File size: 2,237 Bytes
ff6f055 d78ea0a ff6f055 d78ea0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
---
dataset_info:
features:
- name: id
dtype: int64
- name: url
dtype: string
- name: title
dtype: string
- name: content
dtype: string
splits:
- name: train
num_bytes: 127910
num_examples: 100
download_size: 67600
dataset_size: 127910
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: apache-2.0
language:
- es
tags:
- legal
size_categories:
- n<1K
---
```python
# -*- coding: utf-8 -*-
"""
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1iAhLoc8FxHXijhyljdKhrIJbn342bhPD
"""
# Commented out IPython magic to ensure Python compatibility.
# %pip install --upgrade langchain datasets
import requests
from bs4 import BeautifulSoup
CONFIG = {
'title': 'Constitución Española',
'url': "https://www.boe.es/diario_boe/xml.php?id=BOE-A-1978-31229",
'chunk_size': 1300,
'chunk_overlap': 150,
}
"""# Downloading BOE document"""
response = requests.get(CONFIG['url'])
response.raise_for_status()
soup = BeautifulSoup(response.text, "lxml")
filename = "constitucion.txt"
with open(filename, 'w') as fn:
text = soup.select_one("documento > texto").get_text()
fn.write(text)
"""# Splitting by chunks the document"""
from langchain_community.document_loaders import TextLoader
loader = TextLoader(filename)
document = loader.load()
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CONFIG["chunk_size"],
chunk_overlap=CONFIG["chunk_overlap"],
)
docs_chunks = text_splitter.split_documents(document)
print(len(docs_chunks))
docs_chunks
"""# Loading chunks in a dataset"""
from datasets import Dataset
data_dict = {
'id': [],
'url': [],
'title': [],
'content': []
}
for idx, chunk in enumerate(docs_chunks):
data_dict['id'].append(idx)
data_dict['url'].append(CONFIG['url'])
data_dict['title'].append(CONFIG['title'])
data_dict['content'].append(chunk.page_content)
dataset = Dataset.from_dict(data_dict)
"""# Loading to HuggingFace"""
# !huggingface-cli login
dataset.push_to_hub("dariolopez/justicio-BOE-A-1978-31229-constitucion-100-chunks")
``` |