foster the creation of both better Norwegian language models and multilingual language models with support for Norwegian.},
150
+ }
151
+
152
+ @inproceedings{kummervold-etal-2021-operationalizing,
153
+ title = {Operationalizing a National Digital Library: The Case for a {N}orwegian Transformer Model},
154
+ author = {Kummervold, Per E and
155
+ De la Rosa, Javier and
156
+ Wetjen, Freddy and
157
+ Brygfjeld, Svein Arne},
158
+ booktitle = {Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)},
159
+ year = {2021},
160
+ address = {Reykjavik, Iceland (Online)},
161
+ publisher = {Linköping University Electronic Press, Sweden},
162
+ url = {https://aclanthology.org/2021.nodalida-main.3},
163
+ pages = {20--29},
164
+ abstract = {In this work, we show the process of building a large-scale training set from digital and digitized collections at a national library.
165
+ The resulting Bidirectional Encoder Representations from Transformers (BERT)-based language model for Norwegian outperforms multilingual BERT (mBERT) models
166
+ in several token and sequence classification tasks for both Norwegian Bokmål and Norwegian Nynorsk. Our model also improves the mBERT performance for other
167
+ languages present in the corpus such as English, Swedish, and Danish. For languages not included in the corpus, the weights degrade moderately while keeping strong multilingual properties. Therefore,
168
+ we show that building high-quality models within a memory institution using somewhat noisy optical character recognition (OCR) content is feasible, and we hope to pave the way for other memory institutions to follow.},
169
+ }
170
+
171
+ ```
data/ncc_newspapers/ncc_newspapers.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b7c44c949f42d2fee6cab10b6b565511374592e57ce6f12aa1c1e3f3f57f485
3
+ size 427218