# /// script # requires-python = ">=3.12" # dependencies = [ # "datasets>=3.2.0", # ] # /// from pathlib import Path from typing import cast from datasets import Dataset, load_dataset source = "fm-udgivelser" def convert_sample(example): new_example = dict( text_new=example["text"], source=source, domain="Legal", license="cc-by-sa-4.0", added="2025-03-24", created="2024-01-01, 2026-01-01", # Scrape happen within these years - data likely written earlier metadata={"source-pretty": "Finansministeriets Udgivelser"}, ) return new_example def main(): data_path = Path( "/work/dfm-data/pre-training/fm-udgivelser/documents/finans-ministeriet.jsonl.gz" ) ds = load_dataset("json", data_files=data_path.as_posix(), split="train") ds = cast(Dataset, ds) ds = ds.map(convert_sample, remove_columns=ds.column_names) ds = ds.rename_columns({"text_new": "text"}) ds = ds.add_column("id", [f"{source}_{i}" for i in range(len(ds))]) # type: ignore ds = ds.select_columns( ["text", "source", "id", "added", "created", "license", "domain", "metadata"] ) save_path = Path(__file__).parent / f"{source}.parquet" ds.to_parquet(save_path) if __name__ == "__main__": main()