"""""" import logging from functools import partial from typing import Any from datasets import Dataset from transformers import AutoTokenizer from dynaword.dataset_structure import COLUMN_ORDER, ColumnNames logger = logging.getLogger(__name__) # TODO: Add a step to compute the size categories and update the frontmatter def _tokenize_function( examples: dict[str, Any], tokenizer: AutoTokenizer ) -> dict[str, Any]: token_count = [ len(tokens) for tokens in tokenizer(examples[ColumnNames.text.value], padding=False)[ # type: ignore "input_ids" ] ] examples[ColumnNames.token_count.value] = token_count return examples def add_token_count( ds: Dataset, tokenizer_name: str = "AI-Sweden-Models/Llama-3-8B-instruct", num_proc: int = 4, ) -> Dataset: tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=True) tokenize = partial(_tokenize_function, tokenizer=tokenizer) # type: ignore ds = ds.map(tokenize, batched=True, num_proc=num_proc) return ds def _filter_duplicates(example: dict[str, Any], seen_set: set) -> bool: if example[ColumnNames.text.value] in seen_set: return False seen_set.add(example[ColumnNames.text.value]) return True def remove_duplicate_text(ds: Dataset) -> Dataset: logger.info("Removing duplicate texts") seen_texts = set() len_ds = len(ds) ds = ds.filter(partial(_filter_duplicates, seen_set=seen_texts)) logger.info(f"Filtered {len_ds - len(ds)} duplicate examples") return ds def _filter_empty(example: dict[str, Any]) -> bool: return len(example[ColumnNames.text.value].strip()) > 0 def remove_empty_texts(ds: Dataset, num_proc: int = 4) -> Dataset: logger.info("Removing empty texts") len_ds = len(ds) ds = ds.filter(_filter_empty, num_proc=num_proc) logger.info(f"Filtered {len_ds - len(ds)} empty examples") return ds def ensure_column_order(ds: Dataset) -> Dataset: logger.info("Ensuring columns are in the correct order and are present") ds = ds.select_columns(COLUMN_ORDER) return ds