# /// script # requires-python = "==3.12" # dependencies = [ # "datasets==3.2.0", # "dynaword" # ] # [tool.uv.sources] # dynaword = { git = "https://huggingface.co/datasets/danish-foundation-models/danish-dynaword", rev = "00e7f2aee7f7ad2da423419f77ecbb9c0536de0d" } # /// """ Script for downloading and processing the Scrape Hovedstaden texts. Note: To run this script, you need to set `GIT_LFS_SKIP_SMUDGE=1` to be able to install dynaword: ```bash GIT_LFS_SKIP_SMUDGE=1 uv run data/scrape_hovedstaden/create.py ``` """ import logging import subprocess from datetime import datetime from pathlib import Path from typing import Any, cast import pandas as pd from datasets import Dataset, load_dataset from dynaword.process_dataset import ( add_token_count, ensure_column_order, remove_duplicate_text, remove_empty_texts, ) logger = logging.getLogger(__name__) download_path = Path(__file__).parent / "tmp" def main(): save_path = Path(__file__).parent / "scrape_hovedstaden.parquet" # Download data from repo: Den-Intelligente-Patientjournal/region_hovedstaden_text ds = load_dataset( "Den-Intelligente-Patientjournal/region_hovedstaden_text", split="train" ) dataset: Dataset = cast(Dataset, ds) # Extract the cleaned column dataset = dataset.rename_column("cleaned", "text") # Add created column: 2015 and 2020 dataset = dataset.add_column("created", ["2015-01-01, 2020-12-31"] * len(dataset)) # type: ignore # Add added column: today dataset = dataset.add_column( "added", [datetime.today().date().strftime("%Y-%m-%d")] * len(dataset) ) # type: ignore # Add source column: scrape_hovedstaden dataset = dataset.add_column("source", ["scrape_hovedstaden"] * len(dataset)) # type: ignore # Add id column: scrape_hovedstade_{idx} dataset = dataset.add_column( "id", [f"scrape_hovedstaden_{i}" for i in range(len(dataset))] ) # type: ignore # quality checks and processing dataset = remove_empty_texts(dataset) dataset = remove_duplicate_text(dataset) dataset = add_token_count(dataset) dataset = ensure_column_order(dataset) # save to parquet dataset.to_parquet(save_path) if __name__ == "__main__": main()