# /// script # requires-python = ">=3.12" # dependencies = [ # "datasets>=3.2.0", # ] # /// """ This script is used to create the data for the AI-aktindsigt project. This derived the data from a .json.gz file. """ from pathlib import Path from typing import cast from datasets import Dataset, load_dataset source = "ai-aktindsigt" def convert_sample(example): # {'text': 'Vallensbæk Stationstorv 100 2665 Vallensbæk Strand Telefon: +45 4797 4000', # 'id': '0_03fe7662f6d37df0ffbf5013907414f935350db9931043891a95ed830965a507a7bcb4df93741429bdfa4958cf25f6c273aa73146f2be80948f767eb5fa04645', # 'source': 'AI-aktindsigt', # 'added': '2024-04-16T12:35:52.000Z', # 'metadata': {'url': 'https://vallensbaek.dk/', 'kommune': 'vallensbaek', 'sentence': 1, # 'ppl_score': [634.6341], # 'sha512': '03fe7662f6d37df0ffbf5013907414f935350db9931043891a95ed830965a507a7bcb4df93741429bdfa4958cf25f6c273aa73146f2be80948f767eb5fa04645'} # } new_example = dict( text_new=example["text"], source=source, domain="Web", license="Apache-2.0", added="2025-03-24", created="2010-01-01, 2024-03-18", # Start date is approximate guess end date is the date of the last update metadata={"source-pretty": "AI Aktindsigt"}, ) return new_example def main(): data_path = Path( "/work/dfm-data/pre-training/ai_aktindsigt/documents/ai_aktindsigt.jsonl.gz" ) ds = load_dataset("json", data_files=data_path.as_posix(), split="train") ds = cast(Dataset, ds) ds = ds.map(convert_sample, remove_columns=ds.column_names) ds = ds.rename_columns({"text_new": "text"}) ds = ds.add_column("id", [f"{source}_{i}" for i in range(len(ds))]) # type: ignore ds = ds.select_columns( ["text", "source", "id", "added", "created", "license", "domain", "metadata"] ) save_path = Path(__file__).parent / f"{source}.parquet" ds.to_parquet(save_path) if __name__ == "__main__": main()