# /// script # requires-python = "==3.12" # dependencies = [ # "datasets==3.2.0", # "dynaword" # ] # [tool.uv.sources] # dynaword = { git = "https://huggingface.co/datasets/danish-foundation-models/danish-dynaword", rev = "00e7f2aee7f7ad2da423419f77ecbb9c0536de0d" } # /// """ Script for downloading and processing the Danish Memo repository. Note: To run this script, you need to set `GIT_LFS_SKIP_SMUDGE=1` to be able to install dynaword: ```bash GIT_LFS_SKIP_SMUDGE=1 uv run data/memo/create.py ``` This second version fixed previous issues with the download and processing of the Danish Memo repository: https://huggingface.co/datasets/danish-foundation-models/danish-dynaword/discussions/67 """ import logging import subprocess from datetime import datetime from pathlib import Path from typing import Any import pandas as pd from datasets import Dataset from dynaword.process_dataset import ( add_token_count, ensure_column_order, remove_duplicate_text, remove_empty_texts, ) logger = logging.getLogger(__name__) download_path = Path(__file__).parent / "tmp" def download_repo( download_path: Path = download_path, repo_url: str = "https://huggingface.co/datasets/MiMe-MeMo/Corpus-v1.1", revision="7205897f1f3ee65e296072f3e96d49488e54e8ce", ) -> Path: """ Downloads the repository from the given URL to the specified path. """ logger.info(f"Downloading repository to {download_path}") if not download_path.exists(): download_path.mkdir(parents=True, exist_ok=True) repo_path = download_path / repo_url.split("/")[-1] if repo_path.exists(): logger.info(f"Repository already exists at {repo_path}, skipping download.") return repo_path # Use git to clone the repository running it from the download path subprocess.run(["git", "clone", repo_url], check=True, cwd=download_path) # Checkout the specific revision subprocess.run(["git", "checkout", revision], check=True, cwd=repo_path) logger.info("Download complete.") return repo_path def load_texts(repo_path: Path) -> list[dict[str, str]]: """ Loads texts from the downloaded repository. """ text_files_path = repo_path / "texts" text_files = list(text_files_path.glob("*.txt")) texts = [] for file in text_files: name = file.stem with file.open("r") as f: content = f.read() texts.append({"name": name, "text": content}) logger.info(f"Loaded {len(texts)} texts from the repository.") return texts def load_memo(repo_path: Path) -> pd.DataFrame: texts = load_texts(repo_path) metadata_csv = repo_path / "MeMo-corpus-metadata-v1.1-2023-06-20.csv" metadata = pd.read_csv(metadata_csv) # remove .pdf from "filename" metadata["filename"] = metadata["filename"].str.replace(".pdf", "", regex=False) texts_df = pd.DataFrame(texts) text_df_fileames = set(texts_df["name"]) metadata_filenames = set(metadata["filename"]) text_without_metadata = [t for t in text_df_fileames if t not in metadata_filenames] assert ( len(text_without_metadata) == 0 ), f"Some texts in the repository do not have metadata: {text_without_metadata}" # merge texts with metadata merged_df = pd.merge( texts_df, metadata, left_on="name", right_on="filename", how="inner" ) logger.info(f"Loaded {len(merged_df)} rows from the MeMo dataset.") return merged_df def convert_to_dynaword_format(memo_df: pd.DataFrame) -> Dataset: # convert to dynaword samples samples: list[dict[str, Any]] = [] for _, row in memo_df.iterrows(): text = row["text"] assert isinstance(text, str), f"Text is not a string: {text}" # if there is a title then add it to the text title = row["title"] if pd.notna(row["title"]) else "Ukendt titel" subtitle = row["subtitle"] if pd.notna(row["subtitle"]) else "" title = f"{title} {subtitle}".strip() first_name = row["firstname"] last_name = row["surname"] pseudonym = row["pseudonym"] full_name = f"{first_name} {last_name}".strip() if not full_name: full_name = pseudonym if pd.notna(pseudonym) else "Ukendt forfatter" else: # add pseudonym if it exists if pd.notna(pseudonym) and pseudonym != full_name: full_name += f" (Pseudonym: {pseudonym})" # create a new text with the title and author text_new = f"{title}\n\nSkrevet af {full_name}\nPubliceret {row['year']} af {row['publisher']}\n ------- \n\n{text}" today = datetime.now().date() sample = { "id": row["filename"], "text": text_new, "source": "memo", "added": today.isoformat(), "created": f"{row['year']}-01-01, {row['year']}-12-31", } samples.append(sample) ds = Dataset.from_list(samples) logger.info(f"Converted to dynaword format with {len(ds)} samples.") return ds ds = convert_to_dynaword_format(memo_df) def main(): save_path = Path(__file__).parent / "memo.parquet" repo_path = download_repo(download_path) memo_df = load_memo(repo_path) ds = convert_to_dynaword_format(memo_df) # quality checks and processing ds = remove_empty_texts(ds) ds = remove_duplicate_text(ds) ds = add_token_count(ds) ds = ensure_column_order(ds) # save to parquet ds.to_parquet(save_path) if __name__ == "__main__": log_path = Path(__file__).parent / "memo.log" logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s", handlers=[ logging.StreamHandler(), logging.FileHandler(log_path), ], ) main()