from pathlib import Path import pandas as pd from dynaword.datasheet import DataSheet, human_readable_large_int from dynaword.paths import repo_path main_sheet = DataSheet.load_from_path(repo_path / "README.md") _datasets = [ cfg["config_name"] # type: ignore for cfg in main_sheet.frontmatter["configs"] # type: ignore if cfg["config_name"] != "default" # type: ignore ] DEFAULT_LICENSE_REFERENCES = """[CC-0]: https://creativecommons.org/publicdomain/zero/1.0/legalcode.en [CC-BY-SA 4.0]: https://creativecommons.org/licenses/by-sa/4.0/deed.en [Apache 2.0]: https://www.apache.org/licenses/LICENSE-2.0 """ def create_license_references() -> str: license_references = DEFAULT_LICENSE_REFERENCES for dataset in _datasets: dataset_path = repo_path / "data" / dataset readme_path = dataset_path / f"{dataset_path.name}.md" sheet = DataSheet.load_from_path(readme_path) if sheet.license == "other": license_name = sheet.frontmatter["license_name"] license_references += f"[{license_name}]: ./data/{dataset_path.name}/{dataset_path.name}.md#license-information\n" return license_references def create_dataset_readme_references(): readme_references = "" for dataset in _datasets: dataset_path = repo_path / "data" / dataset readme_references += ( f"[{dataset_path.name}]: data/{dataset_path.name}/{dataset_path.name}.md\n" ) return readme_references def create_overview_table( repo_path: Path = repo_path, add_readable_tokens: bool = True, add_total_row: bool = True, add_readme_references: bool = True, ) -> pd.DataFrame: table = { "Source": [], "Source with link": [], "Description": [], "Domain": [], "N. Tokens": [], "License": [], } for dataset in _datasets: dataset_path = repo_path / "data" / dataset readme_path = dataset_path / f"{dataset_path.name}.md" sheet = DataSheet.load_from_path(readme_path) desc_stats = sheet.get_descritive_stats() main_domain = sheet.domains[0] if sheet.domains else "" table["Source"] += [f"{dataset_path.name}"] table["Source with link"] += [f"[{dataset_path.name}]"] table["License"] += [f"[{sheet.license_name}]"] table["Domain"] += [main_domain] table["Description"] += [sheet.short_description] table["N. Tokens"] += [desc_stats.number_of_tokens] df = pd.DataFrame.from_dict(table) df = df.sort_values("N. Tokens", ascending=False) if add_total_row: total_row = { "Source": "**Total**", "Source with link": "**Total**", "Domain": "", "License": "", "Description": "", "N. Tokens": sum(table["N. Tokens"]), } df = pd.concat( [ df, pd.DataFrame([total_row]), ], ignore_index=True, ) if add_readme_references: # replace Source with Source with link df["Source"] = df["Source with link"] df = df.drop(columns=["Source with link"]) else: # remove Source with link df = df.drop(columns=["Source with link"]) if add_readable_tokens: df["N. Tokens"] = df["N. Tokens"].apply(human_readable_large_int) return df def create_overview_table_str(repo_path: Path = repo_path) -> str: main_table = create_overview_table(repo_path) readme_references = create_dataset_readme_references() license_references = create_license_references() package = f"{main_table.to_markdown(index=False)}\n\n{readme_references}\n\n{license_references}\n\n" return package