Kenneth Enevoldsen commited on
Commit
ebc5129
·
unverified ·
1 Parent(s): 2debafd

improves metadata

Browse files
Files changed (1) hide show
  1. src/dynaword/tables.py +36 -10
src/dynaword/tables.py CHANGED
@@ -45,9 +45,15 @@ def create_dataset_readme_references():
45
  return readme_references
46
 
47
 
48
- def create_overview_table(repo_path: Path = repo_path) -> pd.DataFrame:
 
 
 
 
 
49
  table = {
50
  "Source": [],
 
51
  "Description": [],
52
  "Domain": [],
53
  "N. Tokens": [],
@@ -62,22 +68,42 @@ def create_overview_table(repo_path: Path = repo_path) -> pd.DataFrame:
62
  desc_stats = sheet.get_descritive_stats()
63
  main_domain = sheet.domains[0] if sheet.domains else ""
64
 
65
- table["Source"] += [f"[{dataset_path.name}]"]
 
66
  table["License"] += [f"[{sheet.license_name}]"]
67
  table["Domain"] += [main_domain]
68
  table["Description"] += [sheet.short_description]
69
  table["N. Tokens"] += [desc_stats.number_of_tokens]
70
 
71
- # total
72
- table["Source"] += ["**Total**"]
73
- table["Domain"] += [""]
74
- table["License"] += [""]
75
- table["Description"] += [""]
76
- table["N. Tokens"] += [sum(table["N. Tokens"])]
77
-
78
  df = pd.DataFrame.from_dict(table)
79
  df = df.sort_values("N. Tokens", ascending=False)
80
- df["N. Tokens"] = df["N. Tokens"].apply(human_readable_large_int)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
 
82
  return df
83
 
 
45
  return readme_references
46
 
47
 
48
+ def create_overview_table(
49
+ repo_path: Path = repo_path,
50
+ add_readable_tokens: bool = True,
51
+ add_total_row: bool = True,
52
+ add_readme_references: bool = True,
53
+ ) -> pd.DataFrame:
54
  table = {
55
  "Source": [],
56
+ "Source with link": [],
57
  "Description": [],
58
  "Domain": [],
59
  "N. Tokens": [],
 
68
  desc_stats = sheet.get_descritive_stats()
69
  main_domain = sheet.domains[0] if sheet.domains else ""
70
 
71
+ table["Source"] += [f"{dataset_path.name}"]
72
+ table["Source with link"] += [f"[{dataset_path.name}]"]
73
  table["License"] += [f"[{sheet.license_name}]"]
74
  table["Domain"] += [main_domain]
75
  table["Description"] += [sheet.short_description]
76
  table["N. Tokens"] += [desc_stats.number_of_tokens]
77
 
 
 
 
 
 
 
 
78
  df = pd.DataFrame.from_dict(table)
79
  df = df.sort_values("N. Tokens", ascending=False)
80
+
81
+ if add_total_row:
82
+ total_row = {
83
+ "Source": "**Total**",
84
+ "Source with link": "**Total**",
85
+ "Domain": "",
86
+ "License": "",
87
+ "Description": "",
88
+ "N. Tokens": sum(table["N. Tokens"]),
89
+ }
90
+ df = pd.concat(
91
+ [
92
+ df,
93
+ pd.DataFrame([total_row]),
94
+ ],
95
+ ignore_index=True,
96
+ )
97
+ if add_readme_references:
98
+ # replace Source with Source with link
99
+ df["Source"] = df["Source with link"]
100
+ df = df.drop(columns=["Source with link"])
101
+ else:
102
+ # remove Source with link
103
+ df = df.drop(columns=["Source with link"])
104
+
105
+ if add_readable_tokens:
106
+ df["N. Tokens"] = df["N. Tokens"].apply(human_readable_large_int)
107
 
108
  return df
109