--- language: - en license: cc-by-nc-sa-4.0 size_categories: - 10K **What’s new (Sept 2025)** — **DAPFAM patent family retrieval tasks are now in MTEB.** 18 tasks (ALL / IN / OUT × 3 query views × 3 target views) are available, including the 6 main ones used in our paper. You can benchmark any model with a single script and reproduce the paper’s results by selecting the same encoder (Snowflake/snowflake-arctic-embed-m-v2.0). Our paper used int8 quantization for hardware reasons; results may vary very slightly (not significantly) if you run in float16/32. ### DAPFAM — A Domain‑Aware Family‑level Dataset to benchmark cross‑domain patent retrieval **License:** CC‑BY‑NC‑SA‑4.0 **Tasks:** text‑retrieval (patent family prior‑art retrieval) **Languages:** English (eng‑Latn) **Evaluation date span:** 1964‑06‑26 → 2023‑06‑20 **Cite:** Ayaou et al., 2025 — _DAPFAM: A Domain‑Aware Family‑level Dataset to benchmark cross‑domain patent retrieval_ (arXiv:2506.22141) --- ### Summary **DAPFAM** provides **1,247 query patent families** and **45,336 target families** with **citation‑based relevance** and explicit **domain labels** (IN/OUT). Each positive pair is IN‑domain if query and target share at least one IPC3 code, OUT‑domain otherwise. Text is at **family‑level full text** (title, abstract, claims, description). Supports both **document-** and **passage‑level** retrieval. **What makes DAPFAM different?** - **Explicit domain partitions** (IN vs OUT) → enables true cross‑domain evaluation. - **Family‑level aggregation** → reduces cross‑jurisdiction redundancy. - **Compute‑aware** → Small enough to support passage level experimentations on consumer-grade hardware. --- ### Benchmark DAPFAM on MTEB **18 retrieval tasks** have been added (ALL / IN / OUT × 3 query × 3 target field views). Six of them were directly evaluated in the paper. #### Task naming scheme - Query view: **TA** (Title+Abstract) or **TAC** (Title+Abstract+Claims) - Target view: **TA**, **TAC**, or **FullText** (adds description) - Subsets: **ALL**, **IN**, **OUT** (IPC overlap filtering) #### Task list (18 total) **ALL** - `DAPFAMAllTitlAbsToTitlAbsRetrieval` - `DAPFAMAllTitlAbsToTitlAbsClmRetrieval` **(in-paper)** - `DAPFAMAllTitlAbsToFullTextRetrieval` - `DAPFAMAllTitlAbsClmToTitlAbsRetrieval` - `DAPFAMAllTitlAbsClmToTitlAbsClmRetrieval` **(in-paper)** - `DAPFAMAllTitlAbsClmToFullTextRetrieval` **IN** - `DAPFAMInTitlAbsToTitlAbsRetrieval` - `DAPFAMInTitlAbsToTitlAbsClmRetrieval` **(in-paper)** - `DAPFAMInTitlAbsToFullTextRetrieval` - `DAPFAMInTitlAbsClmToTitlAbsRetrieval` - `DAPFAMInTitlAbsClmToTitlAbsClmRetrieval` **(in-paper)** - `DAPFAMInTitlAbsClmToFullTextRetrieval` **OUT** - `DAPFAMOutTitlAbsToTitlAbsRetrieval` - `DAPFAMOutTitlAbsToTitlAbsClmRetrieval` **(in-paper)** - `DAPFAMOutTitlAbsToFullTextRetrieval` - `DAPFAMOutTitlAbsClmToTitlAbsRetrieval` - `DAPFAMOutTitlAbsClmToTitlAbsClmRetrieval` **(in-paper)** - `DAPFAMOutTitlAbsClmToFullTextRetrieval` #### Quick start — run all tasks ```python import mteb from sentence_transformers import SentenceTransformer model_name = "Snowflake/snowflake-arctic-embed-m-v2.0" model = SentenceTransformer(model_name, trust_remote_code=True, model_kwargs={"torch_dtype":"float16"}).cuda().eval() task_names = [ # ALL "DAPFAMAllTitlAbsToTitlAbsRetrieval", "DAPFAMAllTitlAbsToTitlAbsClmRetrieval", "DAPFAMAllTitlAbsToFullTextRetrieval", "DAPFAMAllTitlAbsClmToTitlAbsRetrieval", "DAPFAMAllTitlAbsClmToTitlAbsClmRetrieval", "DAPFAMAllTitlAbsClmToFullTextRetrieval", # IN "DAPFAMInTitlAbsToTitlAbsRetrieval", "DAPFAMInTitlAbsToTitlAbsClmRetrieval", "DAPFAMInTitlAbsToFullTextRetrieval", "DAPFAMInTitlAbsClmToTitlAbsRetrieval", "DAPFAMInTitlAbsClmToTitlAbsClmRetrieval", "DAPFAMInTitlAbsClmToFullTextRetrieval", # OUT "DAPFAMOutTitlAbsToTitlAbsRetrieval", "DAPFAMOutTitlAbsToTitlAbsClmRetrieval", "DAPFAMOutTitlAbsToFullTextRetrieval", "DAPFAMOutTitlAbsClmToTitlAbsRetrieval", "DAPFAMOutTitlAbsClmToTitlAbsClmRetrieval", "DAPFAMOutTitlAbsClmToFullTextRetrieval", ] tasks = mteb.get_tasks(tasks=task_names) results = mteb.MTEB(tasks=tasks).run( model, output_folder=f"mteb_res/{model_name}", encode_kwargs={"batch_size": 16, "prompt_name": None} ) print(results) ``` > To reproduce the **paper’s reported MTEB-compatible results**, restrict to the six **in-paper tasks** listed above. The encoder was run with int8 quantization in the paper; float16 runs on GPU may differ slightly. --- ### How to Load the Dataset ```python from datasets import load_dataset dc = load_dataset("datalyes/DAPFAM_patent", "corpus") # 45,336 targets dq = load_dataset("datalyes/DAPFAM_patent", "queries") # 1,247 queries dr = load_dataset("datalyes/DAPFAM_patent", "relations") # qrels: all/in/out ``` **Counts** - Queries: **1,247** - Targets: **45,336** - Qrels (all): **≈49,869** (positives + sampled negatives) - Positive qrels: **IN ~19,736**, **OUT ~5,193** --- ### Evaluation choices - Metrics: **NDCG@100** (primary), **Recall@100** (secondary). - Document-level views in MTEB; paper also explores **passage-level** retrieval and **RRF fusion** separately. - Encoder: `Snowflake/snowflake-arctic-embed-m-v2.0`; in-paper runs quantized to int8 for efficiency. --- ### Citation ``` @misc{ayaou2025dapfamdomainawarefamilyleveldataset, title={DAPFAM: A Domain-Aware Family-level Dataset to benchmark cross domain patent retrieval}, author={Iliass Ayaou and Denis Cavallucci and Hicham Chibane}, year={2025}, eprint={2506.22141}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2506.22141}, } ```