Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Added MTEB availability and partial reproduction steps
Browse files
README.md
CHANGED
|
@@ -25,59 +25,145 @@ configs:
|
|
| 25 |
|
| 26 |
# **DAPFAM** dataset
|
| 27 |
|
| 28 |
-
|
| 29 |
|
|
|
|
| 30 |
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
|
| 34 |
|
| 35 |
-
|
| 36 |
-
* Multi‑jurisdictional, English‑only text (families may originate in US, JP, EP, CN, …).
|
| 37 |
-
* Parquet qrel file: `qrels_all.parquet`.
|
| 38 |
|
| 39 |
-
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
```
|
| 42 |
-
corpus.parquet # 45 336 rows, targets – every original column from the paper
|
| 43 |
-
queries.parquet # 1 247 rows, queries – same columns + abstract_keywords
|
| 44 |
-
qrels_all.parquet # (all | in | out) four‑column tables → query_id · relevant_id · relevance_score · domain_rel
|
| 45 |
-
```
|
| 46 |
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
```python
|
| 50 |
from datasets import load_dataset
|
| 51 |
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
|
| 62 |
|
| 63 |
-
If you find our paper or dataset helpful, please consider citing as follows:
|
| 64 |
|
|
|
|
| 65 |
```
|
| 66 |
@misc{ayaou2025dapfamdomainawarefamilyleveldataset,
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
}
|
| 75 |
-
```
|
| 76 |
-
|
| 77 |
-
## Quick Stats
|
| 78 |
-
|
| 79 |
-
* **Queries**: 1,247
|
| 80 |
-
* **Corpus (targets)**: 45,336
|
| 81 |
-
* **Qrels (all)**: 49,869
|
| 82 |
-
* **Qrels (in)**: 19,736
|
| 83 |
-
* **Qrels (out)**: 5,193
|
|
|
|
| 25 |
|
| 26 |
# **DAPFAM** dataset
|
| 27 |
|
| 28 |
+
> **What’s new (Sept 2025)** — **DAPFAM patent family retrieval tasks are now in MTEB.** 18 tasks (ALL / IN / OUT × 3 query views × 3 target views) are available, including the 6 main ones used in our paper. You can benchmark any model with a single script and reproduce the paper’s results by selecting the same encoder (Snowflake/snowflake-arctic-embed-m-v2.0). Our paper used int8 quantization for hardware reasons; results may vary very slightly (not significantly) if you run in float16/32.
|
| 29 |
|
| 30 |
+
### DAPFAM — A Domain‑Aware Family‑level Dataset to benchmark cross‑domain patent retrieval
|
| 31 |
|
| 32 |
+
**License:** CC‑BY‑NC‑SA‑4.0
|
| 33 |
+
**Tasks:** text‑retrieval (patent family prior‑art retrieval)
|
| 34 |
+
**Languages:** English (eng‑Latn)
|
| 35 |
+
**Evaluation date span:** 1964‑06‑26 → 2023‑06‑20
|
| 36 |
+
**Cite:** Ayaou et al., 2025 — _DAPFAM: A Domain‑Aware Family‑level Dataset to benchmark cross‑domain patent retrieval_ (arXiv:2506.22141)
|
| 37 |
|
| 38 |
+
---
|
| 39 |
|
| 40 |
+
### Summary
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
**DAPFAM** provides **1,247 query patent families** and **45,336 target families** with **citation‑based relevance** and explicit **domain labels** (IN/OUT). Each positive pair is IN‑domain if query and target share at least one IPC3 code, OUT‑domain otherwise. Text is at **family‑level full text** (title, abstract, claims, description). Supports both **document-** and **passage‑level** retrieval.
|
| 43 |
|
| 44 |
+
**What makes DAPFAM different?**
|
| 45 |
+
- **Explicit domain partitions** (IN vs OUT) → enables true cross‑domain evaluation.
|
| 46 |
+
- **Family‑level aggregation** → reduces cross‑jurisdiction redundancy.
|
| 47 |
+
- **Compute‑aware** → Small enough to support passage level experimentations on consumer-grade hardware.
|
| 48 |
+
|
| 49 |
+
---
|
| 50 |
+
|
| 51 |
+
### Benchmark DAPFAM on MTEB
|
| 52 |
+
|
| 53 |
+
**18 retrieval tasks** have been added (ALL / IN / OUT × 3 query × 3 target field views). Six of them were directly evaluated in the paper.
|
| 54 |
+
|
| 55 |
+
#### Task naming scheme
|
| 56 |
+
- Query view: **TA** (Title+Abstract) or **TAC** (Title+Abstract+Claims)
|
| 57 |
+
- Target view: **TA**, **TAC**, or **FullText** (adds description)
|
| 58 |
+
- Subsets: **ALL**, **IN**, **OUT** (IPC overlap filtering)
|
| 59 |
+
|
| 60 |
+
#### Task list (18 total)
|
| 61 |
+
|
| 62 |
+
**ALL**
|
| 63 |
+
- `DAPFAMAllTitlAbsToTitlAbsRetrieval`
|
| 64 |
+
- `DAPFAMAllTitlAbsToTitlAbsClmRetrieval` **(in-paper)**
|
| 65 |
+
- `DAPFAMAllTitlAbsToFullTextRetrieval`
|
| 66 |
+
- `DAPFAMAllTitlAbsClmToTitlAbsRetrieval`
|
| 67 |
+
- `DAPFAMAllTitlAbsClmToTitlAbsClmRetrieval` **(in-paper)**
|
| 68 |
+
- `DAPFAMAllTitlAbsClmToFullTextRetrieval`
|
| 69 |
+
|
| 70 |
+
**IN**
|
| 71 |
+
- `DAPFAMInTitlAbsToTitlAbsRetrieval`
|
| 72 |
+
- `DAPFAMInTitlAbsToTitlAbsClmRetrieval` **(in-paper)**
|
| 73 |
+
- `DAPFAMInTitlAbsToFullTextRetrieval`
|
| 74 |
+
- `DAPFAMInTitlAbsClmToTitlAbsRetrieval`
|
| 75 |
+
- `DAPFAMInTitlAbsClmToTitlAbsClmRetrieval` **(in-paper)**
|
| 76 |
+
- `DAPFAMInTitlAbsClmToFullTextRetrieval`
|
| 77 |
+
|
| 78 |
+
**OUT**
|
| 79 |
+
- `DAPFAMOutTitlAbsToTitlAbsRetrieval`
|
| 80 |
+
- `DAPFAMOutTitlAbsToTitlAbsClmRetrieval` **(in-paper)**
|
| 81 |
+
- `DAPFAMOutTitlAbsToFullTextRetrieval`
|
| 82 |
+
- `DAPFAMOutTitlAbsClmToTitlAbsRetrieval`
|
| 83 |
+
- `DAPFAMOutTitlAbsClmToTitlAbsClmRetrieval` **(in-paper)**
|
| 84 |
+
- `DAPFAMOutTitlAbsClmToFullTextRetrieval`
|
| 85 |
+
|
| 86 |
+
#### Quick start — run all tasks
|
| 87 |
+
```python
|
| 88 |
+
import mteb
|
| 89 |
+
from sentence_transformers import SentenceTransformer
|
| 90 |
+
|
| 91 |
+
model_name = "Snowflake/snowflake-arctic-embed-m-v2.0"
|
| 92 |
+
model = SentenceTransformer(model_name, trust_remote_code=True,
|
| 93 |
+
model_kwargs={"torch_dtype":"float16"}).cuda().eval()
|
| 94 |
+
|
| 95 |
+
task_names = [
|
| 96 |
+
# ALL
|
| 97 |
+
"DAPFAMAllTitlAbsToTitlAbsRetrieval",
|
| 98 |
+
"DAPFAMAllTitlAbsToTitlAbsClmRetrieval",
|
| 99 |
+
"DAPFAMAllTitlAbsToFullTextRetrieval",
|
| 100 |
+
"DAPFAMAllTitlAbsClmToTitlAbsRetrieval",
|
| 101 |
+
"DAPFAMAllTitlAbsClmToTitlAbsClmRetrieval",
|
| 102 |
+
"DAPFAMAllTitlAbsClmToFullTextRetrieval",
|
| 103 |
+
# IN
|
| 104 |
+
"DAPFAMInTitlAbsToTitlAbsRetrieval",
|
| 105 |
+
"DAPFAMInTitlAbsToTitlAbsClmRetrieval",
|
| 106 |
+
"DAPFAMInTitlAbsToFullTextRetrieval",
|
| 107 |
+
"DAPFAMInTitlAbsClmToTitlAbsRetrieval",
|
| 108 |
+
"DAPFAMInTitlAbsClmToTitlAbsClmRetrieval",
|
| 109 |
+
"DAPFAMInTitlAbsClmToFullTextRetrieval",
|
| 110 |
+
# OUT
|
| 111 |
+
"DAPFAMOutTitlAbsToTitlAbsRetrieval",
|
| 112 |
+
"DAPFAMOutTitlAbsToTitlAbsClmRetrieval",
|
| 113 |
+
"DAPFAMOutTitlAbsToFullTextRetrieval",
|
| 114 |
+
"DAPFAMOutTitlAbsClmToTitlAbsRetrieval",
|
| 115 |
+
"DAPFAMOutTitlAbsClmToTitlAbsClmRetrieval",
|
| 116 |
+
"DAPFAMOutTitlAbsClmToFullTextRetrieval",
|
| 117 |
+
]
|
| 118 |
+
|
| 119 |
+
tasks = mteb.get_tasks(tasks=task_names)
|
| 120 |
+
results = mteb.MTEB(tasks=tasks).run(
|
| 121 |
+
model,
|
| 122 |
+
output_folder=f"mteb_res/{model_name}",
|
| 123 |
+
encode_kwargs={"batch_size": 16, "prompt_name": None}
|
| 124 |
+
)
|
| 125 |
+
print(results)
|
| 126 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
+
> To reproduce the **paper’s reported MTEB-compatible results**, restrict to the six **in-paper tasks** listed above. The encoder was run with int8 quantization in the paper; float16 runs on GPU may differ slightly.
|
| 129 |
+
|
| 130 |
+
---
|
| 131 |
+
|
| 132 |
+
### How to Load the Dataset
|
| 133 |
|
| 134 |
```python
|
| 135 |
from datasets import load_dataset
|
| 136 |
|
| 137 |
+
dc = load_dataset("datalyes/DAPFAM_patent", "corpus") # 45,336 targets
|
| 138 |
+
dq = load_dataset("datalyes/DAPFAM_patent", "queries") # 1,247 queries
|
| 139 |
+
dr = load_dataset("datalyes/DAPFAM_patent", "relations") # qrels: all/in/out
|
| 140 |
+
```
|
| 141 |
|
| 142 |
+
**Counts**
|
| 143 |
+
- Queries: **1,247**
|
| 144 |
+
- Targets: **45,336**
|
| 145 |
+
- Qrels (all): **≈49,869** (positives + sampled negatives)
|
| 146 |
+
- Positive qrels: **IN ~19,736**, **OUT ~5,193**
|
| 147 |
|
| 148 |
+
---
|
| 149 |
|
| 150 |
+
### Evaluation choices
|
| 151 |
+
- Metrics: **NDCG@100** (primary), **Recall@100** (secondary).
|
| 152 |
+
- Document-level views in MTEB; paper also explores **passage-level** retrieval and **RRF fusion** separately.
|
| 153 |
+
- Encoder: `Snowflake/snowflake-arctic-embed-m-v2.0`; in-paper runs quantized to int8 for efficiency.
|
| 154 |
|
| 155 |
+
---
|
| 156 |
|
|
|
|
| 157 |
|
| 158 |
+
### Citation
|
| 159 |
```
|
| 160 |
@misc{ayaou2025dapfamdomainawarefamilyleveldataset,
|
| 161 |
+
title={DAPFAM: A Domain-Aware Family-level Dataset to benchmark cross domain patent retrieval},
|
| 162 |
+
author={Iliass Ayaou and Denis Cavallucci and Hicham Chibane},
|
| 163 |
+
year={2025},
|
| 164 |
+
eprint={2506.22141},
|
| 165 |
+
archivePrefix={arXiv},
|
| 166 |
+
primaryClass={cs.CL},
|
| 167 |
+
url={https://arxiv.org/abs/2506.22141},
|
| 168 |
}
|
| 169 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|