# /// script # requires-python = ">=3.12" # dependencies = [ # "datasets>=3.2.0", # ] # /// from pathlib import Path from typing import cast from datasets import Dataset, load_dataset, concatenate_datasets source = "cellar" def convert_sample(example): new_example = dict( text_new=example["text"], source=source, domain="Legal", license="cc-by-sa-4.0", added="2025-03-25", created="2024-01-01, 2026-01-01", # Scrape happened within these years - data likely written earlier metadata={"source-pretty": "Cellar"}, ) return new_example def main(): data_path = Path("/work/dfm-data/pre-training/cellar/documents") data_paths = [p.as_posix() for p in data_path.glob("DAN*.jsonl.gz")] dfs = [] for i, path in enumerate(data_paths): print(i, path.split("/")[-1]) try: ds = load_dataset( "json", data_files=path, split="train" ) # a few datasets fail to load dfs.append(ds) print("\tSuccess") except Exception: print("\tFail") ds = concatenate_datasets(dsets=dfs) ds = cast(Dataset, ds) ds = ds.map(convert_sample, remove_columns=ds.column_names) ds = ds.rename_columns({"text_new": "text"}) ds = ds.add_column("id", [f"{source}_{i}" for i in range(len(ds))]) # type: ignore ds = ds.select_columns( ["text", "source", "id", "added", "created", "license", "domain", "metadata"] ) save_path = Path(__file__).parent / f"{source}.parquet" ds.to_parquet(save_path) if __name__ == "__main__": main()